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Abstract
Macrophages within the tumor microenvironment promote angiogenesis, extracellular matrix breakdown, and tumor
cell migration, invasion, and metastasis. Activation of the urokinase plasminogen activator (uPA) and its receptor
(uPAR) axis promotes prostate cancer tumorigenicity, invasion, metastasis, and survival within the tumor micro-
environment. The link between macrophage infiltration and the uPA/uPAR axis in prostate cancer development has
not been established, although it has been reported that uPA plays a critical role inmonocyte andmacrophage chemo-
taxis. In this study, murine prostate cancer RM-1 cells were subcutaneously inoculated into wild-type (WT), uPA−/−,
and uPAR−/−mice. Tumor volumewas significantly diminished in both uPA−/− and uPAR−/−mice compared withWT
controls. Greater inhibition of tumor volume was also observed in uPA−/− mice compared with uPAR−/− mice, sug-
gesting the important contribution of stromal-derived uPA to sustain the tumor growth. Immunohistochemical stain-
ing revealed that tumors in uPA−/− and uPAR−/− mice displayed significantly lower proliferative indices, higher
apoptotic indices, and less neovascularity compared with the tumors in WT mice. Tumors in uPA−/− and uPAR−/−

mice displayed significantly less macrophage infiltration as demonstrated by F4/80 staining and MAC3+ cell numbers
by flow cytometry compared with the tumors from WT mice. These findings suggest that the uPA/uPAR axis acts in
both autocrine and paracrinemanners in the tumormicroenvironment, and activation of uPA/uPAR axis is essential for
macrophage infiltration into prostate tumors.
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Introduction
The urokinase-type plasminogen activator (uPA) system is composed
of uPA, its receptor (uPAR), plasminogen, and plasminogen activator
inhibitors. Urokinase-type plasminogen activator is a highly restricted
serine protease that converts plasminogen to active plasmin and thus
degrades protein components of the extracellular matrix. Binding of
uPA to its receptor uPAR initiates pericellular proteolysis and plays
critical roles in both physiological and pathological conditions, in-
cluding cell migration and tissue remodeling in angiogenesis, athero-
genesis, and tumor progression and metastasis (see review in Smith
and Marshall [1] and Li and Cozzi [2]). The findings that higher
plasma or serum levels of uPA correlate with the tumor progression,
in particular as a poor prognostic marker in aggressive breast cancer
[3,4], bladder cancer [5], gastric cancer [6], as well as prostate cancer
[7–9], suggest that the uPA/uPAR axis is a cancer therapeutic target.
It has been demonstrated that human prostate malignant cells ex-
press both uPA and uPAR, and levels of uPA and uPAR expression



24 uPA/uPAR Axis Links Macrophage Infiltration Zhang et al. Neoplasia Vol. 13, No. 1, 2011
are upregulated in aggressive prostate cancer cells and stromal cells
surrounding the tumor cells and correlate with the metastatic poten-
tial of prostate cancer cells [10–15]. The uPA/uPAR axis knockdown
by small interfering RNA in prostate cancer PC3 cells resulted in a
dramatic reduction of tumor invasion and cell viability and induction
of apoptosis [16]. RNAi knockdown of uPA-uPAR expression in vivo
abrogated tumor growth in an orthotopic prostate cancer tumor
model [16]. It was further reported that both tumor-derived uPA
and tumor-stroma–induced plasminogen activator inhibitor 1 play
important roles in intraosseous metastatic prostate cancer growth
[17]. It remains unknown, however, if the stromal-derived uPA defines
a permissive microenvironment for prostate cancer development.

The uPA/uPAR axis also plays a critical role in monocyte and macro-
phage chemotaxis [18,19]. In the tumor microenvironment, inflamma-
tory components present as a large number of infiltrating macrophages
(tumor-associated macrophages, TAMs) [20–22]. These TAMs are
increasingly recognized as important contributors to cancer progression
andmetastasis [23]. However, the roles of uPA/uPAR axis in TAMs and
prostate cancer progression have not yet been elucidated. In this study,
we tested the hypothesis that the uPA/uPAR axis links infiltrating TAMs
and prostate cancer development using uPAR−/− and uPA−/− mice.

Materials and Methods

Animals
Wild-type (WT), uPAR−/−, and uPA−/−mice, 6 to 8weeks of age, were

used in this study. All mice are immunocompetent in the same back-
ground (C57B6/129) [24]. Mice were housed in specific pathogen-free
isolation rooms in the University of Michigan Unit for Laboratory Ani-
mal Medicine, which is accredited by the American Association for
Accreditation of Laboratory Animal Care. All procedures were approved
by the animal care committees of theUniversity ofMichiganCommittee
on Use and Care of Animals. uPAR−/−, uPA−/− mice, and background-
matched control WTmice were generous gifts from Dr P. Carmeliet
(Leuven, Belgium). These mice were developed as previously described
[25,26]. Genotype of the uPA−/−, uPAR−/−, andWTmicewas confirmed
by polymerase chain reaction (PCR) or reverse transcription–PCR anal-
ysis as described previously [26,27].

Tumor Cells
The mouse prostate cancer cell line RM-1(H-2b) was obtained

from Dr T. Thompson (University of Texas MD Anderson Cancer
Center, Houston, TX). This model was generated by transduction of
cells with the ras and myc oncogenes, yielding a poorly differentiated
adenocarcinoma [28,29]. Cells were cultured in Dulbecco modified
Eagle medium (DMEM) supplemented with 10% FBS.

Tumor Cell Inoculation
Single-cell suspension RM-1 (5000 cells in 100-μl volume of PBS)

cells were injected into the right flank of the mice using a 23-gauge
needle. The tumor growth was monitored by palpation, and two per-
pendicular axes were measured using an electronic caliper; the tumor
volume was calculated using the formula as described previously
[30]: volume = length × width2 / 2. At the day 15 after tumor cell
inoculation, all mice were killed.

Immunohistochemical Staining
Allograft tumors were harvested and placed in 10% formalin, embed-

ded in paraffin, and sectioned at 5-μm thickness. Sections were exam-
ined using standard hematoxylin and eosin staining for routine histology.
To evaluate the tumor cell proliferation, sections were deparaffinized,
rehydrated, and stained with Ki-67 monoclonal antibody (Invitrogen
Life Technologies, Carlsbad, CA). To evaluate apoptosis, sections were
subjected to terminal deoxynucleotidyl transferase–mediated nick end
labeling analysis using the ApopTag Peroxidase In Situ Apoptosis Detec-
tion Kit (Chemicon International Millipore, Billerica, MA) according to
the manufacturer’s directions. Both the Ki-67 labeling index and the
apoptotic index were calculated as the percentage of positive tumor nu-
clei divided by the total number of tumor cells examined. At least 1000
tumor cells per specimen were examined in five randomly selected fields
by light microscopy (×400). Vessel formation in the allograft tumors
was evaluated by an endothelial marker CD31 immunohistochemical
staining (Santa Cruz Biotechnology, Santa Cruz, CA). The number of
vessels per squared millimeter was counted in five randomly selected
fields (×200). To evaluate TAMs in the allograft tumors, F4/80 staining
was performed. The F4/80 antibody was purchased from Abcam
(Cambridge, MA).
Preparation of Conditioned Medium
RM-1 cells at 2 × 106 were grown in 100-mm tissue culture dishes

overnight in cell culture medium and washed twice with PBS. Then,
the medium was changed to 1% FBS in DMEM. After 48 hours, the
conditioned medium was collected for use in the chemotaxis assay.
Enzyme-Linked Immunosorbent Assay for Murine uPA
The conditionedmediumwas collected, and uPA levels weremeasured

by enzyme-linked immunosorbent assay (ELISA). Quantikine murine
uPA ELISA kits were purchased from Innovative Research (Novi, MI).
ELISA was performed according to the manufacturer’s instructions.
Flow Cytometric Analysis of TAMs and T Cells in
Allograft Tumors

Half of each allograft tumor was harvested and digested with col-
lagenase (Sigma-Aldrich, St Louis, MO) to create a single-cell suspen-
sion. Mononuclear cells were collected by layering in Ficoll-Paque
centrifuge. Macrophages and T lymphocytes were stained with fluo-
rescein isothiocyanate–conjugated antimouse MAC3 and CD4, CD8
antibodies, respectively (BDBioscience Pharmingen, San Jose, CA), and
their matching isotype controls according to the manufacturer’s proto-
cols. The cells were incubatedwith antibodies for 30minutes at 4°C and
washed with PBS. The percentage of MAC3+, CD4+, and CD8+ pop-
ulation was analyzed using FACSCalibur Flow Cytometer and Cell-
Quest software (BD Bioscience Pharmingen).
Macrophage Chemotaxis Assay
Resident peritoneal macrophages were isolated from the WT,

uPAR−/−, and uPA−/− mice as previously described [31]. A total of
50,000 macrophages were added to the top well of a 24-well, 8-mm
pore size transwell membrane coated with Matrigel (BD Bioscience)
in DMEM with 1% FBS. Recombinant monocyte chemotactic pro-
tein 1 (MCP-1) was used as a positive control. Plates were incubated
for 24 hours at 37°C. After incubation, the top sides of the transwell
membranes were thoroughly scraped with a cotton swab, and the bot-
tom surfaces were fixed and stained with Diff-Quick Stain Set accord-
ing to the manufacturer’s recommendations (Dade Behring, Newark,
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DE). Transwell membranes were mounted, and macrophages were
counted. Experimental groups were performed in triplicate, and counts
represent an average, across the three replicates, of five random fields
counted at ×200 magnification.

Statistical Analysis
Results were reported as mean ± SD or mean ± SE, indicated in

the figure legends. The calculations were done using the StatView
system (Abacus Concepts, Berkeley, CA). Changes of each parameter
among the groups were initially analyzed by one-way analysis of var-
iance. Differences between WT and KO mice were then analyzed by
Student’s t test. Differences with P < .05 were determined as statis-
tically significant.
Results

Murine RM-1 Tumor Was Diminished in uPA−/− and uPAR−/−
Mice Compared with the WT Animals
To determine the tumor growth in uPA−/− and uPAR−/− mice com-

pared with the WT animals, the RM-1 cells were inoculated subcu-
taneously into the mice deficient of either uPA or uPAR and WT
counterparts. The tumor volume was monitored at 3-day intervals
[29,32]. RM-1 tumors in WTmice grew rapidly and reached a mean
size of 500 mm3 on day 15 after tumor cell inoculation. In contrast,
tumor growth in uPA−/− and uPAR−/− mice had a significantly slower
growth rate reaching a mean size of 100 and 182 mm3, respectively,
on day 15 (Figure 1). The tumor volume in both uPA−/− and uPAR−/−

mice at days 9, 12, and 15 was significantly diminished compared
with the tumor volume in WT mice. In addition, a nonsignificant
trend toward inhibition of tumor growth in uPA−/−mice was observed
Figure 1. Effects of uPA or uPAR deficiency on murine prostate
cancer RM-1 cell growth in mice. RM-1 cells were inoculated sub-
cutaneously into the mice deficient either of uPA (n = 10) or uPAR
(n = 8) and wild-type (WT) counterparts (n = 8). The tumor volume
was measured in WT, uPA−/−, and uPAR−/− mice on days 9, 12,
and 15 after tumor cell inoculation. Values represent mean ± SD.
*P< .001, compared with the tumor volume in WT mice. †P< .05,
compared with the tumor volume in uPAR−/− mice.
compared with uPAR−/− mice on day 12, and a statistically significant
inhibition of tumor growth was achieved in uPA−/− mice compared
with uPAR−/− mice at day 15 (Figure 1). All organs including liver,
lung, brain, spleen, kidney, femurs, tibiae, and vertebrae were sec-
tioned and examined by hematoxylin and eosin staining. Metastatic
tumors were not observed in these organs (data not shown).
Angiogenesis in Allograft Tumors Was Diminished in uPA−/−

and uPAR−/− Mice Compared with the WT Animals
Excised allograft tumors were collected, and the tumor sections

were stained for CD31 expression and analyzed. Figure 2A represents
photographs of the tumors in these mice. Figure 2B demonstrates the
quantitative measurement of vessel density in the excised tumors. A
significant reduction in the number of blood vessels was identified in
the allograft tumors from both uPA−/− and uPAR−/− mice compared
with the tumors from WTmice (Figure 2).
Tumors in uPA−/− and uPAR−/− Mice Revealed Significantly
Lower Proliferation and Higher Apoptotic Indices Compared
with the Tumors in WT Animals

To determine the effects of uPA or uPAR deficiencies on prostate
cancer cell proliferation and apoptosis in vivo, the tumor sections were
stained for Ki-67 and ApopTag (Figure 3A). Quantitative analysis of
the immunohistochemical staining revealed less Ki-67–positive cells
and more ApopTag-positive cells in allograft tumors from both uPA−/−

and uPAR−/− mice compared with the tumors from the WTmice (Fig-
ure 3B). In addition, uPA production in RM-1 cell culture conditioned
medium was measured by ELISA. RM-1 cells produced a high amount
of endogenous uPA at 53.7 ng/50,000 cells. RM-1 cells expressed both
uPA and uPAR messenger RNA determined by reverse transcription–
PCR (data not shown).
Tumors in uPA−/− and uPAR−/− Mice Displayed Significantly
Less Infiltrating Macrophages (TAMs) Compared with the
Tumors in WT Animals

To test whether host-derived uPA or uPAR contributes to the accu-
mulation of TAMs in the allograft tumors, sections were stained with
F4/80 antibody, which recognizes a cell surface glycoprotein specifically
expressed in mature tissue macrophages [33]. There was significantly
less F4/80-positive macrophage infiltration in allograft tumors from
both uPA−/− and uPAR−/− mice compared with the tumors from WT
mice (Figure 4A). Macrophage infiltration as measured by fluorescein
isothiocyanate–conjugated antimouse MAC3 antibody by flow cytom-
etry analysis was significantly reduced in the allograft tumors from both
uPA−/− and uPAR−/− mice compared with the tumors from the WT
mice (Figure 4B) [34]. These findings suggest a link between activation
of the uPA/uPAR axis and macrophage infiltration in the tumor micro-
environment. Because diminishedRM-1 tumors in uPA−/− and uPAR−/−

mice also suggest generation of systemic antitumor immunity, tumor-
infiltrating lymphocytes, such as CD4+ and CD8+ cells, were examined.
The number of CD8+ cells, but not the number of CD4+ cells, was
significantly increased in uPA−/− allograft tumors compared with the
uPAR−/− or the WT tumors (Figure 4C ).
In VitroMacrophage Migration Was Inhibited in Both uPA−/−

and uPAR−/− Mice Compared with the Control Mice
To further investigate the roles of the uPA/uPAR axis in macrophage

chemotaxis in vitro, peritoneal macrophages were collected from WT,



Figure 2. Effects of uPA or uPAR deficiency on RM-1 tumor angiogenesis. Tumors were excised from WT, uPA−/−, and uPAR−/− mice
on day 15 after tumor cell inoculation. (A) Representative photographs of tumor sizes and blood vessel formation. The excised tumor
sections were stained with an antibody against endothelial marker CD31. (B) Quantified vessel density was determined by the number of
vessels in five randomly selected fields (×200). Values represent mean ± SEM. *P < .001, compared with the number of vessels per
squared millimeter in tumor sections from the WT mice.
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uPA−/−, and uPAR−/−mice and tested in an in vitromigration assay using
conditioned medium collected from RM-1 cells. Macrophage chemo-
taxis was significantly diminished in the macrophages from both uPA−/−

and uPAR−/− mice compared with the macrophages from the WTmice
(Figure 5). As a positive control, recombinant mouse MCP-1 signifi-
cantly induced macrophage chemotaxis (data not shown).

Discussion
The uPA/uPAR axis has been demonstrated to play a central role in
prostate cancer tumorigenesis through direct and indirect interactions
with integrins, endocytosis receptors, and growth factors in the tumor
microenvironment (see review in Li and Cozzi [2]). The contribution
of tumor-derived versus host-derived uPA on the tumor development
remains unclear. In the current study, murine prostate cancer RM-1
cells were subcutaneously implanted into WT, uPA−/−, and uPAR−/−

mice. Tumor growth was dramatically diminished in both uPA−/− and
uPAR−/− mice compared with WT control animals. Both tumor-
derived and host-derived uPA contributed to prostate cancer growth
in vivo. Tumors in uPA−/− and uPAR−/− mice displayed significantly
less infiltrating TAMs compared with the tumors in WT animals.
TAMs, derived from circulating monocytes, have been demonstrated
to release a variety of growth factors, inflammatory mediators, and pro-
teolytic enzymes in the tumor microenvironment. To our knowledge,
this is the first report that demonstrates a direct link between activation
of the uPA/uPAR axis and infiltrating TAMs in prostate cancer devel-
opment. In addition, we observed that diminished RM-1 tumors in
uPA−/− mice, but not in uPAR−/− mice, indeed were associated with
enhanced tumor infiltrating lymphocytes, such as CD8+ cells, but not
CD4+ T helper cells, suggesting that uPA also participates in intra-
tumoral CD8+ T cell–mediated antitumor immunity. The enhanced
tumor-infiltrating CD8+ cells in this model are independent of uPAR−/−.
However, further investigations on the roles of T regulatory cells and
dendritic cells are needed.

uPA and uPAR are expressed in a variety of solid tumors includ-
ing prostate, breast, colon, ovarian, renal, lung, liver, and pancreatic can-
cers, as well as hematological malignancies (see review in Smith and
Marshall [1] andMekkawy et al. [34]). In prostate cancer, up-regulation
of the uPA and uPAR axis was identified not only in tumor epithelial
cells but also in endothelial cells and macrophages but rarely in other
nonmalignant cells (see review in Li and Cozzi [2]). In this study, we
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demonstrated that RM-1 cells, expressing both uPA and uPAR, grew
in uPA−/− and uPAR−/− mice. Furthermore, tumors in uPA−/− and
uPAR−/− mice revealed significantly lower proliferation and higher ap-
optotic indices compared with the tumors in WT animals. This sug-
gests that, in addition to paracrine effects, an autocrine axis indeed
exists for the tumor cells themselves. Blood vessel density in allograft
tumors was diminished in uPA−/− and uPAR−/− mice compared with
Figure 3. Effects of uPA or uPAR deficiency on RM-1 tumor cell prolife
stained with Ki-67 monoclonal antibody or by an ApopTag in situ dete
histochemical staining. (B) Quantified data were determined by the n
nuclei dividing the total number of cells in five randomly selected fields
.001, compared with the percentage of positive cells in tumor section
the WTanimals. This result is consistence with a prior report in a mu-
rine fibrosarcomamouse model that demonstrated a reduction of tumor
angiogenesis in uPA−/− mice [35].

A greater inhibition of the tumor growth in uPA−/− mice compared
with uPAR−/−mice was observed. This suggests a possibly predominant
contribution of stroma-derived uPA in the tumor development. It may
further indicate that uPA may be required for cancer cell survival and
ration and apoptosis. Tumor sections were immunohistochemically
ction kit, respectively. (A) Representative photographs of immuno-
umber of Ki-67–positive cells or the number of apoptotic-positive
under light microscopy (×400). Values represent mean ± SEM. *P<
s from the WT mice.



Figure 4. Effects of uPA or uPAR deficiency on TAMs infiltration. (A) Tumor sections were immunohistochemically stained with F4/80
monoclonal antibody. Representative results show macrophage infiltration into tumors and quantification of F4/80-positive mature
macrophages. Values represent mean ± SEM. *P < .001, compared with the number of positive cells in tumor sections from the
WT mice. (B) Representative results show the percentage of MAC3-positive cells from excised tumors analyzed by flow cytometry
and quantified data on percentage of MAC3-positive cells. (C) Quantified data on CD4- and CD8-positive cells. Values represent mean ±
SEM. *P < .001, compared with the percentage of positive cells in tumor allografts from the WT mice.
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Figure 5. Effects of uPA or uPAR deficiency onmacrophage chemo-
taxis in vitro. Peritonealmacrophageswerecollected fromWT,uPA−/−,
and uPAR−/− mice. In vitro chemotaxis assays were performed
using conditioned medium collected from RM-1 cells as described
in Materials and Methods. Recombinant MCP-1 (10 ng/ml) were
used a positive control. The number of migrated macrophages was
counted. Values represent mean ± SEM. *P< .001, compared with
the number of invaded macrophages from the WT mice.
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proliferation in the tumor microenvironment. In uPAR−/− mice, with
no uPAR expression in host cells, the RM-1 tumor cells grew at a sig-
nificant lower rate compared with the tumor cell growth in WTmice.
When there was no uPA production by the host environment in uPA−/−

mice, the tumor-derived uPA was not enough to sustain the proliferat-
ing potential of the RM-1 cells. Production of stromal-derived uPA,
therefore, plays a dominant role in the RM-1 tumor growth. It has been
recently reported that overexpression of Notch 1 in prostate cancer pro-
motes tumor invasion through induction of uPA and matrix metallo-
proteinase 9 [36] and that down-regulation of Notch 1 inhibits prostate
cancer cell growth, migration, and invasion and induces apoptosis via
inactivation of AKt, mammalian target of rapamycin, and nuclear factor
κB signaling pathways [37]. Notch 1, a type 1 transmembrane protein,
plays a key role in the development of many tissues and organ types.
Aberrant Notch signaling, found in a wide variety of human cancers
including prostate cancer, contributes to tumor development. Notch 1,
therefore, may dictate uPA/uPAR signaling alterations in cancer stem
cell survival and differentiation. Further studies on the roles of Notch 1
on uPA/uPAR signaling in prostate cancer stem cell pathobiology
are warranted.
In conclusion, this study differentiates the major source of uPA in

the tumor microenvironment as stromal-derived. The uPA/uPAR axis
remains an interesting target for cancer therapy, directed at cancer cells
as well as supporting host stromal cells.
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