Abstract
It has been confirmed that the rabbit vermiform appendix secretes spontaneously at a relatively rapid rate (1-12 ml·h-1; 1.4±0.24 μl·min-1·cm-2). The electrolyte composition is similar to that of ileal fluids and independent of the secretory rate. The transmural potential difference is about 12 mV, mucosa negative. Of the major electrolytes, only HCO3- is secreted grossly against its electrochemical potential difference. This finding plus the low hydraulic (or osmotic) permeability (Lp) and high secretory pressures of the organ strongly suggest that the secretion is an active one. The passive permeability to Na+ and Cl- appears to be, at most, somewhat less than for small bowel. Permeability to mannitol was estimated at 2.5 × 10-7 cm·s-1. On the basis of reasonable assumptions and results with luminal test solutions of differing osmolarities, it was concluded that (a) the Lp of the appendiceal epithelium is in the lower range of values reported for small bowel and colon; (b) the Lp is higher for osmotic absorption than for osmotic secretion; and (c) the rate of spontaneous secretion is insensitive to luminal anisotonicity over a wide range of values. But sufficiently hypotonic solutions can reverse net secretion to net absorption, more by inhibiting spontaneous secretion than increasing osmotic absorption. The rabbit vermiform appendix appears to be a useful model for the elucidation of intestinal secretory processes.
Full text
PDF









Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altamirano M. Action of concentrated solutions of nonelectrolytes on the dog gastric mucosa. Am J Physiol. 1969 Jan;216(1):33–40. doi: 10.1152/ajplegacy.1969.216.1.33. [DOI] [PubMed] [Google Scholar]
- Altamirano M. Action of solutions of reduced osmotic concentration of the dog gastric mucosa. Am J Physiol. 1969 Jan;216(1):25–32. doi: 10.1152/ajplegacy.1969.216.1.25. [DOI] [PubMed] [Google Scholar]
- Andersson S., Grossman M. I. Profile of pH, pressure, and potential difference at gastroduodenal junction in man. Gastroenterology. 1965 Oct;49(4):364–371. [PubMed] [Google Scholar]
- BARRY R. J., DIKSTEIN S., MATTHEWS J., SMYTH D. H., WRIGHT E. M. ELECTRICAL POTENTIALS ASSOCIATED WITH INTESTINAL SUGAR TRANSFER. J Physiol. 1964 Jun;171:316–338. doi: 10.1113/jphysiol.1964.sp007379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banwell J. G., Pierce N. F., Mitra R. C., Brigham K. L., Caranasos G. J., Keimowitz R. I., Fedson D. S., Thomas J., Gorbach S. L., Sack R. B. Intestinal fluid and electrolyte transport in human cholera. J Clin Invest. 1970 Jan;49(1):183–195. doi: 10.1172/JCI106217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Banwell J. G., Pierce N. F., Mitra R., Caranasos G. J., Keimowitz R. I., Mondal A., Manji P. M. Preliminary results of a study of small intestinal water and solute movement in acute and convalescent human cholera. Indian J Med Res. 1968 May;56(5):633–639. [PubMed] [Google Scholar]
- Bentzel C. J., Parsa B., Hare D. K. Osmotic flow across proximal tubule of Necturus: correlation of physiologic and anatomic studies. Am J Physiol. 1969 Aug;217(2):570–580. doi: 10.1152/ajplegacy.1969.217.2.570. [DOI] [PubMed] [Google Scholar]
- Blackwood W. D. Pylorus identification. Gastroenterology. 1969 Aug;57(2):163–167. [PubMed] [Google Scholar]
- COOPERSTEIN I. L., BROCKMAN S. K. The electrical potential difference generated by the large intestine: its relation to electrolyte and water transfer. J Clin Invest. 1959 Feb;38(2):435–442. doi: 10.1172/JCI103818. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURRAN P. F., SOLOMON A. K. Ion and water fluxes in the ileum of rats. J Gen Physiol. 1957 Sep 20;41(1):143–168. doi: 10.1085/jgp.41.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carpenter C. C., Sack R. B., Feeley J. C., Steenberg R. W. Site and characteristics of electrolyte loss and effect of intraluminal glucose in experimental canine cholera. J Clin Invest. 1968 May;47(5):1210–1220. doi: 10.1172/JCI105810. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Field M: Intestinal secretion: effect of cyclic AMP and its role in cholera. N Engl J Med. 1971 May 20;284(20):1137–1144. doi: 10.1056/NEJM197105202842008. [DOI] [PubMed] [Google Scholar]
- Fordtran J. S., Locklear T. W. Ionic constituents and osmolality of gastric and small-intestinal fluids after eating. Am J Dig Dis. 1966 Jul;11(7):503–521. doi: 10.1007/BF02233563. [DOI] [PubMed] [Google Scholar]
- Fordtran J. S., Rector F. C., Jr, Ewton M. F., Soter N., Kinney J. Permeability characteristics of the human small intestine. J Clin Invest. 1965 Dec;44(12):1935–1944. doi: 10.1172/JCI105299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geall M. G., Code C. F., McIlrath D. C., Summerskill W. H. Measurement of gastrointestinal transmural electric potential difference in man. Gut. 1970 Jan;11(1):34–37. doi: 10.1136/gut.11.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grantham R. N., Code C. F., Schlegel J. F. Reference electrode sites in determination of potential difference across the gastroesophageal mucosal junction. Mayo Clin Proc. 1970 Apr;45(4):265–274. [PubMed] [Google Scholar]
- Hakim A. A., Lifson N. Effects of pressure on water and solute transport by dog intestinal mucosa in vitro. Am J Physiol. 1969 Feb;216(2):276–284. doi: 10.1152/ajplegacy.1969.216.2.276. [DOI] [PubMed] [Google Scholar]
- Hendrix T. R., Bayless T. M. Digestion: intestinal secretion. Annu Rev Physiol. 1970;32:139–164. doi: 10.1146/annurev.ph.32.030170.001035. [DOI] [PubMed] [Google Scholar]
- Hendrix T. R. The pathophysiology of cholera. Bull N Y Acad Med. 1971 Oct;47(10):1169–1180. [PMC free article] [PubMed] [Google Scholar]
- KEDEM O., KATCHALSKY A. A physical interpretation of the phenomenological coefficients of membrane permeability. J Gen Physiol. 1961 Sep;45:143–179. doi: 10.1085/jgp.45.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KINNEY V. R., CODE C. F. CANINE ILEAL CHLORIDE ABSORPTION: EFFECT OF CARBONIC ANHYDRASE INHIBITOR ON TRANSPORT. Am J Physiol. 1964 Nov;207:998–1004. doi: 10.1152/ajplegacy.1964.207.5.998. [DOI] [PubMed] [Google Scholar]
- Kokas E., Phillips J. L., Jr, Brunson W. D., Jr The secretory activity of the duodenum in chickens. Comp Biochem Physiol. 1967 Jul;22(1):81–90. doi: 10.1016/0010-406x(67)90169-7. [DOI] [PubMed] [Google Scholar]
- Leitch G. J., Burrows W., Stolle L. C. Experimental cholera in the rabbit intestinal loop: fluid accumulation and sodium pump inhibition. J Infect Dis. 1967 Jun;117(3):197–202. doi: 10.1093/infdis/117.3.197. [DOI] [PubMed] [Google Scholar]
- Leitch G. J., Iwert M. E., Burrows W. Experimental cholera in the rabbit ligated ileal loop: toxin-induced water and ion movement. J Infect Dis. 1966 Jun;116(3):303–312. doi: 10.1093/infdis/116.3.303. [DOI] [PubMed] [Google Scholar]
- Loeschke K., Bentzel C. J., Csáky T. Z. Asymmetry of osmotic flow in frog intestine: functional and structural correlation. Am J Physiol. 1970 Jun;218(6):1723–1731. doi: 10.1152/ajplegacy.1970.218.6.1723. [DOI] [PubMed] [Google Scholar]
- Norris H. T., Curran P. F., Schultz S. G. Modification of intestinal secretion in experimental cholera. J Infect Dis. 1969 Feb;119(2):117–125. doi: 10.1093/infdis/119.2.117. [DOI] [PubMed] [Google Scholar]
- PERRY J. F., Jr, LOKEN M. K., WANGENSTEEN O. H. Nature and source of appendical secretion. Proc Soc Exp Biol Med. 1959 May;101(1):157–159. doi: 10.3181/00379727-101-24865. [DOI] [PubMed] [Google Scholar]
- Powell D. W., Malawer S. J., Plotkin G. R. Secretion of electrolytes and water by the guinea pig small intestine in vivo. Am J Physiol. 1968 Nov;215(5):1226–1233. doi: 10.1152/ajplegacy.1968.215.5.1226. [DOI] [PubMed] [Google Scholar]
- SALMON P. A., GRIFFEN W. O., WANGENSTEEN O. H. Influence of hypothermia on secretory activity of rabbits' appendix and on closed duodenal loops. Proc Soc Exp Biol Med. 1959 May;101(1):150–152. doi: 10.3181/00379727-101-24863. [DOI] [PubMed] [Google Scholar]
- Sachar D. B., Taylor J. O., Saha J. R., Phillips R. A. Intestinal transmural electric potential and its response to glucose in acute and convalescent cholera. Gastroenterology. 1969 Mar;56(3):512–521. [PubMed] [Google Scholar]
- Schmidt-Nielsen B. Comparative aspects of transport of hypertonic, isotonic and hypotonic solutions by epithelial membranes. Introduction. Fed Proc. 1971 Jan-Feb;30(1):3–5. [PubMed] [Google Scholar]
- Serebro H. A., Iber F. L., Yardley J. H., Hendrix T. R. Inhibition of cholera toxin action in the rabbit by cycloheximide. Gastroenterology. 1969 Mar;56(3):506–511. [PubMed] [Google Scholar]
- Soergel K. H., Whalen G. E., Harris J. A. Passive movement of water and sodium across the human small intestinal mucosa. J Appl Physiol. 1968 Jan;24(1):40–48. doi: 10.1152/jappl.1968.24.1.40. [DOI] [PubMed] [Google Scholar]
- WILLIAMS J. A., GRIFFEN W. O., SHARMA A., WANGENSTEEN O. H. Composition and source of secretion from lymphoid aggregations in the rabbit gut. Br J Exp Pathol. 1961 Apr;42:153–157. [PMC free article] [PubMed] [Google Scholar]
- Wangensteen O. H., Buirge R. E., Dennis C., Ritchie W. P. STUDIES IN THE ETIOLOGY OF ACUTE APPENDICITIS: THE SIGNIFICANCE OF THE STRUCTURE AND FUNCTION OF THE VERMIFORM APPENDIX IN THE GENESIS OF APPENDICITIS A PRELIMINARY REPORT. Ann Surg. 1937 Nov;106(5):910–942. doi: 10.1097/00000658-193711000-00007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wangensteen O. H., Dennis C. EXPERIMENTAL PROOF OF THE OBSTRUCTIVE ORIGIN OF APPENDICITIS IN MAN. Ann Surg. 1939 Oct;110(4):629–647. doi: 10.1097/00000658-193910000-00011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright E. M. Diffusion potentials across the small intestine. Nature. 1966 Oct 8;212(5058):189–190. doi: 10.1038/212189a0. [DOI] [PubMed] [Google Scholar]
