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Abstract
A novel approach toward construction of robots is based on a concentric combination of precurved
elastic tubes. By rotation and extension of the tubes with respect to each other, their curvatures
interact elastically to position and orient the robot’s tip, as well as to control the robot’s shape
along its length. In this approach, the flexible tubes comprise both the links and the joints of the
robot. Since the actuators attach to the tubes at their proximal ends, the robot itself forms a slender
curve that is well suited for minimally invasive medical procedures. This paper demonstrates the
potential of this technology. Design principles are presented and a general kinematic model
incorporating tube bending and torsion is derived. Experimental demonstration of real-time
position control using this model is also described.
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I. INTRODUCTION
MINIMALLY invasive medical procedures involve the manipulation of tools, sensors, and
prosthetic devices inside the body that lead to minimum damage of surrounding tissue
structures. In many cases, navigation to the surgical site requires the instrument to be steered
along 3-D curves through tissue to avoid bony or sensitive structures (percutaneous
procedures) or following the interior contours of a body orifice (e.g., the nasal passages) or
body cavity (e.g., the heart). Once at the surgical site, it is often necessary to control the
position and orientation of the instrument’s distal tip while the proximal inserted length is
held relatively immobile.
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The instruments used in minimally invasive procedures can be grouped into three general
categories. The first category includes straight flexible needles that are used for
percutaneous procedures in solid tissue. The needle is steered along a curved insertion path
by the application of lateral forces at the needle base or tip as the needle is advanced into the
tissue. Since the needle is initially straight, both base- and tip-steering methods rely on
tissue reaction forces to flex the needle along a curved insertion path. Consequently, these
instruments possess no ability to produce lateral tip motion without further penetration into
solid tissue.

The second category of instruments is composed of a straight, stiff shaft with an articulated
tip-mounted tool (e.g., forceps). Both hand-held and robotic instruments (e.g., da Vinci,
Intuitive Surgical, Inc.) [1] of this type are in common use for minimally invasive access of
body cavities (e.g., chest or abdomen). The shaft must follow a straight-line path from the
entry point of the body to the surgical site. Lateral motion of the tip depends on pivoting the
straight shaft about a fulcrum typically located at the insertion point into the body. This
pivoting motion produces tissue deformation proportional to the thickness of tissue from the
entry point to the body cavity.

The third category of instruments includes elongated, steerable devices, such as multistage
microrobot devices, which are typically used for entry through a body orifice, and steerable
catheters, which are most often used for percutaneous access of the circulatory system.
Multistage microrobot devices are typically mounted at the distal end of a rigid shaft and
include a flexible backbone that has a series of regularly spaced platforms. Control elements,
e.g., wires or tubes, attach to the distal platform and slide through all proximal platforms.
For example, in [2], the control elements are tubes that act as secondary backbones and
enable shape control through push–pull actuation. These devices are typically sufficiently
rigid to support their own weight as well as to apply appreciable lateral forces to the
surrounding tissue. An alternate novel technology enables extension along an arbitrary 3-D
curve [3]. This technology is, however, nonholonomic in that lateral motion of the tip is only
accomplished in combination with tangential motion.

In contrast, steerable catheters include an elongate member of sufficient flexibility to
conform to the curvature of the vessel through which it is advanced. Steering is achieved by
the use of one or more wires attached to the distal end of the elongate member disposed
along the catheter’s length [4]. User actuation (e.g., pulling) of the wires causes the distal
portion of the elongate member to flex in one or more directions. Alternately, an external
magnetic field can be used to position the catheter tip (Stereotaxis, Inc.) [5].

Concentric tube robots possess the best properties of all three types of instruments. With
cross sections comparable with needles and catheters, they are nevertheless capable of
substantial actively controlled lateral motion and force application along their length. Since
robot shape can be controlled, they enable navigation through the body along 3-D curves.
Furthermore, the lumen of the tubes can house additional tubes and wires for control of
articulated tip-mounted tools. An example is shown in Fig. 1.

Thus, the technology holds the potential to enable many new minimally invasive
interventions. An important class of applications for such a device would be to enter a body
lumen by steering through tissue or through a body orifice. Once inside the lumen, the
proximal portion can remain relatively fixed while the distal portion manipulates tools
within the lumen to perform minimally invasive surgery.

The kinematic modeling for real-time control of these robots is a challenge in comparison to
that of traditional robots whose links are relatively rigid and whose joints are discrete. The
forward kinematics can be cast as a 3-D beam-bending problem in which the kinematic
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input variables (tube rotations and displacements at the proximal end) enter the problem as a
subset of the boundary conditions. The remaining boundary conditions comprise point
forces and torques applied to the distal ends of the tubes. Contact along the robot’s length
(e.g., with tissue) generates additional distributed and point loads.

Thus, it can be anticipated that the most general kinematic model can be expressed as a two-
point boundary-value problem that involves a differential equation with respect to arc length
along the common centerline of the tubes. Phenomena that may be included in the model are
bending, torsion, friction, shear, axial elongation, and nonlinear constitutive behavior.

Since real-time control necessitates the balance of the accuracy of the model with efficiency
of its computation, efforts to date have modeled curved portions of the tubes as torsionally
rigid [10]-[15]. The torsionally rigid model, which was first derived in [10], results in an
algebraic expression for curvature of the combined tubes that can be analytically integrated
to yield position and orientation of the robot’s tip. Models of this type have been
demonstrated to provide reasonable performance in combination with real-time sensing of
the tip frame (teleoperation in [13] and image servoing in [15]).

Including torsional twist in the straight-transmission lengths of the tubes has also been
proposed in [11] and implemented by the use of online root finding in [15]. Instabilities that
arise from the interaction of transmission-length torsion and curved-length bending have
been investigated using an energy approach in [14].

While it was shown in [12] that closed-form inverse kinematic solutions can be derived for
simple concentric-tube robots, they are difficult to obtain in general. Jacobian-based inverse
kinematics that use the algebraic curvature model were first formulated in [12] and
experimentally implemented in [13]. Inclusion of torsional twist in straight transmission
lengths is reported in [15].

The contribution of this paper is to provide a framework for the design and kinematic
modeling of concentric-tube robots that enables accurate real-time position control. The
paper is arranged as follows. Section II presents design guidelines for the production of
clinically relevant robots and describes the origins of concentric-tube technology. Section III
derives a new kinematic model that is more accurate than prior models since it includes
torsion along the entire lengths of the tubes and is also able to predict torsion-bending
instabilities for curved tubes [16]. Implementation of closed-loop position control based on
the kinematic model is described in Section IV and its experimental evaluation appears in
Section V. Conclusions are given in Section VI.

II. Design of Concentric-Tube Robots
A. Overview

When curved tubes are inserted inside each other, their common axis conforms to a mutually
resultant curvature. By relative translations and rotations of the tubes, both the curvature as
well as the overall length of the robot can be varied. The first robots of this type composed
of two tubes were presented in [7]-[9]. Robots composed from three or more tubes were first
proposed in [10] and [11].

To understand the capabilities of the technology, it is useful to consider the interaction of
two concentrically combined tubes. Limiting cases of their interaction correspond to when
the ratio of bending stiffnesses for the two tubes is 1) very large, such that the shape of one
tube dominates that of the other, and 2) the ratio is approximately one, such that the tubes’
shapes interact equally to determine the overall shape. Each of these cases is described next.
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1) Domination-Stiffness Tube Pair—Since the bending stiffness of one tube is much
larger than that of the other, the pair of concentric tubes conforms to the curvature of the
stiffer tube. When the more flexible tube is translated such that it extends beyond the end of
the stiff tube, the extended portion relaxes to its original curvature.

This is illustrated in Fig. 2 for the case of a stiff, straight outer tube and a curved, inner
flexible tube. As shown in Fig. 2(b), once the flexible tube is extended, the pair has two
independent degrees of freedom (DOFs) associated with relative translation and relative
rotation of the tubes. Cardiologists routinely employ this technique with catheters and guide
wires to manually negotiate branches in the vasculature. Tube pairs of this type have
previously been used to steer joystick-controlled tip of straight needles [7].

2) Balanced-Stiffness Tube Pair—Since the tubes are of similar stiffness, their
unstressed curvatures interact to determine their combined curvature. Relative rotation of the
tubes causes the combined curvature to vary. An example is depicted in Fig. 3 in which the
unstressed curvatures of the two tubes have been designed such that the pair is straight when
the unstressed curvatures oppose each other and possesses maximum curvature when the
individual curvatures are aligned. A balanced-stiffness tube pair was first proposed and
constructed as a steerable needle in [9].

When either type of tube pair is used as a robot, the relative displacements of the tubes are
produced by the application of forces and torques at the proximal end. When inertial effects
are ignored, the magnitudes of the forces and torques are those necessary to deform the
tubes from their combined minimum energy configuration and to overcome friction between
the tubes.

Possible modes of tube deformation are bending, torsion, cross-section shear, and axial
elongation. For the prediction of tip displacement, bending and torsion are the dominant
contributors. The effect of bending on tube pairs has been described earlier. As will be
derived in Section III, torsional twisting occurs whenever two curved tubes are rotated from
the aligned configuration of Fig. 3(a).

The effect of torsional twisting is illustrated in Fig. 4. The relative twist angle varies from a
maximum at the proximal end to a minimum at the distal end. Consequently, even if the
initial curvatures of the two tubes are constant, the combined curvature will vary along the
tubes’ length. This effect occurs for any two curved tubes regardless of their relative
stiffness. The tubes of a balanced pair will both twist (as shown), while, for a stiffness pair
that dominates, the more flexible tube will experience most of the twist. Only when one of
the tubes is straight (zero curvature, as in Fig. 2) is there no bending-induced twist in either
tube. There will be a small amount of twist due to friction in all cases.

If a balanced pair is constructed from two tubes that possess the same stiffness and
precurvature, each tube will twist the same amount but in opposite directions along their
common length. Consequently, the pair will remain planar in shape. Furthermore, while
their mutual curvature will vary somewhat along their length, it will be relatively constant
for pairs that satisfy the torsion-bending stability constraint described next.

B. Constraints on Tube Curvature
The curvature of the individual tubes is limited by two main factors. First, to avoid
permanent deformation of the robot, the maximum strain in the individual tubes should not
exceed the elastic limit of the material. Second, the elastic interaction between torsion and
bending can produce unstable tube configurations in which small perturbations in relative
displacement at the tubes’ proximal end produce sudden large displacements at the distal
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end. Since these unstable motions could be dangerous, it can be desirable to prevent their
occurrence by the imposition of limits on the curvature and length of the tubes.

1) Strain Limits—A simple planar geometric derivation yields an expression for strain ε
due to bending from an initial curvature ui to a new curvature uf as a function of tube radius
r [10]

(1)

Thus, the maximum strain occurs when (1) is evaluated at the outer radius. As suggested by
the configurations of Figs. 2 and 3, the maximum expected change in curvature corresponds
to straightening an initially curved tube. Equation (1) indicates that, for a given value of
maximum strain, the maximum initial curvature is inversely proportional to tube radius.
While the torsion that accompanies bending will increase strain from the value given by (1),
it is an appropriate guideline for design.

NiTi alloys and certain plastics are good material choices for concentric-tube robots since
they can remain elastic for large strains and are also biocompatible. NiTi alloys, in
particular, remain elastic for strains up to 6–8%; however, as shown in Fig. 5, they are linear
only to 1–1.5% strain and exhibit hysteresis at higher strain. While a complete discussion is
beyond the scope of this paper, the effect of this behavior on robot design can be
summarized by taking into account its effect on tube pairs.

Bending stiffness is given by EI in which E is elastic modulus, which corresponds to the
slope of the stress–strain curve, and I is the cross-sectional moment of inertia. For a pair of
tubes in which the maximum strain is less than the linear elastic limit, the ratio of bending
stiffness is given by the ratio of cross-sectional moduli.

From (1), strain varies linearly with distance from the center of the tube. As the change in
tube curvature increases, the cross section will transition from the linear elastic region to the
stress plateau starting with the outer fibers. In this transition, the effective elastic modulus
and, thus, bending stiffness decreases.

In a dominating-stiffness tube pair, the less stiff tube experiences higher strains, and
therefore, its cross section transitions to the stress plateau first. This works in favor of the
designer since it means that the effective stiffness ratio is larger than what is predicted from
the ratio of cross-sectional inertias.

For balanced stiffness-tube pairs, the outer tube, which possesses a larger outer radius, will
always start the transition to the stress plateau first given the same change in curvature. This
is not an impediment to implementation of a balanced pair, however, and the effect can be
incorporated in the kinematic model as needed.

2) Torsion-Bending Instabilities—The second limitation on tube curvature arises from
the torsional twisting associated with rotating curved tubes. This effect will be derived in
Section III; however, it is possible to provide a simple explanation here by reference to Figs.
3 and 4. As the tubes are rotated from their aligned configuration, the rotation angle at the
distal end initially lags the rotation angle at the proximal end. If the lag is large enough that
tip rotation fails to catch up as the proximal rotation angle approaches π [which corresponds
to the configuration of Fig. 3(b)], the tubes will subsequently snap through this configuration
to one in which the distal rotation leads the proximal value. The implications of instability
for design are discussed next.
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C. Robot Design
Based on the discussion of Section I, two desirable properties of a minimally invasive
robotic instrument are as follows.

1. the ability to manipulate distal links independent of proximal links, i.e., to decouple
the robot’s links;

2. the ability to navigate narrow curved passages and, if tissue is penetrated, exert
minimal lateral forces.

A design strategy that provides these properties is encapsulated in the following four design
rules and illustrated in Fig. 6.

1) Telescoping Dominant Stiffness—The stiffnesses of the tubes are selected such that
each telescoping section dominates all those sections extending from it. This is equivalent to
a concatenation of dominating-stiffness tube pairs (recall Fig. 2). The result is that each
telescoping section corresponds to a link whose shape and displacement are approximately
kinematically decoupled from all other sections.

2) Fixed and Variable Curvature Sections—Each telescoping section behaves as a
dominating (fixed curvature) or balanced (variable curvature) tube pair. Thus, the shape of
each telescoping section is dominated by its outermost tubes and is of fixed curvature (if the
outer tube dominates all inner tubes) or is of variable curvature (if the outer tube pair
dominates all inner tubes). Tube curvatures are selected as per the constraints described in
Section II-B.

3) Piecewise-Constant Initial Tube Curvatures—To avoid producing lateral motion
or forces during telescopic extension, the order of extension must proceed from the proximal
section to the distal one. In addition, the curvature of each section must be constant. By
precurving each tube such that its curvature is piecewise constant, the combined telescoping
curvature is also approximately piecewise constant. This is true even when torsion is
considered. Telescopically extended fixed-curvature sections assume the shape of their
precurvature since they dominate all inner tubes. In addition, as described at the end of
Section I, a, stable variable-curvature section composed of balanced tubes remains planar
and of almost-constant curvature.

4) Increasing Curvature From Base to Tip—While the shape of the proximal sections
may be tightly constrained by the desired navigation path to the surgical site, it is often
desirable to employ larger curvatures for the distal section(s). In this way, the proximal
sections function as the links of a typical robot arm produce most of the tip displacement.
The tightly curved distal sections function as the robot’s wrist to control most of the tip
orientation as well as small displacements. Furthermore, since the distal sections’ tubes are
comprised of the smaller diameter inner tubes, they can be given larger precurvatures
without exceeding the elastic strain limit. Stable precurvature is limited, however, since the
inner tubes are also the longest, and therefore, most prone to torsion-bending instabilities.

In summary, tube cross sections and initial curvatures are selected such that the robot
behaves as a concatenation of kinematically independent dominating stiffness (constant
curvature) and balanced stiffness (variable curvature) tube pairs. Each constantcurvature
section has two kinematic input variables {l, θ} and contributes two DOFs that correspond
to the extension length and rotation of the section (see Fig. 6). Each variable-curvature
section has three kinematic input variables {θ1, θ2, l} and contributes three DOFs. The
angles {θ1, θ2} control rotation and curvature of the section and l controls arc length (see
Fig. 3).
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The kinematic model developed in the next section provides the tools for computation of the
displacements of the proposed telescopic concatenation of constant- and variable-curvature
sections. It also dictates how closely these design goals can be achieved in practice.

III. Kinematic Modeling
In this section, we present a general kinematic model that includes bending and torsion for
an arbitrary number of tubes whose curvature and stiffness can vary with arc length. (Note
that this is more general than what is needed to model the designs proposed earlier.) Effects
that are neglected include shear of the cross section, axial elongation, nonlinear constitutive
behavior, friction between the tubes, and deformation due to external loading (including
gravity). Note that while neglected, these effects may not be negligible but are beyond the
scope of this paper.

For ease of exposition, the model is developed in several steps. First, coordinate frames and
curvature are defined followed by a concise derivation of the torsionally rigid algebraic
model. Next, the differential equation model for two torsionally compliant tubes is
developed. Its analytic solution is given, and the torsion-bending stability condition is
derived. Finally, the general multitube torsion-bending model is presented. The variables
used in the paper are enumerated in Table I.

A. Coordinate Frames and Curvature
In the remainder of the paper, subscript indices i = 1, 2, … , n are used to refer to individual
tubes with tube 1 being outermost and tube n being innermost. Arc length s is measured such
that s = 0 at the proximal end of the tubes. As shown in Fig. 4, material coordinate frames
for each cross section can be defined as a function of arc length s along tube i by the
definition of a single frame at the proximal end Fi(0), such that its z-axis is tangent to the
tube’s centerline. Under the unrestrictive assumption that the tubes do not possess initial
material torsion, the frame Fi(s) is obtained by sliding Fi(0) along the tube centerline
without rotation about its z-axis (i.e., a Bishop frame [17]). As the tubes move, bend, and
twist, these material frames act as body frames that track the displacements of their cross
sections.

It is also useful to define a reference frame F0(s) (not shown) which displaces with the cross
sections but does not rotate about its z-axis. When needed for clarity, superscripts will be
used to indicate the coordinate frame of vectors and transforms.

As the ith tube’s coordinate frame Fi(s) slides down its centerline, it experiences a body-
frame angular rate of change per unit arc length given by

(2)

in which (uix, uiy) are the components of curvature due to bending, and uiz is the curvature
component due to torsion. A circumflex on a curvature component is used to designate the
initial precurvature of a tube.

Curvatures transform between coordinate frames like angular velocities. Thus, with the
definition of θi(s) as the z-axis rotation angle from frame F0(s) to frame Fi(s) and Rz(θi) as
the corresponding rotation matrix, the curvature vectors transform as

(3)
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B. Torsionally Rigid Model
An algebraic curvature model can be derived by the combination of three equations: 1) a
constitutive model relates bending moments to changes in curvature of individual tubes; 2)
the equilibrium of bending moments for the assembled tubes; and 3) a compatibility
equation that relates the individual curvatures of the assembled tubes. These are described
next.

1) Constitutive Model—When a tube with initial curvature  is deformed to a

different curvature , a bending moment is generated. On the assumption of linear
elastic behavior, i.e., that strains remain in the linear elastic region of Fig. 5, the bending

moment vector  at any point s along tube i is given by

(4)

in which Ki is the frame-invariant stiffness tensor given by

(5)

and Ei is the modulus of elasticity, Ii is the area moment of inertia, Ji is the polar moment of
inertia, and Gi is the shear modulus. While not explicitly noted, all variables in (5) can be
functions of arc length in the derivations that follow.

2) Equilibrium of Bending Moments—In a concentric tube robot, forces and torques
must be applied at the proximal end of the individual tubes to maintain any desired
configuration. If no other wrenches are applied, the net force and torque applied to the tubes
by the actuators is zero. Consequently, the net bending moment on every cross section is
also zero

(6)

In this equation, all moments must be expressed in the same coordinate frame. Recall that
the transformation of moments between collocated coordinate frames consists of a pure
rotation [6]. Thus, they transform identically to curvatures as given by (3).

3) Compatibility of Deformations—On the assumption that the clearance between each
pair of adjacent tubes is just sufficient to enable relative motion, all tubes must conform to
the same final x–y (bending) curvature when assembled. On the assumption of torsional
rigidity, the z-component of curvature is zero, and the compatibility equation is given by

(7)
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Combining (3)-(7) yields an expression for the resultant curvature as a function of arc length
s [10]

(8)

If the initial curvatures of the tubes  are piecewise-constant curvature, (4) and (8)
indicate that the bending moment and curvature are constant over each segment of the robot
in which all of the tubes in that segment have constant initial curvature and stiffness. This is
illustrated in Fig. 7. There is an implicit assumption here that, over negligible lengths at the
boundaries of these segments, (4) and (7) are violated to produce discontinuities in curvature
and bending moment.

Using this model, tubes of piecewise-constant curvature combine to form robots of
piecewise-constant curvature. The tipcoordinate frame can be computed by analytic
integration of the curvature of each constant-curvature segment and then concatenation of
the resultant set of relative transformations [10]. While this model is computationally
efficient, torsion must be included to obtain an accurate model as described next.

C. Torsionally Compliant Model for Two Tubes
In this derivation, we employ the special Cosserat rod model to account for torsional
twisting of the tubes. The same results can be obtained by the use of the calculus of
variations, as described in [16]. For clarity of presentation, the model is derived here for two
tubes of constant curvature and length L.

It is convenient to define the relative twist angle α(s) between tubes as a function of arc
length

(9)

where θi(s) is the z-axis rotation between frames F0(s) and Fi(s) at arc length s. Equilibrium
of moments (6) can be written in the body frame of tube 1 as

(10)

To include torsional twisting, the compatibility equation (7) enforcing the coincidence of
tube centerlines becomes

(11)

in which , and . This equation ensures that the tubes
experience the same curvature in the plane of the cross section but allows different rates of
torsional twist.

In the subsequent presentation, all tube variables are defined in their respective frame, and

we omit reference to the frame. Thus,  is written as u2(s).
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1) Bending Curvature—Combining the moment equilibrium equation (10) with the
constitutive model (4) and the compatibility equation (11) leads to an expression for the
curvature of tube 2. On the assumption of circular cross sections, Rz(α) and Ki commute,
yielding

(12)

The x and y components of this equation mirror those of the torsionally-rigid case and
provide explicit algebraic equations for curvature as a function of initial curvature and twist
angle α(s). The difference here is that twist angle α(s) is a function of arc length

(13)

(14)

2) Torsional Curvature—The z-component of (12) provides an expression for twist-angle
rate 

(15)

Here, we have used the fact that precurvature does not include torsional twist. To solve this
expression, we need to be able to evaluate u2z.

We can obtain such an expression from the equilibrium equation of the special Cosserat rod
model [18]-[20]. When time-dependent terms are set to zero, the body-frame equilibrium
equations for a curved rod undergoing distributed loading of  torque per unit length and

 force per unit length are given by

(16)

Derivatives are with respect to arc length along the rod s and  are the bending
moment and shear force vectors acting on the rod’s cross section. Here, and in the remainder
of the paper, the square brackets on the vectors u and v denote the skew-symmetric form

(17)

Consistent with the previous notation,  are the angular and linear strain rates per unit
arc length. If one imagines sliding along a curved rod, these vectors can be interpreted as
linear and angular velocities (twist velocities) with arc length that corresponds to time.
Wrenches applied at either end of the rod enter the equations as boundary conditions.
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Equation (16) can be interpreted as body-frame force and moment-equilibrium equations for
a differential length ds of a curved beam or rod. The cross-product terms involving [u] are
needed to account for rotation of the body frame along the length of the differential element.

This equation can be used to predict the shape and forces exerted when two or more
precurved tubes are combined concentrically. Since we anticipate that bending and twisting
will be the dominant forms of deformation of the tubes, we continue to assume that shear
strain and axial strain are negligible. In (16), this results in vT = [0, 0, 1]. Furthermore, we
assume that contact between the tubes is frictionless and that tubes can only exert distributed
reaction forces, but not torques, on each other. As with the torsionally-rigid model, we
assume that concentrated moments are generated over negligibly short lengths at
discontinuities in precurvature and at the ends of tubes in order to satisfy compatibility [see
(13) and (14)]. These moments are treated as boundary conditions in (16).

Since tube interaction is limited to distributed forces, τ = 0 in (16), and for each tube, it
reduces to

(18)

To eliminate moments from these equations, we can use the constitutive model for moments
(4) and its derivative with respect to arc length

(19)

In the derivative, we have taken Ki and  to be independent of s for simplicity, but this is
not necessary. Equation (18) can now be rewritten in terms of curvature

(20)

Recalling vi = [0, 0, 1]T and assuming equal bending stiffness in the x- and y-directions kix =
kiy, the z-component of (20) provides an expression for the derivative of torsional-twist rate
as a function of bending curvature

(21)

This simple equation indicates that the derivative of twist rate is given by the cross product
between actual and initial bending curvature multiplied by the ratio of bending to torsional
stiffness. For tubes, this ratio is given by

(22)

in which ν is Poisson’s ratio. By equilibrium of torsional moments, we need only integrate
for u1z or u2z since

(23)
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Equations (13), (15), and (21) comprise the set of equations that must be solved to compute
curvature along the length of the tubes. Equations (15) and (21) are two first-order
differential equations that can be equivalently described by a second-order equation in α. If
we assume that the cross-sectional precurvature of both tubes is in the same direction (e.g.,
both in x direction or both in y direction) when α = 0, then the three equations reduce to the
following simple expression for precurvature magnitudes  and 

(24)

This equation indicates that the second derivative of twist angle has a simple dependence on
a constant c, given by Poission’s ratio multiplied by the initial tube curvatures.

Two boundary conditions are needed for the two state variables, (α, ) or (α, u2z). Since the
tube angles at the proximal end θi(0) are the kinematic input variables

(25)

In addition, the torsional bending moment at the distal end of each tube is zero

(26)

This yields a second boundary condition

(27)

This is a two-point boundary value problem that can be integrated analytically, as shown
next.

D. Analytical Solution for Two Tubes
The differential equation (24) governing the twist of two constant-curvature tubes has two
trivial equilibrium solutions

(28)

These correspond to the situations in which the cross-sectional curvature vectors of the tubes
have the same and opposite directions, respectively (see Fig. 3). In neither case is an
external torque needed to maintain the configuration. One can guess, however, that the
solution α(s) = π is not a minimum-energy solution for the kinematic input value α(0) = π,
and thus, it is likely that additional solutions to (24) share the initial condition α(0) = π. To
study solution multiplicity, we seek an analytic solution to (24).

1) Analytic Integration—To integrate by separation of variables, we use  and
write

(29)
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in which  and a are variables of integration. This results in the following expression for
:

(30)

Evaluating this equation using the boundary condition  and substituting the result in
(30) yields

(31)

Separation of variables can be used again to obtain

(32)

In (32), the sign is selected to match the sign of the integration interval sgn (α(s) − α(0)).
Recognizing (32) as an incomplete elliptic integral of the first kind, we desire an expression
for the upper limit of integration α(s). This can be obtained in terms of Jacobi elliptic
functions by a variety of methods, including converting the integral of (32) to standard form
or by assuming a solution and showing that it satisfies (31). This results in

(33)

in which nd (u|m)and cd (u|m) are Jacobi elliptic functions [21]. See Appendices A and B for
a brief description of these functions, as well as a proof that (33) satisfies (24).

Equation (33) expresses relative twist angle in terms of the twist angle at the distal end. We
are specifically interested in the value at the proximal end since it is the kinematic input α(0)
= θ2(0) − θ1(0)

(34)

These expressions involve a single dimensionless parameter . Fig. 8 plots (34) for
several values of this parameter.

2) Solution Multiplicity—It can be seen from the figure that at least one value of α(L)
exists for each value of α(0) ∈ [0, 2π], but it is also apparent that there can be multiple
solutions. Solution multiplicity produces sudden changes in tube twist in response to
incremental changes in the kinematic input α(0). These “snap through” instabilities are
indicated as dotted lines in the figure and correspond to the tubes traversing between
minimum energy branches of the curve.

To determine the dependence of the instability on the parameter Lc1/2, we count the
solutions for α(L) given α(0) = π. Identical results are obtained using either the sine or cosine
equation of (34). The sine equation reduces to
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(35)

Since dn (u|0) = 1, (35) always has at least one solution {α(0), α(L)} = {π, π} corresponding
to the case of zero twist along the tubes’ length. To determine when additional solutions
exist, we use the identity [21]

(36)

and note that dn is periodic in its first argument with period 2K(m). Here, K(m) is the
complete elliptic integral of the first kind, which is a monotonically increasing function of m
with K(0) = π/2 and K(1) = +∞. Combining (35) and (36) results in

(37)

This equation has no solutions for . For , the n = 1 solution is identical to
the original solution {α(0), α(L)} = {π, π}. For , one new solution to (37)
exists. Since m = sin2 (α(L)/2), this yields two new solutions . As seen
in Fig. 8, these solutions are symmetric about α(L) = π. Similarly,  yields
four solutions to (37).

The dimensionless parameter  is very important from a design perspective. The
model predicts stable behavior for tubes satisfying

(38)

As this parameter increases, however, additional solutions exist which lie on unstable
branches of the relation. The critical values of α(0) at which “snap through” occurs
correspond to the extrema of α(0) adjacent to the n =1 solution of (37).

A geometric interpretation of (38) can be obtained by noting that

(39)

in which β1 and β2 are the central angles swept out by the initial curvatures of the tubes, as
shown in Fig. 4. Thus, if two frictionless tubes of the same length L possess initial
curvatures with central angles β1 and β2, they can be combined and rotated at their proximal
end without instability as long as the geometric mean of their central angles satisfies

(40)

Assuming that ν ≈ 0.3 and that the tubes have the same initial curvature, their maximum
stable central angle is limited to about 1.38 rad (79°). This equation must be modified and
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the maximum central angle reduced if the curved sections are located at the distal ends of
straight transmission lengths.

E. General Model for an Arbitrary Number of Tubes
The equations of Section III-C can easily be extended to include any number of tubes of
arbitrary stiffness and initial curvature [16]. For n tubes, the equations can be written in
terms of 2n − 2 state variables {αi, uiz}, i = 2, … , n. The relative twist angles are defined by

(41)

where θi(s) is the angular displacement of the ith tube at arc length s. The resulting equations
are

(42)

and can be directly compared to those for two tubes given by (13), (15), and (21).

As before, half of the boundary conditions are obtained from the kinematic input variables
θi(0)

(43)

The remainder are defined by the torque applied at the distal ends of the tubes. Assuming no
external torque, the torsional bending moments and, thus, curvature are zero at this location

(44)

Equations (42)-(44) are easily applied to any combination of precurved tubes—regardless of
whether or not the tubes follow the design guidelines of Section II-C. The stiffness and
precurvature of each tube can be an arbitrary function of arc length. This includes
discontinuities in both stiffness and precurvature. Consequently, there is no need to
subdivide the domain during integration over a telescoping arrangement of tubes. Distal to
the physical end of each tube, its stiffness and curvature can be defined as zero. Details of
the numerical solution are presented next.

IV. Closed-Loop Position Control
Tool-frame position control involves solving the forward and inverse kinematic problems at
real-time rates. The forward kinematic model (42)-(44) presents a challenge in this regard
since it is both a nonlinear second-order differential equation, and it has split boundary
conditions. Furthermore, these equations yield curvature as a function of arc length.
Curvature must be integrated once more to yield tip-frame orientation and a second time to
obtain tip-frame position.

Dupont et al. Page 15

IEEE Trans Robot. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To achieve a real-time implementation, the approach taken here is to precompute the
model’s forward-kinematic solution over the robot’s workspace and then to approximate it
by a product of truncated Fourier series. The inverse kinematic solution is solved at each
time step using a root-finding method applied to the functional approximation. These
techniques are described in the following sections.

A. Forward-Kinematic Functional Approximation
To solve (42)-(44), we note that robot shape is independent of rigid-body translation and
rotation. Since rotation or translation of all tubes simultaneously produces rigid-body
motion, the number of independent kinematic inputs can be reduced by two. Given the form
of (42), we choose the rotation and translation of the first tube θ1 and l1 as references to
measure all tubes’ angles and linear displacements. Thus, the reduced set of kinematic input
variables is {α2−n(0), l2−n} = {αi(0), li}, i = 2, … , n, and the desired output is the tip-frame
position and orientation relative to the base g1(α2−n(0) l2−n). Here, subscript 1 indicates that
the displacement is for the reference values of θ1 = l1 = 0. The transformation for nonzero
values is given by

(45)

To precompute the forward-kinematic solution over a grid of kinematic input values, it is
convenient to define the grid at the robot’s tip in terms of {αi(L), li}, i = 2, … , n and
therefore solve (42) and (44) as an initial value problem by integrating backward in arc
length from L to 0. This yields the curvature along the robot as well as the input twist angles
αi(0), i = 2, … , n. Curvature can then be integrated along the robot’s length to yield tip
position and orientation relative to the base g1(α(0), l), as defined earlier. Integrating
curvature is analogous to integrating body-frame twist velocity. A variety of numerical
integration methods are available that preserve group structure on SE(3) [22], [23].

A dense discretization of {α2−n(0), l2−n} yields a large data set of g1(α2−n(0), l2−n). While
one approach is to store this data as a lookup table, functional approximations offer reduced
storage requirements at modest computational cost. Since the input variables have a periodic
effect on the tip frame, each of the tip-frame coordinates can be modeled using a product of
truncated Fourier series.

Define a scalar Fourier series H of order q as

(46)

in which , , where the asterisk indicates complex conjugate. We model each of
the tip coordinates in p1 = [x1, y1, z1]T using a product of series in the form of (46). For
example, assuming n tubes that can be rotated and translated and using the same order series
for all input variables, x1 is of the form
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(47)

in which the linear displacement variables li are scaled by appropriate wavelength
parameters λi.

Tip orientation can be modeled in a similar fashion. For example, for the 5-DOF robot used
in the experiments, roll angle is undefined and a tangent vector can define orientation t1 =
[tx1, ty1, tz1]T with components modeled by (47).

Multiplying out the product expansion for each component of tip position and direction
produces sets of unknown constant coefficients that can be estimated using linear least
squares from the dataset g1(α2−n(0), l2−n). The resulting approximation is denoted as

, and it can be used in (45) to produce the approximated forward kinematic
solution .

B. Real-Time Inverse Kinematics

Given the desired tip frame , the inverse-kinematics problem can be posed as a root-
finding problem. The desired joint values correspond to the zero of a scalar- or vector-

valued function  representing the distance between the actual and desired tip

frames. One example of  is the twist vector corresponding to the screw motion
between  and . In this context, the standard Jacobian-inverse approach is an online
implementation of Newton’s root-finding method.

For the 5-DOF robot used in the experimental implementation described next, tip-frame roll

angle is undefined, and therefore, the function  is selected as

(48)

Here, tip position is given by p0 and tip-tangent direction by unit vector t0. The scaling
factor γ is given by the ratio of maximum tip-position error to maximum orientation-angle
error

(49)

Root finding is accomplished using the Gauss–Newton method. The method requires the
Jacobian of (48) with respect to the joint variables. This can be evaluated numerically using
additional function evaluations of (48) or computed from the analytic form of the Jacobian.
The latter is easily obtained since the partial derivatives of (47) with respect to the joint
variables have the same functional form as (47).
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The number of iterations needed to converge to the inverse solution depends on the initial
magnitude of (48). In teleoperation, the current joint values and tip location can be used to
initiate root finding for the next time step. Thus, the maximum magnitude is usually small
and can be estimated from the desired tip-motion bandwidth and controller-cycle time. For
example, a 10-mm-amplitude sinusoidal tip displacement at 10 Hz has a maximum
displacement of less than 1 mm during a 1 kHz control cycle. Consequently, the algorithm
typically converges within a controller time step. For those cases when convergence is not
obtained within a control cycle, motion is still well behaved since the implementation is
such that error decreases with each iteration. As described next, our current unoptimized
implementation can compute up to eight iterations during the 1 ms time step of our 1 kHz
controller.

V. Experimental Model Evaluation
A sequence of experiments was performed to compare the predictions of the torsionally rigid
and torsionally compliant models. The experiments were performed in the context of the
robot depicted in Fig. 9 that is composed of the three tubes shown in Fig. 10. The outer pair
is of the balanced stiffness, variable curvature type (see Fig. 3). Its kinematic input variables
consist of tube rotation angles θ1, θ2, and a single translation variable for the pair l1 = l2. The
innermost tube is dominated by the outer pair (see Fig. 2) and its kinematic variables are θ3,
l3. The five kinematic inputs are used to control the robot’s tip position and tangent
direction.

The diameters of the three tube sizes used in all of the experiments are given in Table II. To
solve the forward kinematics, (42) requires the relative stiffness of the tubes as well as the
ratio of bending to torsional stiffness for each tube. Given that the tubes are of the same
alloy and were processed similarly, the relative stiffness of the tubes should be computable
as the ratio of moments of inertia. Stacking the tolerances for inner and outer diameters of
tube pairs, however, produces large variations in stiffness ratio. Instead, calibrated stiffness
ratios were computed from (8) by measuring the individual tube precurvatures and the
pairwise combined curvature for αi(s) = π using a camera-measurement system (Vision
Appliance, Dalsa, Inc.). Note that this equation is valid for torsionally compliant tubes in
this configuration if they satisfy (38). The ratio of bending to torsional stiffness is given by
(22) and was computed using a value of ν = 0.3.

For these tube dimensions, tip deflection due to gravity (<0.3 mm) was within the
measurement error of the camera system (±0.5 mm), and therefore, its effects were neglected
in the experiments.

For clarity, the modeling error associated with the outer pair of tubes is considered
separately in the first section below. The following section characterizes the error associated
with the kinematic variables of the third tube {θ3, l3}. Finally, total error for the three tubes
is reported for a range of configurations in the robot’s workspace.

A. Rotation of Balanced Tube Pairs
To validate the behavior predicted in Fig. 8, tests were performed on three tube pairs
(labeled A, B, and C) of identical cross sections (Tubes 1 and 2 stock) and length but of
different precurvatures, as shown in Fig. 11 and described in Table III. Each tube is glued
into a collar as shown and mounted in the motor-drive system, as shown in Fig. 12 and
described in [13]. Motor-positioning accuracy is better than 0.1°. Equation (34) must be
adjusted to relate α2(0) measured at the proximal end of the curved portion of the tubes to
the relative angle measured by the motor encoders at the tube collars α2m. This is given by
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(50)

Unlike (34), this computation requires the stiffness ratio of the tubes. This ratio was
computed using the method described earlier, and as reported in Table III, it was found to
differ between tube pairs.

To measure the twist at the distal end of the tubes α2(L),a circular graduated disk was
attached over the last 2 mm of the outer tube (see Fig. 12). A 2-cm-long straight wire was
attached to the tip of the inner tube to enable measurement of the tip tangent direction. A
twist pointer was attached perpendicular to this wire adjacent to the disk for twist
measurement and zeroed for the configuration in which the curvature of the tubes is aligned.
The error in measuring tip angle was estimated to be ±2°.

1) Torsional Twisting—Figs. 13-15 compare the torsionally-rigid and -compliant models
with experiment for the three tube pairs. The torsionally-rigid model is a line of unit slope
while the torsionally-compliant model obtained from (34) and (50) predicts s-shaped curves.
Experimental data was collected by rotating the tube pairs quasistatically through a complete
revolution in the positive and negative directions. This data produced an envelope of the
possible reachable values of (α2m, α2(L)). The envelope is due to unmodeled phenomena.
While not shown, it was demonstrated experimentally that the entire interior of the
envelopes in Figs. 13 and 14, including the point (α2m, α2(L)) = (π, π), is reachable and
stable. In contrast, there are stable and unstable portions of the envelope in Fig. 15.

These figures clearly demonstrate the predictive capability of the torsionally compliant
model in comparison with the rigid model. They also validate that twist, and thus, deviation
from the rigid model increases with increasing curvature. Stable rotation is also successfully
predicted for the tube pairs of Figs. 13 and 14.

In each direction of rotation, α2(L) initially lags α2m, but, in agreement with the torsional
model, α2(L) subsequently increases faster than α2m such that α2m = α2(L) = π is a valid
solution. In contrast, Fig. 15 exhibits a “snap-through” instability. In this case, the lag in
α2(L) continues beyond α2m = π until α2(L) suddenly transitions through π to reach the other
stable branch of solutions.

In contrast to both models, however, experiment shows that every nonzero value of α2m
(excluding the unstable region of Fig. 15) can produce the range of values of α2(L) that lie
inside the experimental envelope. The specific value achieved depends on the history of
motion of α2m. Identifying the physical origin of this phenomena and modeling it is beyond
the scope of this paper. For the purpose of evaluating tube-tip location error below, the
average tip location is computed from the boundaries of the envelope.

2) Tip-Location Error—While Figs. 13-15 show that torsional twisting of the tubes does
occur, they do not reveal the relative error of the models in predicting tube-tip position and
tangent direction. These quantities were measured using a stereo-camera system (Vision
Appliance, Dalsa, Inc.) during the twist experiments described earlier. The tangent direction
at the tip was computed from the coordinates of the points at the base and tip of the tangent
pointer of Fig. 12. To evaluate model error, the average location of the tip is computed from
the two boundaries of the envelope and compared to the predicted value.

Table IV reports position- and tangent-direction error for the three sets of tubes at six values
of α2m. The mean, standard deviation, and maxima are also reported for the complete
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datasets of Figs. 13-15. To visualize the workspace of the tube pairs, Fig. 16 depicts the
torsionally rigid solutions for tube pair B at the six values of α2m reported in the table.

As can be seen from Figs. 13 and 14 and Table IV, the torsionally rigid and compliant
models are in agreement for stable tube pairs at α2m = {0, π, 2π}. For those values of α2m at
which torsional twisting is largest α2m ≈ {120, 240}°, the model predictions diverge
significantly, and as shown in Table IV, the torsional model is much more accurate. For
example, at α2m = 240°, the rigid and torsional-modeling errors of tube pair B are 12.3
versus 4.4 mm in position and 10.1 versus 1.0° in tangent direction.

The effect of tube curvature on the models can be observed by comparing the increasing
divergence between the models across Figs. 13-15. The effect on model error can be seen by
comparing the columns of the three tube pairs in Table IV. While error grows with
increasing curvature for both models, the torsionally compliant model is substantially more
accurate.

Figs. 13 and 14 also show how the magnitude of the experimentally observed, but
unmodeled, twist envelope varies from zero when α2m = {0, 2π} to a maximum when α2m =
π. This envelope is the major source of error observed in the compliant model.

B. Rotation and Translation of Tube 3
The models were evaluated for tube 3 inserted inside tube pair B of Table III. For
convenience, the parameters of all three tubes are given in Table V. As depicted in Fig. 10,
the proximal section of the third tube is straight while its distal section is of constant
curvature. As noted in the table, the curved portion of Tube 3 was found to have a lower
measured stiffness than its straight portion.

The workspace generated by the translation and rotation of the third tube relative to the outer
pair is illustrated in Fig. 17. Since the outer pair is substantially stiffer, tube 3 does not
deform the outer pair very much as it rotates with respect to them, and thus, its tip traces out
a path that is close to circular.

Twist in the third tube was experimentally measured with α2m = 0 for three extension
lengths l3 = 0, 30, 57 mm, corresponding to the tube being fully retracted, partially extended,
and fully extended. Results are shown in Fig. 18, together with the predictions of the
torsionally compliant model. As before, data were recorded for both directions of rotation
revealing an envelope of reachable, stable solutions.

In agreement with Fig. 18, the torsionally compliant model predicts that, for any fixed
values of α2m and α3m, twistin the third tube should increase from zero, when its curved
section is fully extended beyond the tip of the outer tube pair (l3 = 57 mm) to a maximum,
when its curved length is fully retracted inside the curved outer pair (l3 = 0 mm). Thus, the
rigid and compliant models are in agreement at full extension but predict substantially
different results as the inner tube is retracted into the outer pair.

C. Modeling Error Over 3-Tube Robot Workspace
This section reports overall model error for the robot of Fig. 9 using the tubes of Table V.
As described earlier, the kinematic input variables associated with deformation of the tubes
are {α2m, α3m, l3}. The workspace associated with these variables can be envisioned by
combining the motion of the outer tube pair in Fig. 16 with that of the inner tube depicted in
Fig. 17. Robot tip position and tangent direction were measured at 128 configurations in this
workspace for the following values of {α2m, α3m, l3}:
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(51)

The two values of l3 correspond to the curved portion of the third tube being fully retracted
and half extended from the outertube pair. To take into account the effect of motion history
on tip location, two measurements were taken at each configuration corresponding to
positive rotations of α2m and both positive and negative rotations of α3m. Values associated
with negative rotations of α2m were calculated assuming symmetry. Model error was
computed at each configuration using the average experimental tip location calculated from
the two measured and the two calculated locations.

Table VI compares tip position and tangent errors for the torsionally-rigid model (8) and the
torsionally compliant model (42)-(44). The inclusion of torsion substantially reduces the
mean, variance, and maximum of the position error. As can be inferred from Table IV,
substituting more highly curved tubes would produce a larger difference between the
models.

The largest contributor to error in the torsionally compliant model is the experimentally
observed history dependence of tube twist. It is likely that this dependence is due to one of
the modeling simplifications, e.g., ignoring cross-section shear, axial elongation, nonlinear
elasticity, and friction.

Additional sources of error include uncertainty in tube parameters and the finite clearance
between tubes 2 and 3 at the distal end of tube 2.

VI. Real-Time Position Control
To demonstrate real-time implementation of the compliant model, as described in Section
IV-A, a teleoperation system using the robot shown in Fig. 9 and tube properties of Table V
was implemented using the controller shown in Fig. 19. The system includes a master arm
comprised of a PHANTOM Omnihaptic device (Sensable Technologies, Inc.), a slave arm
consisting of the concentric tube robot, and master and slave controllers. In the case shown
and described here, the robot consists of the three tubes shown in Fig. 10 and possesses 5-
DOFs. As described earlier, the outer pair is of the balanced stiffness, variable-curvature
type (see Fig. 3). Its kinematic input variables consist of tube rotation angles θ1, θ2, and a
single translation variable for the pair l1 = l2. The innermost tube is dominated by the outer
pair (see Fig. 2) and its kinematic variables are θ3, l3. The five kinematic inputs are used to
control the robot’s tip position and tangent direction.

In Fig. 19, the slave controller receives the position and tangent direction of the tip of the
master arm (represented by ) and calculates the inverse kinematics of the concentric-tube
robot using the method described in the preceding section. Then, a set of PID controllers
calculate the torques/forces applied to the tubes of the robot. The master controller reads the
tube configuration of the robot and calculates the position and tangent vectors of its tip. The
force feedback provided to the master is governed by a proportional-control law based on
the Cartesian position error between the master- and slave-tip positions.

The teleoperator system of Fig. 19 is implemented by a multithreaded process under
Windows 2000. While Windows 2000 does not natively support hard real-time scheduling,
it does support soft real-time scheduling with a time-critical thread priority. When used
appropriately, a time-critical thread may be used to maintain a regular 1 kHz update rate
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with sufficiently low timing variations to be used for closed-loop control. For this particular
controller, the slave mechanism bandwidth is less than 10 Hz, and therefore, soft real-time
implementation of a 1 kHz control loop was more than sufficient.

The process includes two time-critical user-mode threads running at 1 kHz that implement
the controllers and an application thread that updates a graphical user interface (not shown).
One of the time-critical threads executes the PID controller of the slave arm, and the other
executes the master controller and inverse-kinematics block of the slave controller. The
separation of threads eases integration between the master with its IEEE-1394-based
interface and the slave controlled through a Quanser Q8 data acquisition board with its real-
time input–output subsystem support accessed through the hardware in the loop software
development kit (HIL SDK).

A. Forward Kinematic Model
The method of Section IV-A was used to arrive at a functional approximation of the
forward-kinematic model. Removing the rigid-body degrees of freedom, the reduced set of
kinematic input variables is given by {α2, α3, l3}. Solving (42) and (44) as an initial value
problem, the resulting curvature was integrated backward in arc length from L to 0 to get
g1(α2(0), α3(0), l3) for a uniform 40 × 40 × 40 grid of {α2(L), α3(L), l3}. This dataset was
used to construct a second-order product series (47) for each component of the position and
tangent vectors using a wavelength of . The resulting functional approximations,
where each is defined by 125 constant coefficients, were evaluated against a second dataset
constructed using grid values midway between those of the original set. In this evaluation,
the average tip-position error was 0.025 mm (0.1 mm maximum), and the average tip-
tangent error was 0.02° (0.06° maximum). This approximation error is insignificant in
comparison to modeling error.

B. Inverse-Kinematic Model
Inverse kinematics were implemented, as described in Section IV-B. Tube lengths and
precurvatures limit maximum tip position and orientation errors to approximately 200 mm
and π rad, respectively. For convenience of interpretation, the scaling factor of γ = (180
mm)/(π rad) was selected yielding a tangent error magnitude in degrees.

Our current unoptimized implementation of the Gauss–Newton method can perform eight
iterations in 0.5 ms; however, convergence to the accuracy of the functional approximation
is usually achieved in five or fewer iterations. This fits easily within the 1 ms cycle time of
our controller.

In addition, the inverse kinematic implementation enforces continuity of the inverse solution
and enforces joint limits on the tube extension variables l1 = l2 and l3.

C. Results
Performance of the teleoperation system was evaluated for a task that consisted of touching
a sequence of nine 2-mm-diameter beads embedded in the faces of three dodecahedral dice
suspended on posts, as shown in Fig. 20. This task requires the operator to control both the
tip position and tangent direction to contact the beads. As shown in the accompanying video,
teleoperation is smooth and responsive.

Since the inverse kinematic solver converges within each time step, trajectory-following
error is due to kinematic-modeling error and drive-system bandwidth limitations. Steady-
state control error is due only to modeling error.
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VII. Conclusion
Concentric tube robots are a novel technology that has broad potential in minimally invasive
surgery. The design principles presented in Section II provide the tools to produce
concentrictube robots that exhibit stable motion, possess kinematically decoupled links, and
are capable of snaking through curved passages. The authors are currently using the
principles described in this paper to design such robots for surgery inside the beating heart
and inside the brain.

The new torsion-flexure kinematic model of Section III is completely general. It can be used
to compute the resultant shape of any number of tubes of arbitrary cross section and
precurvature while also predicting unstable tube configurations. Furthermore, it is
substantially more accurate than prior models with its comparative accuracy increasing with
both tube length and curvature. Using only geometric and mechanical parameters obtained
from simple static measurements, the new model reduced tip-position error by 50% to 4.2 ±
2.0 mm for a 200-mm-long robot. The major remaining source of error is an experimentally
observed dependence on motion history that is the subject of future research.

While the kinematic model is a two-point boundary-value differential equation, Section IV
provides a technique for pre-computing an accurate functional approximation. This section
also details an online root-finding method for implementing real-time position control.
Unoptimized control code running on a PC was easily able to compute the three-tube
inverse-kinematic solution at 1 kHz rate. Thus, both analytically and numerically, the
approach provides the capacity for extension to robots with greater numbers of tubes. It can
also be easily adapted to future kinematic models that include currently neglected effects
such as friction and nonlinear constitutive behavior.
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Appendix A
Following the presentation of [21], the Jacobi elliptic functions can be defined in terms of
the integral

(52)

with u, . The following three Jacobi elliptic functions can be used to generate the
remaining nine functions:

(53)

The functions used in the paper and Appendix B are

Dupont et al. Page 23

IEEE Trans Robot. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(54)

Since Jacobi elliptic functions involving any real values of m can be expressed in terms of
Jacobi-elliptic functions with 0 ≤ m ≤ 1, it is sufficient to consider m in this interval. Using
the terminology of [21], m and m1 are referred to as the parameter and complementary
parameter, respectively, and

(55)

Additional insight into the functions of (54) can be gained by evaluating them at the limiting
values of the parameter m

(56)

In the derivation next, the following formulas for derivatives are used [21]:

(57)

(58)

Appendix B
Equation (33) is shown here to satisfy differential equation (24). For brevity, (33) is
rewritten here in the compact form

(59)

(60)

in which

(61)

(62)
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(63)

Differentiation of (59) is performed using (57)

(64)

(65)

Substituting (60) and the derivative of (63) into (65) yields

(66)

Note that differentiating (60) instead of (59) also produces (66). Differentiating a second
time using (58) and (63) results in

(67)

Recognizing the expressions in parentheses as (59) and (60) gives the differential equation
(24)

(68)
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Fig. 1.
Concentric-tube robot comprising four telescoping sections that can be rotated and translated
with respect to each other.
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Fig. 2.
Dominating-stiffness tube pair. (a) When retracted, tubes conform to shape of stiff outer
tube. (b) Portion of extended inner tube relaxes to its initial curvature.
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Fig. 3.
Balanced-stiffness tube pair. (a) Rotating tube pair with curvatures aligned. (b) Rotating-
tube pair with curvatures opposed.
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Fig. 4.
Effect of torsional twisting when two curved tubes are combined. Tube coordinate frames
are denoted by Fi(s). The relative z-axis twist angle between frames α(s) varies from a
maximum α(0) at the base to a minimum α(L) at the tip. The central angles βi are
proportional to the precurvature and to the tube length L.
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Fig. 5.
Stress versus strain curve for NiTi showing characteristic elastic loading and unloading
plateaus.
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Fig. 6.
Example five-tube robot design composed of three telescoping sections of variable, fixed,
and variable curvature, respectively. Tube pairs comprising variable-curvature sections are
rotated individually but extended simultaneously. Each section dominates the shape of those
sections retracted inside it.
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Fig. 7.
Three-tube example illustrating that torsionally-rigid model predicts tubes of piecewise-
constant curvature combine to form a robot of piecewise-constant curvature.
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Fig. 8.
Relative twist angle of tubes at base versus tip for three values of . Only the curve with

 exhibits stable rotation.
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Fig. 9.
Three-tube concentric-tube robot.
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Fig. 10.
Tubes comprising the robot. Tubes 1 and 2 form a variable-curvature balanced pair that
dominates tube 3. Ruler shows units in millimeters.
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Fig. 11.
Dimensions of tube pairs.
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Fig. 12.
Tube pair showing graduated disk, twist pointer, and tangent pointer.
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Fig. 13.
Tip versus motor twist angle for tube pair A.
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Fig. 14.
Tip versus motor twist angle for tube pair B.
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Fig. 15.
Tip versus motor twist angle for tube pair C.
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Fig. 16.
Tube pair B workspace. Depicted configurations are computed using the torsionally rigid
model.
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Fig. 17.
Workspace generated by rotating and translating tube 3 with respect to the outer pair.
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Fig. 18.
Tube 3 tip twist angle versus motor twist angle and extended length for α2m = 0. Circles are
experimental data points. Surface denotes prediction of torsionally compliant model.
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Fig. 19.
Teleoperator block diagram.
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Fig. 20.
Teleoperated real-time position control task. Touching sequence of nine silver beads
embedded in dice involves controlling both position and tangent direction of robot tip.
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TABLE I

NOMENCLATURE

i Tube index, numbered from outer to inner.

s Arc length measured from the proximal end of tubes.

L Tube length.

r Tube radius.

ε Strain (scalar).

σl, σu Loading and unloading stress (sealars).

E Elastic modulus.

G Shear modulus.

ν Poisson’s ratio.

I Cross section area moment of inertia

J Cross section polar moment of inertia

F0(s) Cross section reference frame (no twist).

Fi(s) Cross-section material coordinate frame of ith tube.

Angle of z-axis rotation from cross section reference

θi(s) frame to cross section material frame. (θi(0) is
kinematic input variable.)

li
Insertion distance of ith tube measured with respect to
reference frame F0(0) (kinematic input variable.)

αi(s) Relative z-axis rotation angle between cross section
material frames, θi(s) − θ1(s). If no subscript, i = 2.

β i Central angle produced by pre-curvature of ith tube.

Rz(α) Rotation matrix for rotation of α about z-axis.

ui
Fi(s)(s), ui(s)

Three-component curvature vector of ith tube expressed
in tube’s material coordinate frame. Also, angular strain
rate per unit arc length.

v(s) Three-component vector of linear strain rate per unit arc
length.

ûi(s) Initial or pre-curvature vector of ith tube.

mi(s) Three-component bending moment vector of ith tube.

ni(s) Three component shear force vector of ith tube.

Ki Frame-invariant stiffness tensor of ith tube.

kix, kiy, Kiz Diagonal components of stiffness tensor.

c Constant given by (1 + ν) ∥ û1 ∥ ∥ û2 ∥  (scalar).

nd(u|m),
cd(u\m) Jacobi elliptic functions of scalar variables u and m.

K(m) Complete elliptic integral of the first kind.
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TABLE II

TUBE STOCK USED IN EXPERIMENTS

Tube 1 2 3

Outer Diameter (mm) 2.77+/−0.01 2.41+/−0.01 1.85+/−0.01

Inner Diameter (mm) 2.55+/−0.01 1.97+/−0.01 1.65+/−0.01
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TABLE III

BALANCED-PAIR TUBE PARAMETERS

Tube Pair A B C

r1 (mm) 242 154 93

r2 (mm) 260 154 93

Calibrated stiffness ratio
(tube 2 / tube 1) 1.28 1.53 1.53
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TABLE IV

TUBE-PAIR TIP POSITION AND TANGENT ERROR

Note that “All” refers to all points in Figs. 13--15.
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TABLE V

TUBE PARAMETERS

Tube 1 2 3

Outer Diameter (mm) 2.77+/−0.01 2.41+/−0.01 1.85+/−0.01

Inter Diameter (mm) 2.55+/−0.01 1.97+/−0.01 1.65+/−0.01

Sections of constant pre-
curvature listed base to tip
(length, mm; radius, mm)

(l=150; r=154) (l=18; r=∞)
(l=150; r=154)

(l=186; r=∞)
(l=57; r=35)

Calibrated stiffness (relative
to Tube 1) 1 1.53 0.21 (straight)

0.07 (curved)

Maximum % strain to
straighten curved section 0.57 0.46 2.64
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