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Abstract
Apolipoprotein (apo) E has a storied history as a lipid transport protein. The integral association
between cholesterol homeostasis and lipoprotein clearance from circulation are intimately related
to apoE's function as a ligand for cell surface receptors of the low density lipoprotein receptor
family. The receptor binding properties of apoE are strongly influenced by isoform specific amino
acid differences as well as the lipidation state of the protein. As understanding of apoE as a
structural component of circulating plasma lipoproteins has evolved, exciting developments in
neurobiology have revitalized interest in apoE. The strong and enduring correlation between the
apoE4 isoform and age of onset and increased risk of Alzheimer's disease has catapulted apoE to
the forefront of neurobiology. Using genetic tools generated for study of apoE lipoprotein
metabolism, transgenic “knock-in” and gene-disrupted mice are now favored models for study of
its role in a variety of neurodegenerative diseases. Key structural knowledge of apoE and isoform
specific differences is driving research activity designed to elucidate how a single amino acid
change can manifest such profoundly significant pathological consequences. This review describes
apoE through a lens of structure-based knowledge that leads to hypotheses that attempt to explain
the functions of apoE and isoform specific effects relating to disease mechanism.
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1. Introduction
Apolipoprotein E (apoE) is a potent modulator of plasma lipoprotein and cholesterol levels
whose mode of action is mediated by interaction with members of the low-density
lipoprotein (LDL) receptor family. Transgenic mice over-expressing apoE have decreased
plasma cholesterol and are resistant to diet-induced atherosclerosis [1]. On the other hand,
apoE-null mice manifest elevated plasma cholesterol and increased susceptibility to diet-
induced atherosclerosis [2,3]. In humans, the absence of apoE, or the presence of defective
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apoE, leads to type III hyperlipoproteinemia, characterized by premature atherosclerosis and
accumulation of plasma cholesterol [4]. ApoE is synthesized with an 18 amino acid N-
terminal signal peptide that undergoes intracellular processing before secretion of a mature
35 kDa glycoprotein containing 299 amino acids [5-7]. The protein is encoded by a 3.6 kbp,
four-exon gene located on chromosome 19 [8,9]. Plasma apoE originates predominantly
from liver and, to a small but functionally significant extent, macrophages [10-12]. At the
same time, apoE is expressed in a wide variety of other tissues including brain, spleen, lung,
adrenal gland, ovary and kidney [13]. This broad tissue expression suggests apoE
participates in additional biological processes, both related to and disparate from, lipid
metabolism and cardiovascular disease. Indeed, support for this concept has emerged from
studies linking apoE to innate immunity, normal brain function and a host of
neurodegenerative disorders [14].

2. ApoE Structural Organization
In general, members of the class of exchangeable apolipoproteins are related by their high
amphipathic α-helix content, which is critical to their function in lipoprotein particle
stabilization. The opposing hydrophobic and hydrophilic faces of these helices allow
exchangeable apolipoproteins to exist in alternate lipid-free and lipid-associated states and
explains their activity as “detergents” capable of solubilizing lipophilic molecules [15].
Primary sequence [16,17] and spectroscopic analyses [18], [19] reveal that apoE possesses a
high content of α-helix secondary structure (∼62% in aqueous solution). Structure-function
studies investigating its role in disease and cholesterol homeostasis revealed apoE is a two-
domain protein [20]. Studies monitoring secondary structure content as a function of
chaotrope concentration yielded a biphasic curve with transition midpoints at 0.7 and 2.5 M
guanidine HCl. Limited proteolysis of full-length apoE generated 22 kDa and 10 kDa
fragments that correspond to distinct N- and C-terminal domains, respectively [20]. This
finding is consistent with the concept that the domains are separated by a flexible, protease
sensitive loop. The C-terminal domain facilitates lipid binding and, in isolation, has lower
stability and greater conformational flexibility than the N-terminal fragment. Analytical
ultracentrifugation studies and C-terminal truncation analysis [21,22] revealed that, as with
other exchangeable apolipoproteins, full-length apoE forms multimeric complexes in
aqueous solution [23]. Full-length apoE displays a propensity to form tetramers and this has
been attributed to the C-terminus since the isolated N-terminal domain remains monomeric
at concentrations up to 15 mg/mL [18]. Consistent with these observations, substitution of a
limited number of bulky residues in the C-terminal domain by smaller polar residues results
in a protein that is resistant to cross-linking, suggesting these residues play a role in apoE
self association [24,25].

Characterization of apoE from human subjects has revealed intriguing heterogeneity.
Seminal isoelectric focusing experiments [26,27] indicated the presence of charge variants
while experiments with neuraminidase provided evidence that apoE is glycosylated [28].
Glycosyl moieties present include galactose, glucosamine, galactosamine, sialic acid, N-
acetylglucosamine, and N-acetylgalactosamine [29]. Amino acid analysis identified Thr194
as the sole glycosylated residue and glycosylation was shown not to be necessary for apoE
expression [30]. While some studies have linked alterations in apoE glycosylation state to
disease phenotypes, the exact role of specific sugar moieties remains unknown. Hypotheses
have also been advanced that propose glycosylation protects the loop region in which it
resides from proteolytic cleavage [13].

Understanding of the relationship between apoE structure and function was greatly enhanced
by determination of the three-dimensional structure of the N-terminal domain by X-ray
crystallography [31] and, more recently, by nuclear magnetic resonance (NMR)
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spectroscopy [32] (Figure 1). These structures reveal four amphipathic helices that align in
an up-and-down manner, forming an elongated globular helix bundle. The boundaries of the
four major helices: helix 1 (residues 24-42), helix 2 (residues 54-81), helix 3 (residues
87-122) and helix 4 (residues 130-164) are augmented by helix 1′ (residues 44-53) and, in
the NMR structure, helices N and C (residues 12-22 and 173-181, respectively). Although a
segment of the C-terminal domain (residues 223-272) has been crystallized [33], a high-
resolution structure has yet to be reported. Computer-based sequence algorithms predict
residues 210-266 and 268-289 form α-helices [15,34], with the latter believed to be involved
in protein-protein interactions and/or self-association. Consistent with this prediction, recent
biophysical studies of the C-terminal domain suggest that these helices are involved in close
helix-helix contact, likely driving self-association of lipid-free apoE [35,36].

2.1 Isoforms
The first experiments to suggest apoE has amino acid sequence heterogeneity came from
studies designed to isolate and characterize proteins found on very low-density lipoprotein
(VLDL) particles by ion-exchange chromatography [37] and 2-D gel electrophoresis [38].
Speculation that amino acid sequence differences among apoE variants correlate with
hyperlipoproteinemia was confirmed upon identification of the three major alleles [39,40],
ε2, ε3, and ε4. The three isoforms, apoE2, apoE3 and apoE4, differ only at positions 112
and/or 158 (Figure 2). ApoE3 contains a cysteine at position 112 and an arginine at 158
while apoE2 contains cysteine at positions 112 and 158 and apoE4 contains arginine at these
sites.

Further investigation has linked apoE2 with Type III hyperlipoproteinemia and premature
atherosclerosis. Interestingly, the LDL receptor binding activity of apoE2 is only ∼1% that
of the parent isoform, apoE3 [41]. Despite being a rare genetic disorder, the phenotypic
incidence of Type III hyperlipoproteinemia among apoE2 homozygotes (less than 5%) is
even lower than predicted by genetics alone suggesting additional environmental factors are
required to trigger the phenotype [42]. Studies designed to reveal the mechanism behind the
reduced LDL receptor binding activity of apoE2 focused on Cys158. Following treatment of
apoE2 N-terminal domain with cysteamine to convert the cysteines at positions 112 and 158
to positively charged, lysine analogs, LDL receptor binding activity increased to normal
levels [43]. A mechanistic explanation for differences between apoE2 and E3 with respect to
LDL receptor binding came from X-ray crystallographic comparison of the isoforms [44].
These structures revealed a salt bridge between Arg158 and Asp154 in apoE3 that is absent
in apoE2. Moreover, in apoE2, an alternative salt bridge forms between Arg150 and
Asp154, effectively eliminating the availability of Arg150 for interaction with the LDL
receptor. In keeping with this, an alanine to arginine substitution at position 150 in apoE3
decreased receptor binding to 24% of normal [45]. Although much higher than seen with
apoE2, these data suggest salt bridge interactions strongly influence receptor binding,
presumably by changing the orientation or patterning of basic residues in the receptor
recognition sequence (residues 136-152; see Figure 1). These authors further hypothesized
that dietary factors (e.g. a high-fat diet) influencing lipoprotein size and lipid composition
can, in turn, affect apoE2 Arg150 side chain conformation and, consequently, the presence
or absence of the Arg150-Asp154 salt bridge [44]. Modulation of the Arg150-Asp154 salt
bridge under various physiological conditions would be expected to affect LDL receptor
binding activity, thus providing a possible explanation for the influence of secondary
environmental factors on the occurrence of Type III hyperlipoproteinemia in apoE2
homozygotes.

While apoE3 is considered the “wild-type” isoform in humans because of its high allelic
frequency and lack of strong association with a human disease phenotype, apoE4 appears to
be the ancestral form since the Arg at sequence positions 112 and 158 are strongly
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conserved across almost all animal species possessing apoE [42]. In ε4 homozygous human
carriers, the plasma concentration of apoE is lower than that for individuals possessing two
ε3 alleles. Furthermore, such individuals manifest elevated plasma cholesterol and LDL as
well as increased cardiovascular disease risk [46,47]. Additionally, and more strikingly,
inheritance of apoE4 is correlated with cerebral amyloid angiopathy, tauopathies, dementia
with Lewy bodies, Parkinson's disease, multiple sclerosis and a higher incidence, and
significantly earlier onset, of Alzheimer's disease (AD) [48]. While the molecular basis for
the correlation between apoE4 and disease is not established, a unique feature of apoE4,
termed “domain interaction”, may play a role. Studies have shown that arginine at position
112 causes amino acid side chain reorientation within the protein that promotes N- and C-
terminal interaction via a unique salt bridge [14,49,50]. Domain interaction in apoE4
induces a more compact structure while the Arg at position 112 increases its molten globule
like properties of this isoform [21,51-53]. Reduced apoE4 levels in plasma, compared to
apoE3, results from enhanced clearance of apoE4-containing particles [54]. Additionally, it
has been noted that apoE4 displays a preference for larger lipoprotein particles, such as
VLDL and chylomicron remnants, and this preference has been noted as the causative factor
for the association of apoE4 with increased plasma LDL [54,55]. Introducing human apoE4
‘domain interaction’ into mouse apoE (by substituting Thr for Arg at position 61) results in a
phenotype resembling human apoE4 subjects, including reduced abundance and binding
preference for VLDL [56].

2.2 ApoE lipid particles
For the most part, biologically active apoE is associated with lipid. Indeed, lipid association
is a prerequisite for apoE binding to the LDL receptor. Reconstituted HDL particles formed
by combining apoE with purified phospholipids of varying fatty acid chain length and polar
head group composition represent an extensively utilized model for facile reproduction of
the bioactive conformation of the protein. This model system allows for the controlled
manipulation and study of apoE conformational changes required for LDL receptor binding,
making these particles a reliable model of apoE function in vivo. Phospholipids, including
dimyristoylphosphatidylcholine (DMPC), palmitoyloleoylphosphatidylcholine or
dipalmitoylphosphatidylcholine (DPPC) have been used to create nanometer scale particles
wherein the apolipoprotein circumscribes the periphery of a disk-shaped phospholipid
bilayer [57-59]. The exact conformation adopted by apoE in these particles remains
controversial, however. Whereas some data indicate apoE aligns in such a way that the
hydrophobic face of their constituent amphipathic a-helices interact with acyl chains at the
edge of the phospholipid bilayer [19,60-62] other models have been proposed. Indeed, X-ray
[63], electron paramagnetic resonance [64] and recently, electron microscopic [65] data are
consistent with an ellipsoidal shape for apoE-phospholipid complexes. In this model apoE a-
helices align in such a way that their hydrophobic faces interact with one another while the
polar faces contact phospholipid.

Regardless of the ultimate conformation adopted by apoE in lipid complexes, it is generally
agreed that the protein undergoes a lipid binding-induced conformational change. On the
basis of biophysical and spectroscopic studies, two models, the “open conformation” [66]
and the “extended belt”, suggest possible ways in which the N-terminal helix bundle may
alter its structure upon lipid association (Figure 3). In both of these models, the
conformational change in apoE appears to be initiated by helix bundle opening via a “hinge”
region between helices 2 and 3, permitting exposure of hydrophobic residues normally
sequestered in the bundle interior. Fluorescence resonance energy transfer (FRET) studies
revealed that interaction with DMPC results in increased separation between helices 1 and 3,
consistent with the “hinge” hypothesis [67]. This conformational change also allows
surface-exposed hydrophilic residues to retain contact with the aqueous environment and
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effectively substitutes helix-lipid contacts for the helix-helix interactions that stabilize the
helix bundle state. The “extended belt” and “open conformation” models differ in the
ultimate conformation adopted in a given reconstituted HDL particle. In the “extended belt”
conformation, the hinge between helices 2 and 3 initiates further unfurling to create a fully
extended helical protein that wraps around the perimeter of the disk wherein a second
molecule aligns in the opposite direction to form a double belt. In contrast, the “open
conformation” model preferentially retains contact between the helix 1 and 2 and helix 3 and
4 pairs wherein half-opened molecules wrap around the disk perimeter end to end [66].
Support for these models have come from a combination of FRET-based measurements
[68], Fourier-transformed infrared spectroscopy [60], and tryptophan fluorescence depth
quenching studies using the parallax method [62]. A similar extended conformation was
reported for the C-terminal domain of apoE bound to discoidal DMPC particles [69]. An
alternative, hybrid model that combines features of the “open” and “extended belt”
conformations was described from FRET analysis of the NT domain of apoE3. In these
experiments, intermolecular FRET was observed between helix 3 of one molecule and helix
4 of a second apoE N-terminus in which two partially extended apoE molecules interlock to
encircle the disk [67]. It should be noted that an alternative “picket-fence” model, wherein
anti-parallel ∼17-residue helices surround the bilayer disk and orient parallel to the lipid
acyl chains, has also been advanced [19]. This model, however, is difficult to reconcile with
the known helical boundaries of the lipid-free crystal structure and multiple studies that
support the aforementioned conformation in which the long axis of apoE a-helices align
perpendicular to the phospholipid fatty acyl chains.

A comprehensive study comparing particle size, apoE protein copy number and
conformational parameters as they relate to changes in lipid composition and apoE isoform,
has been reported [70]. These authors found that, on average, disks contained three apoE N-
termini or four full-length proteins with between 200 - 250 lipid molecules per particle.
While no significant differences in particle architecture were noted between apoE isoforms,
differences in lipid order parameter and protein to lipid ratio were seen when comparing
apoE to apoA-I [70,71]. These observations led to the conclusion that apoE can adopt one of
two predominant conformations on discoidal reconstituted HDL particles, either the
canonical “belt” conformation around the disk perimeter or an alternative conformation
wherein apoE helices embed horizontally within the interfacial region of the bilayer and
perturb phospholipid head group organization [70].

A model of lipid-bound apoE that is distinct from previous models has emerged from studies
of full-length apoE4. Fluorescence analysis using spatially sensitive probes revealed that, in
DMPC reconstituted HDL, apoE4 adopts an extended conformation that loops back on itself
around the periphery of the discoidal particle [72]. A similar “helical hairpin” conformation
was suggested for apoE4 bound to DPPC using X-ray crystallography [63,64]. These
lipidated particles, resolved to 10 Å, display an ellipsoidal shape and contain two
interlocking apoE4 molecules. In the absence of a clear delineation of secondary structure at
10 Å resolution, a predominantly helical full-length apoE4 molecule was modeled such that
each extended molecule doubled back on itself and folded into a curved, horseshoe-like
conformation with a 310º axis of rotation. In this model, two horseshoe shaped proteins pack
into an incomplete “toroid” containing DPPC intercalated within the opposing and slightly
rotated apoE molecules to form an ellipsoidal space-filling model. Support for this model
was obtaining by strategic placement of electron paramagnetic resonance sensitive probes in
apoE4 followed by determination of the effect of probe sequence position on side chain
dynamics [73].

Structural and biophysical data on full-length apoE have led to the concept that the C-
terminal domain mediates initial contact with spherical lipoprotein surfaces, effectively

Hauser et al. Page 5

Prog Lipid Res. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



anchoring the N-terminal helix bundle at the particle surface [74-76]. Once localized at the
lipoprotein surface, the N-terminus may either retain a receptor-inactive four-helix bundle or
alter its conformation by binding to the lipid surface to adopt a receptor competent state.
Thus, it may be considered that the balance between alternate conformational states of lipid
associated full-length apoE will determine the extent to which apoE can mediate lipoprotein
particle clearance from the plasma via interaction with LDL receptor family members. By
extension, it is conceivable that isoform-specific differences could affect this balance,
providing a molecular rationale for pathological consequences associated with different
apoE genotypes. For example, an increased proportion of apoE4 molecules in a receptor
inactive state could result in increased VLDL remnant conversion to pro-atherogenic LDL.

2.3. ApoE receptor interactions
A fundamental role of apoE is its function as a ligand for cell-surface receptors. ApoE3 is
known to be a high affinity ligand for the LDL receptor, the LDL receptor related protein 1
(LRP1), apoE receptor 2 (apoER2) and the VLDL receptor. The LDL receptor is the
prototype of a family of integral membrane proteins that act via ligand-activated, clathrin
coated pit-mediated endocytosis to internalize plasma lipoproteins. This 839 amino acid
protein is composed of five distinct regions i) an amino terminal ligand binding domain
containing seven cysteine-rich LDL-A repeats, each roughly 40 amino acids in length; ii) an
epidermal growth factor (EGF) precursor homology domain containing three EGF-like,
cysteine-rich repeats and a β-propeller domain that mediates ligand release in the endosome
via a pH-dependent conformational change preceding receptor recycling [77], iii) an O-
linked sugar domain, iv) a single-pass transmembrane domain, v) and a cytoplasmic tail
domain that contains an NPxY motif that facilitates receptor clustering in clathrin coated pits
[78].

Studies to define in vivo ligands of the LDL receptor revealed that transgenic mice
overexpressing this receptor manifest a >90% reduction in plasma apoE and apoB-100
levels, while apoA-I levels were unchanged [79]. Additional evidence emerged from studies
of LDL receptor null mice wherein plasma LDL and cholesterol levels were dramatically
elevated due to impaired receptor-mediated clearance of apoE and apoB containing
lipoproteins [80]. By binding to the LDL receptor, apoE and apoB containing lipoproteins
are cleared from plasma, thereby regulating plasma cholesterol levels [81,82]. At neutral pH,
receptor-ligand complexes are internalized into vesicles that become endosomal
compartments. Subsequent pH lowering releases the lipoprotein ligand, facilitating receptor
recycling and lysosomal degradation of LDL [83,84].

As Brown and Goldstein were elucidating the LDL receptor endocytic pathway, Mahley and
coworkers identified a limited, but highly conserved, sequence similarity between apoB and
apoE [85,86]. Shortly thereafter, Mahley et al. demonstrated the importance of this stretch of
charged residues by showing that treatment of apoE with cyclohexanedione (an arginine-
specific modifier) abolished all receptor activity [87]. From these studies, the conserved
LDL receptor recognition sequence was identified. Analysis using cyanogen bromide to
digest apoE at methionine residues revealed a peptide (residues 126-218) that, when
complexed with DMPC, bound the LDL receptor with the same affinity as LDL [88]. This
region was further delineated by abolition of receptor binding by an antibody that
recognized residues 139-169 [89]. Further refinement emerged from mutational analysis.
Substitution of positively charged residues at positions 142, 145, 146, and 158 for neutral
amino acids markedly reduced apoE binding to the LDL receptor [13].

The region of apoE responsible for receptor recognition was further probed by generating
truncation mutants and measuring receptor binding activity [90]. While apoE(1-170) and
apoE(1-174) fragments retain 1% and 19% LDL receptor binding activity, respectively,
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apoE(1-183) possessed 85% of binding compared to full length protein. Importantly, this
was the first detailed study implicating residues outside of the putative LDL receptor
recognition sequence (residues 136-152) in receptor binding. Subsequent mutagenesis
analysis noted the contribution of Arg172 to receptor binding activity [91]. This study
confirmed the general importance of residues 170-183 by confirming that their removal
reduced binding activity to 15% of full-length apoE3 levels, but strikingly, a 98% drop in
binding activity was seen with a single Arg172Ala substitution mutation. Notably, an
Arg172Lys substitution showed only 6% of normal activity, suggesting that arginine is
required at this position to preserve the conformation necessary for receptor binding. Given
that Arg172 is well outside the classical LDL receptor recognition motif and, in lipid free
apoE, resides in an unstructured region beyond the boundary of helix 4, it is conceivable this
segment of the protein may explain the requirement that apoE associate with lipid to be
conferred with receptor recognition capability. Heteronuclear multidimensional NMR
spectroscopy of an apoE-derived peptide corresponding to residues 126 – 183 [92,93]
revealed that, in the presence of trifluoroethanol or when bound to dodecylphosphocholine
micelles, helix 4 extends beyond residue 165 to encompass Arg172. This hypothesis was
further examined in the isolated N-terminus of apoE using site-specific electron
paramagnetic resonance spectroscopy [94]. Gupta et al. showed that lipid association
induced fixed secondary structure in a region of the molecule known to exist as random coil
in the lipid-free state. Thus, extension of helix 4 beyond the boundary defining its lipid-free
conformation may represent a key conformational change necessary for manifestation of the
LDL receptor recognition properties of apoE.

In studies designed to address whether apoE binding to the LDL receptor is multivalent, the
ratio of active to inactive apoE was varied on DMPC particles containing an average of four
apoE molecules per particle [58]. LDL receptor binding activity was affected such that,
when the number of active apoE per particle approached one, binding affinity approximated
that of LDL. Other studies have shown that optimal receptor binding is achieved with
spherical lipid microemulsion particles that contain at least four apoE molecules per particle
[95]. This model implies that the presence of multiple apoE on discoidal and spherical
particles enhances LDL receptor binding efficiency compared to particles containing a
single apoB-100. In another approach, Fisher et al. employed single chain multimers of the
N-terminus to show that, when bound to lipid, more than one apoE is required for high
affinity binding to the LDL receptor [96]. Thus, in addition to inducing a conformational
change in the structure of apoE, lipid association enhances the affinity of apoE for the LDL
receptor in part by creating a multivalent ligand.

Our understanding the structural determinants of ligand binding to the LDL receptor was
significantly advanced by the X-ray crystallography studies of Rudenko et al., who
determined the structure of an extracellular portion of the LDL receptor at pH 5.3 [97]. In
addition to confirming all known structural features of the receptor, this crystal structure
gave rise to a comprehensive model to explain the mechanism of ligand release in the
endosomal compartment. In this structure, LDL-A repeats 4 (residues 127-163) and 5
(residues 176-210) make contact with β propeller residues 377-642 of the EGF precursor
domain. Thus, at endosomal pH, the molecule folds onto itself in a manner anticipated to
result in ligand discharge. The authors suggest the strength of the interfacial interaction can
be modulated as a function of pH-dependent aspartate, glutamate and histidine side chain
protonation within the contact region [78,97]. Using site-directed mutagenesis, Yamamoto et
al. [98] provided evidence for a pH dependent “histidine switch” mechanism wherein ligand
discharge occurs via conformational reorganization of the receptor [99]. However, other
research suggests that the intramolecular contact does not drive release through a
competitive mechanism and the key His residues (His190, His562, and His586) function as
part of an allosteric mechanism that drives lipoprotein release [100]. Extending this work,
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Zhao and Michaely point out that, in addition to low pH, endosomes possess low
concentrations of free calcium [101]. Using fibroblasts that express either a normal LDL
receptor or a variant that is incapable of acid-dependent ligand release, these authors showed
that endosomal concentrations of free calcium are sufficient to drive lipoprotein release.
Thus, it is plausible that calcium-dependent and acid-dependent mechanisms cooperate to
facilitate lipoprotein release from the LDL receptor.

3. Neurobiology of apoE
The importance of apoE in maintenance of cellular cholesterol homeostasis is not limited to
the peripheral circulation. Indeed, its role in neurological phenomena, including neuronal
plasticity, neurite outgrowth and synaptogenesis is a rapidly advancing field. While the bulk
of plasma apoE originates from liver and macrophages, apoE found in the central nervous
system (CNS) is produced locally. Exchange between liver and brain-derived apoE does not
take place owing to the blood-brain barrier (BBB). Consistent with this, no liver derived
apoE was recovered in cerebrospinal fluid (CSF) of liver transplant recipients [102]. While
apoE is the predominant apolipoprotein found in the CNS, other apolipoproteins, such as
apoJ, apoD, apoA-I and apoA-IV are also present. In adult brain tissue, apoE is primarily
synthesized by astrocytes [103,104], although microglia and neurons also synthesize the
protein under select physiological and pathological conditions [105-107]. Under basal
conditions, glial cells produce two to three times more cholesterol than neurons and also
manifest elevated apoE expression. It has been demonstrated that apoE associates with
lipoproteins in the brain, though astrocyte-secreted apoE-containing lipoprotein particles
differ from peripheral apoE-containing lipoproteins in that they are discoidal in shape and
comprised mostly of phospholipid and unesterified cholesterol [108,109]. It is presumed that
some astrocyte-secreted apoE-containing lipoproteins acquire a cholesteryl ester core on
their way to the CSF since both discoidal and spherical lipoproteins have been isolated from
this site [108,110].

Accumulating evidence indicates a role for apoE in aging [111]. In this context, apoE-null
mice represent a useful model for understanding its effects on natural aging. In certain
studies no signs of synaptic degeneration were noted in apoE-null mice [112], with normal
brain histology, an absence of neurodegenerative markers [113], normal cholinergic activity
and neuronal function [114-117]. However, other studies have found that apoE-null mice
develop mild to severe spatial learning and memory deficits [118,119]. Memory impairment
was accompanied by cholinergic deficits, highlighting the importance of apoE in cognition
and memory [120,121]. Studies demonstrating that apoE deficient mice are more susceptible
to neurodegeneration than their wild-type counterparts implicate this protein in age-related
neuropathology [122,123].

The predominance of apoE containing lipoproteins in brain suggests it functions in
cholesterol transport and clearance. In brain, cholesterol is highly abundant and is required
for synapse development [124], dendrite formation [125], long term potentiation [126] and
axonal guidance [127,128]. Cholesterol delivered to neurons on apoE-containing lipoprotein
particles increases synapse formation [124] by promoting biogenesis of synaptic vesicles
and up-regulating the machinery necessary for their release [129,130]. Cholesterol depletion,
or a lack of cholesterol delivery, causes synaptic and dendritic spine degeneration and
results in failed neurotransmission and decreased synaptic plasticity [131]. Following
neuronal cell damage, cell death, traumatic brain injury or terminal differentiation, large
amounts of cholesterol are lost due to membrane and myelin degeneration [132]. In response
to these events, apoE is up-regulated in astrocytes and macrophages where it is presumably
involved in clearance and redistribution of cholesterol and lipid debris [133,134]. This
suggests a role for apoE as a scavenger of lipophilic molecules during nerve regeneration
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[135,136]. The fact that LDL receptors are up-regulated in regenerating peripheral nerves
suggests enhanced lipoprotein uptake occurs during nerve growth and regeneration [137].
Moreover, it has been shown that cholesterol-containing apoE-lipoproteins secreted by
astrocytes are required for synapse formation in vitro via a mechanism that is dependent
upon functional apoE receptors [124,138].

Emerging from statistical correlations examining the relationships between apoE isoforms
and neurodegenerative disease progression, outcome and average age of onset, studies have
focused on the differential effects of apoE3 and apoE4 on synaptic plasticity and
synaptogenesis. Although both isoforms have the ability to reverse presynaptic deficits and
cognitive impairment seen in apoE-null mice [139], evidence suggests apoE4 is less efficient
in promoting neurological repair and maintaining proper brain function. Buttini and
colleagues showed that expression of apoE3, but not apoE4, protects against neuronal
damage and age-related neurodegeneration seen in apoE-null mice [140]. In contrast to
apoE3-expressing mice, apoE4 mice display synaptic deficits and lower excitatory synaptic
transmission, even in the absence of neuropathology [141]. In addition, apoE4 expressing
mice have impaired long term potentiation, decreased numbers of synapses per neuron and
reduced dendritic spine formation compared to their apoE3-expressing counterparts [142].
Significant correlative associations have emerged that suggest apoE plays a critical role in
response to traumatic head injury, presumably by transporting cholesterol and lipid
metabolites from the site of injury, facilitating repair. Studies examining isoform-specific
effects in the context of brain injury indicate that, compared to an apoE3 cohort, apoE4
carriers display decreased recovery efficiency [143-145]. Additionally, apoE4-containing
mice do not recover as efficiently from traumatic brain injury [146] and are more susceptible
to cerebral ischemia [147]. Unlike under normal conditions, brain injury induces significant
neuronal production of apoE, augmenting the basal production by astrocytes and microglia
[148-150]. This has led to inquiry regarding the relative contribution of astrocyte versus
neuron-derived apoE in the repair process. While in vitro evidence suggests apoE4 has a
detrimental effect on cultured astrocytes and neurons [151-153] recent in vivo excitotoxic
injury experiments have shown that expression of apoE4 by neurons preferentially causes
greater cellular toxicity than does apoE4 generated by astrocytes or apoE3 generated by
either neurons or astrocytes [154]. This finding supports the significant supportive role of
astrocytes following injury but further suggests that apoE4 causes increased cellular burden
due to its neuron specific upregulation following brain trauma.

Despite these notable injury-related pathophysiological effects of apoE4, most studies
demonstrate that both apoE3- and apoE4-expressing mice perform better on cognitive tests
than apoE-null mice [155]. In the case of dendritic spine morphology, the phenotype seen in
apoE4-expressing mice was similar to that of apoE-null mice, suggesting an apoE4 isoform
functional deficit in dendritic spine maintenance [142]. This effect, however, is age-related
since an apoE4-dependent reduction in dendritic spine formation was observed only in one-
to two-year old mice. This observation suggests that apoE isoform-specific effects might
relate to increased risk of dementia in aged humans expressing apoE4. In older patients, with
and without AD, apoE4 gene dose is inversely correlated with dendritic spine density [142].
Although a considerable number of studies implicate apoE as a significant factor in nervous
system maintenance, more work is needed to address mechanistic aspects of this role.
Indeed, apoE-null mice do not show gross defects in normal nerve repair and development
and only manifest a neurodegenerative phenotype upon aging or injury [114,156]. Other
studies show that apoE-null mice display massive infiltration of injected dyes in brain
parenchyma, indicative of BBB leakage [157-159]. This defect is selective to brain micro
vessels and is exacerbated in older mice, suggesting an independent effect of aging (e.g.
oxidative stress). A similar breach in BBB integrity is noted in post mortem brains of
subjects with AD and cerebral amyloid angiopathy [160].
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3.1 ApoE and Alzheimer's Disease
There is mounting evidence that apoE plays a central, if not direct, role in the pathogenesis
of AD. The clinical symptoms of AD include progressive loss of cognition, dementia and
the presence of extracellular amyloid plaques and intracellular neurofibrillary tangles
[161,162]. ApoE4 has been shown to be a significant risk factor for development of the
disease, including early and late onset non-familial [48,163] and sporadic forms [164-166].
Among individuals that manifest late onset AD, the ε4 allele is present at a two- to three-
fold higher rate compared to the general population and some studies indicate up to 65% of
clinically diagnosed cases carry at least one ε4 allele [167]. Genetic and epidemiological
evidence linking the allelic dose of apoE4 to premature onset and increased severity of AD
continues to drive research aimed at elucidating the molecular mechanisms whereby this
protein leads to neurological and neurodegenerative disease [168]. While genetic
associations between apoE and AD are striking, the relationship between apoE protein
expression and amyloid burden is not as straightforward. Absence of apoE in an amyloid
mouse model background dramatically reduces amyloid burden without affecting amyloid-β
(Aβ) peptide production [169]. This has led to the concept that apoE may contribute to
conversion of Aβ to its more toxic oligomeric or fibrillar forms. However, in LDL receptor
null mice, apoE levels are increased by ∼50% yet this had no effect on amyloid deposition
[170]. Interestingly, apoE4 has been shown to be preferentially degraded by astrocytes,
which may explain why mice display genotype-dependent effects on total apoE levels in
brain and CSF (with protein levels following apoE2/2 > apoE3/3 > apoE4/4) [171] and
suggests a complex mechanistic link between apoE protein levels, activity and subcellular
localization and Aβ production and clearance that likely involves the coordination of
multiple brain cell types.

The cholesterol transport function of apoE involves interaction with a cell surface, ATP
Binding Cassette Transporter A1 (ABCA1) that promotes efflux of cellular cholesterol to
acceptor proteins (e.g. apoE). In neuronal and astrocyte culture models, apoE4 is blunted in
its ability to promote cholesterol efflux, presumably through a mechanism that depends on
ABCA1-mediated transport [172,173]. In ABCA1 deficient mice, apoE expression levels
decrease by ∼70-80% and this is associated with decreased cholesterol efflux, poor apoE
lipidation and increased amyloid burden [174-177]. On the other hand, overexpression of
ABCA1 increases apoE lipidation in the CNS and decreases amyloid plaque formation
[178]. These findings point to Liver-X-Receptors (LXRs), transcription factors that
modulate expression of apoE and ABCA1 [179], as key regulators of brain lipid
homeostasis. Indeed, deficiency of LXR-α or β increases AD pathology [180] while
treatment of AD model mice with synthetic LXR agonists reduces amyloid burden and
improves cognitive function [181-183]. These findings raise the intriguing possibility that
LXR activation by synthetic agonists represents a potential therapeutic strategy for treatment
of AD [184].

Potential reasons for the increased neuropathology of apoE4 compared to other isoforms
have been investigated [111]. Analysis of the isolated N-terminal domain of the three human
apoE isoforms showed that apoE4 is least resistant to chemical and heat denaturation, while
apoE2 is most resistant at neutral and low pH [51-53]. Lipid binding affinity is reportedly
higher for apoE4, although maximal lipid binding capacity appears equivalent among the
isoforms [21,76]. While apoE4 displays a preference for VLDL sized lipoproteins in vitro
[54,55], how this may affect brain physiology is unclear since only HDL-sized lipoproteins
have been found in brain. Nevertheless, this preference has been attributed to domain
interaction in apoE4, a structural feature that has also been proposed as a causative factor for
cellular effects leading to AD pathology. Although the mechanism whereby domain
interaction may lead to propagation of neurological defects remains elusive [151,185,186],
Huang and colleagues documented domain interaction in living neuronal cells expressing
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apoE4 [187]. A novel approach to understanding the pathological significance of this
phenomenon is to identify potential therapeutic small molecule inhibitors or “structure
correctors” of domain interaction [188].

ApoE4 also appears to be more susceptible to proteolysis than apoE3 [189,190] leading to
speculation that apoE4 digestion products contribute to amyloid plaque formation and AD
pathology, especially since these fragments have been detected in plaque from AD positive
brains [191]. Furthermore, proteolysis of apoE4, and subsequent fragment accumulation in
the cytosol of neurons alters cytoskeletal organization and disrupts mitochondrial energy
balance. Whether this is necessary and sufficient for the progression of AD pathology
remains unclear [190,192]. Other evidence suggests the isolated N-terminal domain of
apoE4 is neurotoxic [193-195], though it is not known if proteolytic cleavage occurs prior to
or after interaction with Aβ. While lipidated apoE is protected from proteolysis to a greater
extent than lipid-free apoE, the quantity and physiological functions of lipid-free apoE in
brain is unknown [62,196]. Offering a new perspective, Hatters et al. reported that apoE4
forms aggregates (independent of Aβ aggregation) at substantially higher rates than apoE3
or apoE2 and is more neurotoxic to cultured neuronal cells [197]. These aggregates bear an
irregular protofilament-like morphology with a high α-helical content, unlike the ‘classic’
amyloid fibrils that are rich in β-sheet structures. Whether this is the cause or a consequence
of amyloid neuropathology associated with AD is not known. Finally, other studies point to
a role of apoE4 in potentiating Aβ-induced lysosomal leakage [152,198] and/or activating
the endoplasmic reticulum stress response, leading to increased apoptosis [199,200].

Genetically altered mice harboring a Thr61Arg mutation in murine apoE (creating a human
apoE4-like mouse apoE) results in decreased apoE levels in the brain along with synaptic
and cognitive defects [201,202]. Transgenic mice with a genetic predisposition for higher
Aβ production in which murine apoE is substituted for each of the three human isoforms,
develop the predicted isoform-specific differences in amyloid deposition with apoE4 >
apoE3 > apoE2 [203,204]. Interestingly, however, human isoform substituted mice manifest
a delay in onset of plaque formation compared to murine apoE mice [205,206]. Better
understanding of the manner in which apoE interacts with Aβ, receptors and other binding
partners in response to various conformational and lipidation states may provide further
insight into its role in AD pathology.

A recent study employing mice bearing Thr61Arg apoE, to mimic human apoE4,
demonstrated that domain interaction per se is associated with deficits usually noted in AD,
supporting the hypothesis that apoE4 can act independent of Aβ to induce pathophysiology
[207]. Furthermore, induction of domain interaction via the Thr61Arg mutation leads to
endoplasmic reticulum stress and an up-regulated unfolded protein response, which in turn
destines apoE for degradation. The authors proposed that endoplasmic reticulum stress
results in dysfunctional astrocytes that provide sub-optimal support to neurons, which in turn
respond with self-generated apoE leading to increased levels of neurotoxic fragments
[193-195]. Dysfunctional astrocytes and toxic fragments likely represent early events in
apoE4-associated pathophysiology independent of Aβ-related pathways (Figure 4).

Deposition of extracellular amyloid plaque, formed by soluble and insoluble assemblies of
the Aβ peptide, is a hallmark of AD and is considered one of the primary events in disease
pathology. Aβ is derived from the amyloid precursor protein (APP) by sequential β- and γ-
secretase-dependent intramembranous proteolysis [161]. Aβ is produced and secreted under
normal metabolic conditions and can be found at high levels in normal CSF and plasma
[208,209]. Thus, disease pathology is thought to be driven by a net imbalance between Aβ
clearance and production [210,211]. Gradual increases in Aβ production lead to its
oligomerization in brain interstitial fluid and within neurons [212,213] and subsequent
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fibrillization to produce amyloid plaques [161]. The dominantly-inherited, familial form of
AD is associated with either increased production of Aβ (most commonly caused by
mutations in APP itself, the presenilin 1 and 2 gene products that form two of the necessary
components of the γ-secretase complex) [214] or increased production of the longer
Aβ(1-42) peptide which is more toxic than the Aβ(1-40) peptide [215]. Non-familial forms
of AD have been attributed to an imbalance in the relative clearance and aggregation of Aβ
[216]. The only consistently associated genetic risk factor for non-familial AD is the ε4
allele of the APOE gene. Despite this, the pathology and phenotypic display manifested by
familial and non-familial forms of AD are nearly indistinguishable.

The observation that apoE is bound to Aβ in CSF prompted study of apoE as a candidate for
acceleration of AD pathology [217-219]. Although a mechanism whereby apoE (and
particularly apoE4) promotes AD pathology remains elusive, in vitro and in vivo evidence
suggest interaction between apoE and Aβ is associated with disease progression. In vitro
analysis demonstrated that Aβ and delipidated apoE4 promote fibril formation more rapidly
and with higher density than those seeded with other apoE isoforms (following an
aggregation rate rank order of apoE4 > apoE3 > apoE2) [163,217,220]. In contrast to
delipidated protein, lipidated apoE has a different isoform dependent affinity for Aβ [221].
When the affinity of lipid-bound apoE was compared, using transfected eukaryotic cell
lines, apoE3-Aβ complex levels were 20-fold higher than that for apoE4-Aβ complexes
[222,223]. It has further been shown that lipidated apoE3 binds Aβ two to three times more
rapidly than lipidated apoE4 [222]. Studies examining the effect of apoE on neurite
extension revealed that lipidated apoE3 enhances binding to Aβ and may facilitate its
clearance, thereby preventing aggregation [224]. It has been shown that Aβ binds to apoE
via its C-terminal domain and Aβ binding abrogates apoE lipid binding [163,225]. These
results indicate Aβ interferes with apoE function as a lipid transport protein in brain, which
may contribute to AD progression by altering lipid/cholesterol homeostasis [111,226-228].
In a neuronal cell line that overexpresses APP, apoE4 increased Aβ production to a greater
extent than apoE3, [153]. This isoform-specific difference was abolished when cells were
treated with small interfering RNA directed against LRP1 or upon incubation with receptor-
associated protein, a known inhibitor of LRP1 function. This finding suggests apoE4-
specific enhancement in Aβ production or deposition is dependent upon LRP1 function.
Thus, it is conceivable that apoE4 possesses defective receptor binding activity. In vitro
studies with transfected cell lines indicate apoE and its cognate receptors play a role in APP
processing and Aβ production [229,230]. A possible mechanism was suggested by studies
showing that overexpression of apoE4 enhances Aβ production by promoting endocytic
recycling of APP [153]. How apoE4 facilitates this recycling remains unclear. At the same
time, it may be considered that clearance of Aβ is as important as its production (Figure 5).
The predominant pathways for clearance of Aβ include receptor-mediated uptake by
microglia and astrocytes [231-233] or LRP1 mediated transport of Aβ across the BBB
[234,235].

Receptor-mediated clearance of Aβ in brain likely occurs through the action of LDL
receptor family members including the LDL receptor, LRP1, apoER2, SorLA/LR11 and the
VLDL receptor [138]. It has been shown that both full-length and cleaved fragments of apoE
[166,191], LRP1 and other LRP1 ligands [166] colocalize, and are immunoreactive with,
amyloid plaques in AD affected brain tissue. ApoE receptors have been shown to bind
directly to Aβ [236] as well as through Aβ binding partner interactions, including apoE-Aβ
complexes. In accordance with increased lipidated apoE3 binding to Aβ, apoE3 clears Aβ
through receptor-mediated interaction more efficiently than apoE4-Aβ complexes [237]. In
amyloid mouse models, expression of human apoE3 resulted in less plaque deposition than
in apoE4-expressing mice [203,238,239]. In addition, post-mortem amyloid plaque load is
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increased in the brains of ε4 carriers [240,241], suggesting efficient clearance of Aβ may
impede amyloid formation, as suggested in Figure 5.

Though cellular and BBB export of Aβ is most certainly receptor-mediated, the responsible
receptors remain controversial. Using real-time in situ microdialysis, Bell et al demonstrated
that Aβ(1-42) passed more slowly across the BBB than Aβ(1-40), although both bind to
LRP1 [242]. Association of Aβ(1-40) with lipid poor apoE slowed transport (and lipidated
apoE complexed with Aβ blocked virtually all transport) across the BBB within the 30-
minute time frame of the study. Using the same technique, an alternative study confirmed
that lipidation of apoE, compared to lipid-poor apoE-Aβ or free peptide alone, dramatically
slows transport of apoE-Aβ across the BBB [237]. Interestingly, this study also
demonstrated that Aβ binding to apoE4 shifted receptor-mediated clearance from LRP1 to
the VLDL receptor. Alternatively, apoE2 and apoE3 cleared Aβ through LRP1 and the LDL
receptor at a significantly higher rate than apoE4-Aβ complexes. This apoE4-specific effect
results in higher brain retention of apoE4-Aβ [237]. Taken together, these studies show that
decreased amyloid deposition seen in apoE-null mice may be the result of enhanced
transport of free Aβ across the BBB.

3.2 Tau protein and apoE
Tau protein is integrally bound to cellular microtubules and acts to stabilize these structures.
Phosphorylation of tau, however, results in formation of paired helical filaments that lack
microtubule stabilizing capability. Hyperphosphorylated tau is the primary component of
pathological neurofibrillary tangles and is toxic to neurons. Studies demonstrating that a
reduction in tau prevents Aβ-dependent cognitive impairments in an amyloid mouse model,
suggests tau may be required for Aβ-induced neuronal dysfunction [243]. However, whether
hyperphosphorylated tau is a primary cause of AD-associated dementia or simply a marker
for the disease remains unclear since it is equally plausible that destabilization of
microtubules by hyperphosphorylated tau interferes with cognition independent of, or
downstream to, induction of AD. Transgenic overexpression of apoE4 in mice resulted in
increased tau phosphorylation in neurons, but not astrocytes [244,245]. However, the
pathophysiological significance of this finding is unclear since neurons only express apoE
following injury [105,107], possibly implying that the contribution of apoE to tau
hyperphosphorylation in neurons may be limited to conditions of excess stress or cellular
damage. While it has been shown that apoE3 interacts with unphosphorylated tau more
strongly than apoE4, the degree to which full-length apoE isoforms bind and associate with
phosphorylated tau remains to be determined [246]. Also, it is not clear how apoE and tau,
which normally partition to distinct subcellular locations, physically interact. One
hypothesis is that proteolytic cleavage of apoE generates C-terminal truncation fragments
that dissociate in the cytosol and interact with tau [245]. Indeed, apoE proteolytic fragments
may have enhanced toxicity and intracellular activity compared to the intact protein [247].

4. Concluding Remarks
It has become increasingly clear that, in addition to its role in the maintenance and
physiology of the cardiovascular system, apoE also plays a central role in healthy and
pathophysiological processes in the brain. While apoE is critical for the regulation of
cholesterol homeostasis in the peripheral circulation, its role in the brain appears to involve
not only cholesterol transport but also intracellular exchange of metabolites between neurons
and glial cells through processes that appear to be required for maintenance of healthy brain
tissue. As the structural properties of apoE, its various isoforms and lipidation states
continue to be defined, new appreciation is gained for its physiological and
pathophysiological functions in both the brain and periphery. A concerted effort that draws
upon expertise in structural biology, cell biology, animal physiology and genetic engineering
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will continue to enhance knowledge of the relationships that exist between apoE and
complex disease processes that have an untold impact on the human condition.
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AD Alzheimer's disease
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FRET fluorescence resonance energy transfer

LDL low-density lipoprotein

NMR nuclear magnetic resonance

VLDL very low density lipoprotein

DMPC dimyristoylphosphatidylcholine

DPPC dipalmitoylphosphotidylcholine

CNS central nervous system

BBB blood brain barrier

CSF cerebro spinal fluid

Aβ amyloid beta

APP amyloid precursor protein

LXR Liver-X-Receptor
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Figure 1. ApoE3 NT structures by X-ray crystallography and NMR
X-ray (left) and solution NMR (right) structures of the lipid-free N-terminal helix bundle of
apoE3 displaying residues 23-164 and 1-183, respectively (PDB codes 1LPE [31] and 2KC3
[32]).
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Figure 2. ApoE isoform-specific differences
Linear diagram of the apoE structural organization noting the N-terminal helical
organization, functional interaction regions, isoform-specific differences at residues 112 and
158, genotypic frequencies of the human isoforms [248], and disease risk associations for
the three isoforms.
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Figure 3. Models of apoE helix bundle opening upon contact with lipid surfaces
The “open” (Top panel) and “extended belt” (Bottom panel) models each permit contact of
hydrophobic regions of the protein with exposed hydrophobic surface. The ultimate
conformation adopted by apoE on reconstituted HDL remains unresolved.
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Figure 4. Aβ-independent effects of apoE4 towards neurodegeneration and pathophysiology
In healthy brain, apoE (orange) secreted from astrocytes provides support for neuronal
function (Top panel). However, apoE4 increases baseline ER stress and unfolded protein
response in astrocytes, slowly leading to cells that function sub-optimally (Bottom panel).
As a consequence, these astrocytes are unable to provide optimal support to the neurons over
a period of time. As a compensatory response, neurons generate apoE4 for self-repair, which
in turn leads to increased generation of neurotoxic fragments, neurodegeneration and disease
[168].
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Figure 5. Schematic representation of the role of apoE3/E4-Aβ interaction in AD
ApoE isoform-specific differences (red) may influence Aβ (purple) oligomerization,
deposition, transport, and/or clearance mechanisms that can influence the progression of
AD. Oligomerization of Aβ released from the amyloid precursor protein (APP) in neuronal
membranes has been described as a causative factor for the progression of AD and may be
enhanced by apoE4 compared to apoE3. Whether apoE isoform differences affect Aβ
association with apoE-HDL complexes (orange and beige) remains unclear. However
clearance of apoE-Aβ HDL by lipoprotein receptors (LRP1 and LDLR) appears to be
promoted to a lesser extent by apoE4 than apoE3. Astrocytes play a significant role in
secreting apoE-containing HDL-sized particles.
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