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Malignant glioma is the most common form of primary malignant 
brain tumor and the glioma histological subtypes include glioblas-
tomas, grades 2 and 3 astrocytomas, grades 2 and 3 oligodendro-
gliomas, grades 2 and 3 oligoastrocytomas, ependymomas, and 
pilocytic astrocytomas (1). Presently, there are limited treatment 
options for glioma; glioblastoma, the most common glioma  
subtype, remains an incurable disease with a median survival of  
15 months, even with radiation and temozolomide therapy (2).

A comprehensive appreciation of the integrated genomics and 
epigenomics of glioma is needed to better understand the multiple 
cellular pathways involved in their development, establish markers 
of resistance to traditional therapies, and contribute to the devel-
opment of targeted therapies. Epigenetic alterations can alter gene 
expression, gene expression potential, or the regulation of gene 

function, and thereby contribute to gliomagenesis. Arguably, the 
most widely studied epigenetic mark is DNA methylation that 
occurs at cytosine residues in the context of CpG dinucleotides. 
Approximately half of human genes have concentrations of CpGs 
in their promoter regions and the methylation state of these and 
other gene-associated CpGs are widely regarded as critical indica-
tors of gene regulation.

Since 2008, sequencing of gliomas has identified mutations in 
the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) genes 
(3–5). The IDH1 and IDH2 enzymes convert isocitrate to alpha  
(a)-ketoglutarate producing NADPH and participate in cellular 
metabolic processes such as glucose sensing, lipid metabolism, and 
oxidative respiration [reviewed in (6)]. Mutations in IDH1 are 
consistently found in codon 132 for arginine (R132), and mutations 
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 Background  Although much is known about molecular and chromosomal characteristics that distinguish glioma histological 
subtypes, DNA methylation patterns of gliomas and their association with other tumor features such as muta-
tion of isocitrate dehydrogenase (IDH) genes have only recently begun to be investigated.

  Methods  DNA methylation of glioblastomas, astrocytomas, oligodendrogliomas, oligoastrocytomas, ependymomas, and 
pilocytic  astrocytomas  (n  =  131)  from  the  Brain  Tumor  Research  Center  at  the  University  of  California  San 
Francisco, as well as nontumor brain  tissues (n = 7), was assessed with  the  Illumina GoldenGate methylation 
array. Methylation data were subjected to recursively partitioned mixture modeling (RPMM) to derive methyla-
tion  classes.  Differential  DNA  methylation  between  tumor  and  nontumor  was  also  assessed.  The  association 
between  methylation  class  and  IDH  mutation  (IDH1  and  IDH2)  was  tested  using  univariate  and  multivariable 
analysis for tumors (n = 95) with available substrate for sequencing. Survival of glioma patients carrying mutant 
IDH (n = 57) was compared with patients carrying wild-type IDH (n = 38) using a multivariable Cox proportional 
hazards model and Kaplan–Meier analysis. All statistical tests were two-sided.

  Results  We  observed  a  statistically  significant  association  between  RPMM  methylation  class  and  glioma  histological 
subtype (P < 2.2 × 10216). Compared with nontumor brain tissues, across glioma tumor histological subtypes, the 
differential  methylation  ratios  of  CpG  loci  were  statistically  significantly  different  (permutation  P  <  .0001). 
Methylation class was strongly associated with IDH mutation in gliomas (P = 3.0 × 10216). Compared with glioma 
patients whose  tumors harbored wild-type  IDH, patients whose  tumors harbored mutant  IDH  showed statisti-
cally significantly improved survival (hazard ratio of death = 0.27, 95% confidence interval = 0.10 to 0.72).

 Conclusion  The  homogeneity  of  methylation  classes  for  gliomas  with  IDH  mutation,  despite  their  histological  diversity, 
suggests that IDH mutation is associated with a distinct DNA methylation phenotype and an altered metabolic 
profile in glioma.

     J Natl Cancer Inst 2011;103:143–153
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in IDH2 consistently occur at the analogous amino acid R172 (3,7). 
Mutations in IDH1 and IDH2 (IDH when referring to both) are 
unlike most cancer-associated enzyme mutations because they 
confer neomorphic enzyme activity rather than inactivating, or 
constitutively activating, the enzyme. The mutant form of IDH 
enzymes convert a-ketoglutarate to 2-hydroxyglutarate in an 
NADPH-dependent manner, and via an unknown mechanism 
contribute to the pathophysiology of gliomas and leukemias 
(5,7,8). IDH mutations occur in approximately 80% of grades 2–3 
gliomas and secondary glioblastomas, but less than 10% of primary 
glioblastomas (4,5). In gliomas, IDH mutation has been associated 
with genetic alterations in other genes including tumor suppres-
sors and oncogenes (5). IDH mutation also has been associated 
with younger age and improved survival in glioma patients (5,9).

The somatic genetic signature of any individual tumor is critical 
to assessing its clinical and etiologic character. Similarly, the pro-
file of somatic epigenetic alterations is central to forming a com-
plete understanding of the pattern of disrupted cellular functioning 
responsible for the deadly behavior of gliomas. Major advances in 
the clinical role of epigenetics in gliomas include the findings that 
promoter methylation silencing of the O-6-methylguanine-DNA 
methyltransferase (MGMT) gene is associated with response to 
temozolomide treatment (10). Epigenetic silencing of MGMT 
gene is found in approximately 80% of gliomas with mutant IDH1, 

compared with approximately 60% of gliomas with wild-type 
IDH1 (9). Other common alterations in gliomas are mutations in 
tumor protein p53 (TP53) (11) and amplification of the epidermal 
growth factor receptor (EGFR) oncogene (12). Better definitions 
of the somatic nature of gliomas should integrate both their ge-
netic and epigenetic alterations. In this study, we assessed CpG 
methylation patterns, IDH mutation, TP53 mutation, and EGFR 
amplification in histologically diverse gliomas to define epigenetic 
subgroups of potential clinical and etiologic relevance.

Patients, Materials, and Methods
Patients and Tissue Samples
Fresh frozen tumor tissues of patients (n = 131) diagnosed with 
glioma between 1990 and 2003 were obtained from the University 
of California San Francisco (UCSF) Brain Tumor Research Center 
Tissue Bank. Tumors were previously reviewed by UCSF neuro-
pathologists to assign histological subtypes and grades according to 
the World Health Organization classification for patients operated 
on at the UCSF Medical Center (1). Tumor samples were defined 
as secondary glioblastoma if the patients had previous histological 
diagnosis of a lower-grade glioma. Nontumor brain tissue samples 
were obtained from cancer-free patients (n = 7) who underwent 
temporal lobe resection for treatment of epilepsy at the UCSF 
Medical Center. Patient ages were documented at the time of ini-
tial diagnosis. Other demographic and survival data were obtained 
from UCSF patient records and the California Cancer Registry. 
The Institutional Review Board approval certification was obtained 
from the UCSF Committee on Human Research, and subjects 
provided written informed consent for tissue collection.

Cell Lines, Cell Culture, and Reagents
A431 cells (a human epidermoid cancer cell line that is known to 
have EGFR amplification and overexpression) and HT29 cells 
(a human colon adenocarcinoma cell line without EGFR amplifica-
tion) were obtained from American Type Culture Collection  
(Manassas, VA). Cell lines were maintained in Dulbecco’s modi-
fied Eagle medium and RPMI 1640 medium (both from Invitrogen, 
Carlsbad, CA), respectively, with 10% fetal bovine serum (Hyclone, 
Logan, UT) at 37°C in 5% CO2. When cultures reached 80% 
confluency, cells were harvested for DNA extraction.

DNA Extraction, Bisulfite Modification, and Methylation 
Analysis
Genomic DNA from 131 glioma tissue samples and seven  
nontumor brain tissue samples was isolated from approximately 
25 mg wet weight of each frozen tissue sample using QIAamp DNA 
mini kit (Qiagen, Inc, Valencia, CA) according to the manufactur-
er’s instructions. DNA was eluted twice in a total of 100 µL of elu-
tion buffer. The same DNA extraction method was applied to A431 
and HT29 cell lines that served as EGFR amplification controls.

For DNA methylation analysis, 1 µg of genomic DNA was first 
subjected to bisulfite modification using the EZ DNA Methylation 
Kit (Zymo Research Corporation, Orange, CA) according to the 
manufacturer’s instructions. Bisulfite modification converts 
unmethylated cytosine residues to uracil and preserves methylated 
cytosine residues as cytosines.

CONTEXT AND CAVEATS

Prior knowledge
Human gliomas often have mutations in the isocitrate dehydroge-
nase  genes  (IDH1  and  IDH2).  IDH  mutation  is  associated  with 
improved  survival  in  glioma  patients.  Epigenetic  alterations  like 
DNA  methylation  at  CpG  dinucleotides  play  an  important  role  in 
gene  regulation.  Integration  of  genetic  and  epigenetic  data  is 
important for a better understanding of glioma development.

Study design
DNA methylation profile of CpG loci and methylation class of 131 
glioma and seven non-glioma brain tissues were determined. The 
association between IDH mutation and methylation class was ana-
lyzed. Survival analysis of patients carrying IDH mutation vs wild-
type IDH was also performed.

Contribution
CpG loci showed differential methylation between glioma and non-
glioma  tissues.  Statistically  significant  associations  were  found 
between  DNA  methylation  class  and  histological  subtypes  and 
between  DNA  methylation  class  and  IDH  mutation  of  gliomas. 
Patients carrying  IDH mutation  in gliomas showed improved sur-
vival  compared with patients  carrying  IDH wild-type after adjust-
ment for age and grade-specific tumor histology.

Implications
A distinct methylation pattern in glioma tissues is associated with 
IDH mutation.

Limitations
Mutation data were not available for all tissue samples, which may 
have limited the statistical power of the analyses.

From the Editors
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GoldenGate DNA methylation bead arrays (Illumina, Inc, San 
Diego, CA) were used to interrogate methylation of 1505 CpG 
loci associated with 803 cancer-related genes according to the 
manufacturer’s instructions. GoldenGate methylation arrays were 
used to analyze bisulfite-modified DNA from 131 glioma and 
seven nontumor samples for methylation, and processed at the 
UCSF Institute for Human Genetics, Genomics Core Facility. 
The GoldenGate array methylation data were deposited in the 
Gene Expression Omnibus and are publicly available (accession 
GSE20395). The Cancer Genome Atlas (TCGA), a public data 
portal, was used to obtain GoldenGate methylation array data for 
validation of methylation classes. Quantitative methylation- 
specific polymerase chain reaction (PCR) (QMSP) was used to 
confirm methylation data from the GoldenGate array. Candidate 
genes were selected based on previous studies (13–16) that 
reported aberrant methylation in astrocytic glioma and included 
MGMT, Ras association domain family member 1 (RASSF1), PYD 
and CARD domain containing (PYCARD), homeobox A9 
(HOXA9), paternally expressed 3 (PEG3), and slit homolog 2 
(SLIT2). CpGenome Universal Methylated DNA (Millipore, 
Billerica, MA) was bisulfite modified and used as a positive control 
for QMSP analysis. QMSP was performed using Applied 
Biosystems 7900HT Fast Real-Time PCR System (Applied 
Biosystems, Carlsbad, CA). The reaction plate was prepared using 
the Beckman Coulter automated liquid handler-Biomex 3000 
(Beckman Coulter, Fullerton, CA). Each reaction contained  
10.0 µL 2× Power SYBR Green PCR Master Mix (Applied 
Biosystems), 100–400 nM of forward and reverse primers 
(Supplementary Table 1, available online) and 25 ng of DNA  
template in a total reaction volume of 20 µL. For the amplification 
of RASSF1, 2%–3% dimethyl sulfoxide was added to the reaction 
mix. PCR conditions are modified by different primer concentra-
tions, and dimethyl sulfoxide was added to ensure that primer 
dimers and nonspecific amplification products were not included 
in the threshold cycle (Ct) calculation. To confirm specificity of 
amplicons from QMSP, we performed dissociation curve 
analysis. The PCR conditions were 95°C for 10 minutes, and 40 
cycles of 95°C for 15 seconds, 60°C for 30 seconds, and 72°C for 
30 seconds. SYBR Green (the commonly used DNA binding 
dye) fluorescence data were collected only during the extension 
reaction at 72°C. Ct values were calculated by the 7900HT 
system software, and average relative quantification (RQ) values 
were obtained for each sample using actin, beta (ACTB) amplifi-
cation as the referent, where RQ = (target gene/ACTB)/
(Universal methylation calibrator/ACTB). Spearman rank corre-
lation coefficients (rho) and P values were calculated to assess 
the correlation between GoldenGate array data and QMSP 
results.

Mutation Analysis
IDH Mutation. The region spanning R132 codon of IDH1 and the 
region spanning R172 codon of IDH2 were amplified by PCR with 
primers designed with Primer 3 software (v.0.4.0) with the excep-
tion of the forward sequencing primer, which was selected from 
Balss et al. (4). PCR reaction mixtures contained 10–25 ng DNA, 
1× buffer, 0.2 mM dNTP mix, 0.2 µM forward and reverse 

primers, 0.04 U of HotStarTaq, and 1 mM MgCl2 (Qiagen, Inc) in 
a 25 µL volume. The PCR conditions were 95°C for 10 minutes, 
40 cycles of 94°C for 30 seconds, 60°C for 30 seconds, and 72°C 
for 1 minute. The resulting products were analyzed on a 1.5% 
agarose gel. DNA was purified using the QIAquick PCR 
Purification Kit (Qiagen, Inc) and sent to Rhode Island Genomics 
and Sequencing Center at the University of Rhode Island, where 
it was sequenced in both directions using the BigDyeTerminator 
v3.1 Cycle Sequencing Kit (Applied Biosystems). Sequences were 
analyzed with Applied Biosystems Sequence Scanner Software 
v1.0. All primers for IDH1 and IDH2 mutation analysis are listed 
in Supplementary Table 1 (available online).

TP53 Mutation. For TP53 mutation analysis, PCR–single-strand 
conformation polymorphism technique was used, and DNA se-
quencing was done as previously described (8). Primers for PCR 
amplification of fragments of exons 5–8 of TP53 are listed in 
Supplementary Table 1 (available online). PCR reaction mixtures 
contained 50 ng DNA, 20 µmol/L dNTP, 10 mmol/L Tris–HCl 
(pH 9.0), 1.5 mmol/L MgCl2, 0.1% Triton X-100, 10 pmol of 
forward and reverse primers, 1 U Taq (Perkin-Elmer Cetus, 
Norwalk, CT), and 0.2 µCi [33P]dCTP (DuPont New England 
Nuclear, Boston, MA) in a 30 µL volume. DNA with TP53 muta-
tion confirmed by sequencing was included as positive control. The 
PCR reaction was carried out using 35 cycles 94°C for 30 seconds, 
annealed for 30 seconds at 58°C for exons 5 and 8, and 60°C for 
exons 6 and 7 (primers listed in Supplementary Table 1, available 
online) and 72°C for 1 minute. Three microliters of PCR product 
was mixed with 2 µL of 0.1 N NaOH and then mixed with 5 µL of 
gel loading buffer solution (United States Biochemical Corp, 
Cleveland, OH) and heated at 94°C for 4 minutes. DNA was ana-
lyzed on 6% nondenatured polyacrylamide gel, supplemented with 
10% glycerol. Electrophoresis was performed at room temperature 
for 20 hours and exposed to autoradiography films for 16 hours for 
detection of bands. Direct sequencing of PCR fragments for both 
DNA strands was done on all tumor DNAs that showed aberrant 
migration patterns on single-strand conformation polymorphism 
gel to determine the corresponding DNA sequences using dsDNA 
cycle sequencing system (Life Technologies, Gaithersburg, MD), 
as described in Wiencke et al. (17).

EGFR Amplification. EGFR amplification was measured by a 
quantitative PCR method using the ABI 7900 Real-Time PCR 
system (Applied Biosystems) and SYBR Green I, which has been 
shown to be equivalent to TaqMan PCR assay for the assessment 
of gene copy number (18). Quality control measures for the real-
time SYBR green assay included running both EGFR and control 
gene, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in 
triplicate. DNA from A431 and HT29 cell lines, with known copy 
number states for EGFR, served as positive and negative controls, 
respectively, for amplification.

Statistical Analysis
Data Assembly. Methylation data were assembled with BeadStudio 
methylation software from Illumina. All GoldenGate methyla-
tion array data points are represented by fluorescent signals  
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(Cy dyes) from both methylated (Cy5) and unmethylated (Cy3) 
alleles. The methylation level, designated as beta (b), is calculated 
as b = (max[Cy5, 0])/(|Cy3| + |Cy5| + 100), in which the average 
b value is derived from the approximately 30 replicate methylation 
measurements because each CpG probe set is present on the array 
and measured in each sample approximately 30 times. Raw average 
b values were analyzed without normalization as recommended by 
Illumina. At each CpG locus, for each tissue DNA sample, the 
detection P value was used to determine sample performance; all 
samples had detection P values less than 1 × 1025 at more than 75% 
of CpG loci and passed performance criteria. There were eight 
CpG loci that had a median detection P value of greater than .05, 
and these eight CpGs were excluded from the analysis. All CpG 
loci on the X chromosome were excluded from analysis. The final 
dataset contained 1413 autosomal CpG loci associated with 773 
genes. For each CpG locus, the differential methylation values 
(delta–beta [Db]) were calculated by subtracting the average b 
value of tumors from the mean b value of the seven nontumor 
brain samples. Subsequent analyses were carried out using the R 
software (19). All statistical tests were two-sided.

Unsupervised Clustering, Recursively Partitioned Mixture 
Modeling (RPMM), and Survival. Hierarchical clustering of the 
DNA methylation data was performed using the R function hclust 
with Euclidean distance metric and Ward linkage. To discern and 
describe the relationships between CpG methylation data and 
patient and tumor covariates, a modified model-based form of 
unsupervised clustering known as RPMM was used as described in 
Houseman et al. (20) and as used in Christensen et al. (21). The 
analysis of associations between methylation class (categorical) and 
individual categorical covariates was performed using the Fisher 
exact test. To test for association between methylation class and 
continuous covariates, a permutation test was run with the 
Kruskal–Wallis test statistic, and a likelihood ratio test was used 
for comparing the association between methylation class and IDH 
mutation to a model including age and grade-specific histology. 
To test for associations between IDH mutation and grade-specific 
tumor histology, and IDH mutation and tumor grade, Fisher exact 
tests were used. To test for associations between IDH mutation 
and primary vs secondary glioblastoma, IDH mutation and TP53 
mutation, and IDH mutation and EGFR amplification, x2 tests 
were used. The assumption of proportionality for Cox propor-
tional hazards modeling was verified by calculating Pearson corre-
lation coefficients for the corresponding set of Schoenfeld residuals 
with a transformation of time based on the Kaplan–Meier estimate 
of the survival function (22) and graphically by plotting log(survival 
time) vs log(2log[survival as a function of time, t]).

Locus-by-Locus Analysis. To examine differential methylation 
between tumor and nontumor tissues, gliomas were stratified by 
grade-specific histological subtypes, and individual CpG loci were 
compared between subtypes of glioma and nontumor samples 
using a Wilcoxon rank-sum test. Because this results in the simul-
taneous comparison of all CpG loci between glioma subtypes and 
nontumor sample types, false discovery rate estimation and Q 
values computed by the qvalue package in R (23) were used to 
adjust for multiple testing. Differentially methylated CpGs were 

counted as hyper- or hypomethylated if both the tumor vs  
nontumor Q less than .05 and the median methylation value |Db| 
greater than 0.2. An equivalent approach was used in the analysis 
of differential methylation for gliomas with mutant or wild-type 
IDH compared with nontumor tissues.

Pathway Analysis. A canonical pathway analysis was conducted 
with the use of Ingenuity Pathway Analysis software (Ingenuity 
Systems, Redwood City, CA). CpG gene-loci associated with the 
Illumina GoldenGate methylation array were used as reference, 
and loci from differential methylation analysis, as described later in 
the article, were investigated for pathways enrichment. The statis-
tical significance of gene-locus enrichment within canonical path-
ways was measured with a Fisher exact test.

Results
Unsupervised Clustering and Modeling of Glioma and 
Nontumor DNA Methylation Data
Histological grade and patient demographic data for the 131 gli-
omas and patient demographic data for the seven nontumor brain 
tissues are presented in Table 1. To characterize DNA methylation 
of gliomas and nontumor brain tissues, the bisulfite-modified DNA 
samples were hybridized to the GoldenGate DNA methylation 
array. Unsupervised clustering of DNA methylation data from 
1413 autosomal CpG loci showed that nontumor brain tissues cluster 
with each other and are distinct from tumor tissues (Figure 1, A). 
Furthermore, we observed that oligodendrogliomas and astrocy-
tomas generally clustered together and demonstrated a greater 
number of methylated loci relative to ependymomas, pilocytic as-
trocytomas, as well as nontumor brain tissues. Concomitantly, 
glioblastomas (also known as grade 4 astrocytoma), predominantly 
clustered together at the bottom of the heatmap (Figure 1, A) and 
displayed more hypermethylated CpG loci than ependymomas.

To further investigate the DNA methylation patterns of gli-
omas and nontumor brain tissue, we implemented an agnostic ap-
proach by applying a modified model-based form of unsupervised 
clustering known as RPMM (20). RPMM allows for precise infer-
ence regarding the potential covariates associated with intrinsic 
similarities and differences in CpG methylation by generating 
distinct classes of DNA methylation for the modeled samples 
based on the DNA methylation array data. We applied RPMM 
clustering to all 131 tumors, which generated 11 methylation 
classes (Figure 1, B). Methylation classes contain samples with 
DNA methylation patterns that are most similar to each other, 
and samples with different DNA methylation patterns are distin-
guished by their membership in a different methylation class. 
Methylation class was statistically significantly associated with 
both tumor histological subtype (P < 2.2 × 10216) and grade (P < 
2.2 × 10216) (Supplementary Table 2, available online).

Methylation Array and Methylation Class Validation
Methylation data from GoldenGate arrays have been extensively 
validated by our group and others using a variety of methods (24–28). 
The methylation array data presented in this study were validated by 
correlating CpG methylation array data to QMSP data for genes 
commonly methylated in gliomas—MGMT, RASSF1, PYCARD, 
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HOXA9, PEG3, and SLIT2 (Supplementary Table 3, available 
online). To determine the validity of association between histology 
and methylation class, we utilized publicly available GoldenGate 
methylation array data for 71 glioblastoma samples from TCGA. 
Using the RPMM classification (Figure 1, B), we predicted the meth-
ylation class for each glioblastoma sample of TCGA and confirmed 
that 70 (99%) of the 71 TCGA glioblastoma samples were classified 
in RPMM methylation classes that contained glioblastoma samples 
(Supplementary Table 2, available online). The identification 
numbers and the predicted RPMM methylation classes of TCGA 
tumors are listed in Supplementary Table 4 (available online).

Ratios of Hypermethylated to Hypomethylated CpG Loci 
and Tumor Histology
We examined the differential methylation (Db) between tumor 
and nontumor brain tissues and observed a striking pattern of the 
number of hyper- and hypomethylated CpG loci among different 
tumor subtypes (Figure 2, A). Glioblastomas showed a low ratio of 
hyper- to hypomethylated loci (ratio = 1.3) compared with the 
ratio for grades 2 and 3 astrocytomas, grades 2 and 3 oligoastrocy-
tomas, and grade 2 oligodendrogliomas (ratios = 3.7, 7.6, and 9.7, 
respectively). Conversely, ependymomas showed increased hypo-
methylation (ratio = 0.3). The ratios of hyper- to hypomethylated 
CpG loci were statistically significantly different across glioma 
tumor histological subtypes (permutation P < .0001). Histology-
related hyper- and hypomethylation patterns were also evident in 
unsupervised hierarchical clustering of Db methylation values for 
all 1413 autosomal CpG loci (Figure 2, B).

We next assessed the cellular pathways associated with statisti-
cally significantly differentially hypomethylated and (separately) 
hypermethylated CpG loci that were common among glioblas-
tomas, astrocytomas, oligoastrocytomas, and oligodendrogliomas. 
There were 18 CpG loci with statistically significant differential 
hypomethylation (Q < .05) and common among glioblastomas, 
astrocytomas, oligoastrocytomas, and oligodendrogliomas. An 
analysis of cellular pathways enriched among these 18 CpG loci, 
compared with all genes represented on the methylation array, 
revealed statistically significant enrichment of metabolism and 
biosynthesis pathways (Supplementary Table 5, available online). 
In addition, there were 35 statistically significantly differentially 
hypermethylated (Q < .05) CpG loci common among glioblas-
tomas, astrocytomas, oligoastrocytomas, and oligodendrogliomas. 
An analysis of cellular pathways enriched among these 35 CpG loci 
showed that oxidative stress response and retinoic acid–mediated 
apoptosis signaling pathways were statistically significantly 
enriched (Supplementary Table 5, available online). For each 
grade-specific tumor histology, all statistically significant differen-
tially hypomethylated and hypermethylated CpG loci are detailed 
in Supplementary Tables 6 and 7, respectively (available online).

Glioma Methylation Classes, IDH Mutation, and Survival
The analysis of differentially methylated CpG loci in cellular path-
ways suggested that metabolic pathways as a group were commonly 
hypomethylated in gliomas. We hypothesized that genetic muta-
tions in the metabolic pathways were associated with the observed 
DNA methylation phenotype. To test this hypothesis, we sequenced 
a subset of 95 tumors with available DNA for IDH1 and IDH2 mu-
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Figure 1. Association  between  glioma  histological  subtypes  and 
DNA  methylation  pattern.  A)  The  average  methylation  beta  (b) 
values of both gliomas (n = 131) and nontumor tissue samples (n = 
7) were subjected  to unsupervised hierarchical clustering based on 
Euclidean  distance  metric  and  Ward  linkage  and  are  shown  in  the 
heatmap. Each row represents a sample and each column represents 
a CpG  locus  (all  1413 autosomal  loci). The scale bar  at  the bottom 
shows  the  range  of  b  values  (0–1).  Tissue  histology  and  grade  are 
defined in color keys next to the heatmap, on the left. GBM2 = sec-
ondary glioblastoma multiforme; GBM = pri mary glioblastoma mul-
tiforme;  AS3  =  grade  3  astrocytoma;  AS2  =  grade  2  astrocy toma; 

OA3 = grade 3 oli goastrocytoma; OA2 = grade 2 oligoastrocytoma; 
OD2 = grade 2 oligodendroglioma; EP = ependymoma; PA = pilocytic 
astrocytoma.   B) Recursively partitioned mixture model  (RPMM) of 
glioma  and  nontumor  brain  tissue  samples  (n  =  138).  Methylation 
profile classes are stacked in rows separated by red lines and class 
height  corresponds  to  the  number  of  samples  in  each  class.  Class 
methylation  at  each  CpG  locus  (columns)  is  the  mean  methylation 
for all samples in a class. To the left of the RPMM is the clustering 
dendrogram. In the heatmap and RPMM, blue designates methylated 
CpG loci (average b = 1), and yellow designates unmethylated CpG 
loci (average b = 0).
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tations. IDH2 mutation was detected in only two tumors, and IDH1 
mutation was detected in 56 tumors (total IDH mutation prevalence = 
60.0%). IDH mutations were more common in oligoastrocytoma, 
oligodendroglioma, or astrocytoma histological subtypes than in 
glioblastomas, pilocytic astrocytomas, or ependymomas (P = 6.4 × 
1029); in lower-grade than higher-grade tumors (P = .01); in tumors 
with TP53 mutation compared with wild-type TP53 (P = .06); 
and in younger patients (mean age = 36.6 vs 47.4 years, P = .0009) 
(Table 2). However, IDH mutation was not associated with EGFR 
amplification (P = .10) (Table 2). Additionally, tumors with IDH 
mutation showed statistically significantly higher MGMT methyla-
tion (P = 3.6 × 1024) (Supplementary Figure 1, available online).

Next, we investigated the number of statistically significantly 
differentially methylated CpG loci between tumor and nontumor 
samples stratified by IDH mutation status. Tumors with IDH mu-
tation revealed a striking contrast between the number of statisti-
cally significantly differentially hypermethylated loci, as well as  
the ratio of hyper- to hypomethylated loci in IDH mutant tumors 
vs IDH wild-type tumors (mutant = 7.8 vs wild-type = 0.22) 
(Figure 3, A). We used the statistically significantly differentially 
hypermethylated and hypomethylated CpG loci in IDH mutant 
tumors to conduct an enrichment analysis of cellular pathways. We 
found that cellular signaling pathways were hypermethylated, 
whereas metabolism and biosynthesis pathways that included 
starch and sucrose metabolism and pentose and glucuronate inter-
conversion pathways were hypomethylated in IDH mutant tumors 
(Supplementary Table 8, available online).

Methylation profiling with RPMM of the 95 gliomas with both 
methylation data and IDH mutation status resulted in nine meth-

ylation classes (Figure 3, B). Methylation classes were statistically 
significantly associated with patient age (permutation P = 3.0 × 
1024), histology (P < 2.2 × 10216), and grade (P = 6.0 × 1029) 
(Supplementary Table 9, available online). IDH mutation was 
also strongly associated with methylation class (P = 3.0 × 10216) 
(Figure 3, C), and this association remained statistically significant 
when controlling for age and histology (likelihood ratio P < .0001). 
Only two methylation classes had IDH mutant tumors (class L and 
class RLLR), and greater than 98% of the tumors (all but one) in 
these two classes had an IDH mutation (Figure 3, C). Furthermore, 
methylation classes L and RLLR were both more highly methyl-
ated than the other methylation classes (Figure 3, B).

Last, we examined the potential association between IDH mu-
tation and patient survival among cases with available mutation 
data (n = 95) because previous studies reported increased survival 
among glioma patients with IDH mutation (3,5). In a multivariable 
Cox proportional hazards model controlling for age at diagnosis, 
sex, and grade-specific histology, we observed that patients whose 
tumors harbored IDH mutation showed statistically significantly 
better survival compared with patients (n = 38) whose tumors har-
bored wild-type IDH (hazard ratio of death = 0.27, 95% confi-
dence interval = 0.10 to 0.72) (Figure 3, D, and Table 3).

Discussion
In this study, we demonstrate a distinct pattern of methylation 
across histological subtypes of glioma that is associated with  
genetic mutation in IDH gene loci. The two methylation classes 
associated with mutant IDH tumors had a homogeneous hyper-

Figure 2. Differential  methylation  and  the  ratio  of  hyper-  to  hypo-
methylated loci in gliomas. Differential methylation values (Db) were 
calculated  by  subtracting  tumor  average  b  value  from  the  mean 
b  value of  the nontumor brain  samples  (n = 7)  for each CpG  locus. 
A)  The  number  of  statistically  significantly  differentially  hyper-  and 
hypomethylated  loci  (Q  <  .05  and  |Db|  >  0.2)  are  plotted  by 
grade-specific  glioma  histology.  GBM2  =  secondary  glioblastoma 
multiforme; GBM = primary glioblastoma multi forme; AS3 = grade 3 
astrocytoma; AS2 = grade 2 astrocytoma; OA3 = grade 3 oligoastro-
cytoma; OA2 = grade 2 oligoastrocytoma; OD2 = grade 2 oligodendro-

glioma; EP = ependymoma; PA = pilocytic astrocytoma. B) Db values 
for all tumors (n = 131) were subjected to unsupervised hierarchical 
clustering  based  on  Euclidean  distance  metric  and  Ward  linkage. 
Each  row  represents  a  sample  and  each  column  represents  a  CpG 
locus  (all  1413  autosomal  loci).  The  scale  bar  at  the  top  shows  the 
range of Db values (21 to 1). Tissue histology and grade are defined 
in  color  keys next  to  the heatmap on  the  left.  In  the heatmap,  blue 
designates differentially hypermethylated CpG loci in tumors (Db = 1), 
and  yellow  designates  differentially  hypomethylated  CpG  loci  in 
tumors (Db = 21).
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methylation-rich character compared with the methylation classes 
for tumors with wild-type IDH. Additionally, the tumors with 
wild-type IDH belonged to several distinct methylation classes. 
The contrast between a homogenous hypermethylated profile and 
several heterogeneous hypomethylated profiles (associated with 
distinct histological types) strongly suggests that IDH mutation 
“drives” the observed hypermethylated phenotype, irrespective of 
tumor histology. In support of this, we note that IDH mutation is 
more robustly associated with methylation class compared with the 
classical glioma tumor genetic markers like TP53 mutation and 
EGFR amplification.

IDH mutations are heterozygous and allow the enzyme nor-
mally responsible for conversion of isocitrate to a-ketoglutarate to 
convert a-ketoglutarate to 2-hydroxyglutarate in an NADPH-
dependent manner and results in accumulation of 2-hydroxyglutarate 
(7,8). Despite the observed hypermethylated profile of IDH 
mutant tumors, analysis of cellular pathways showed hypomethyl-
ation of several metabolic pathways, potentially to compensate for 
mutation-related metabolic stress. Because the methylation profile 
of IDH mutant tumors is generally homogenous, it is possible that 
the hypermethylation phenotype is either selected for, or driven 
by, the hypomethylation of compensatory metabolic pathways, 

thus directly linking and temporally situating these events. The 
level of a-ketoglutarate has been shown to be slightly lower in 
IDH1 mutant gliomas, though this decrease was not statistically 
significant (8). However, IDH1 localizes to the cytosol and  
peroxisomes, whereas IDH2 localizes to mitochondria; and 
because most IDH mutations in gliomas are in IDH1, pan-cellular 
a-ketoglutarate levels may not represent available cytosolic 
a-ketoglutarate levels. Furthermore, IDH1 R132 mutation has 
been shown to favor an active conformation of the enzyme, 
increase its affinity for NADPH, and favor reduction of a-ketoglu-
tarate to 2-hydroxyglutarate over the conversion of isocitrate to 
a-ketoglutarate, which may reduce the availability of cytosolic 
a-ketoglutarate and NADPH (8). Hence, a potential mechanism 
responsible for the strong association between epigenetic profile 
and IDH mutation is related to potentially altered availability of 
a-ketoglutarate in these tumors. The Jumonji domain–containing 
histone demethylases require a-ketoglutarate as a substrate for 
their enzymatic activity (29), and altered activity of these histone 
demethylases could lead to aberrantly remodeled chromatin, po-
tentially resulting in epigenetic alterations at the DNA level as 
well. However, studies that are beyond the scope of this article 
would be necessary to disentangle the complex networks of chro-

Table 2. Patient age, grade-specific glioma histology, grade, TP53 mutation, and EGFR amplification stratified by IDH mutation status*

Patient age and tumor characteristic

IDH mutation†

No Yes

Age at diagnosis, y  P = 9.0 × 1024‡
 Median age (range) 49 (17–78) 35 (20–59)
 Mean age (SD) 47.4 (17.5) 36.6 (8.7)
Tumor histology,§ No. (%)  P = 6.4 × 1029║
 Grade 2 astrocytoma 5 (26) 14 (74)
 Grade 3 astrocytoma 0 (0) 4 (100)
 Ependymoma 14 (100) 0 (0)
 Primary glioblastoma 15 (79) 4 (21)
 Secondary glioblastoma (P = .005)¶ 1 (14) 6 (86)
 Grade 2 oligoastrocytoma 2 (13) 13 (87)
 Grade 3 oligoastrocytoma 0 (0) 1 (100)
 Grade 2 oligodendroglioma 1 (6) 15 (94)
Tumor grade, No. (%)  P = .01#
 1 — —
 2 22 (34) 42 (66)
 3 0 (0) 5 (100)
 4 16 (62) 10 (38)
TP53 mutation, No. (%)  P = .06**
 No 27 (63) 16 (37)
 Yes 5 (31) 11 (69)
EGFR amplification, No. (%)  P = .10††
 No 28 (51) 27 (49)
 Yes 5 (100) 0 (0)

* Analysis of patient age and tumor characteristics vs isocitrate dehydrogenase (IDH) gene mutation status. TP53 = tumor protein 53; EGFR = epidermal growth 
factor receptor.

† IDH gene mutation was assessed by sequencing tumor DNA.

‡ Association between age and IDH mutation was assessed using two-sided Student t test.

§ Tumors were previously reviewed by neuropathologists at the University of California San Francisco to assign histological subtypes and grades according to the 
World Health Organization classification.

║ Association between grade-specific histology and IDH mutation was assessed using two-sided Fisher exact test.

¶ Association between primary vs secondary glioblastoma and IDH mutation was assessed using two-sided x2 test.

# Association between tumor grade and IDH mutation was assessed using two-sided Fisher exact test.

** Association between TP53 mutation and IDH mutation was assessed using two-sided x2 test.

†† Association between EGFR amplification and IDH mutation was assessed using two-sided x2 test.
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matin remodeling enzymes, their targets, and their responses to 
altered levels of enzymatic substrate. Alternatively (or perhaps in 
conjunction), lower concentrations of NADPH associated with 
mutant IDH1 (30) may result in a decreased capacity for reductive 
processes in defense against reactive oxygen species. Furthermore, 
a-ketoglutarate itself is a potent antioxidant (6) and its decreased 
availability in IDH mutant cells alone, or together with lower 
NADPH levels, could drive the selection of cells with compensa-
tory metabolic gene expression profiles mediated by altered epige-
netic patterns including chromatin configuration and DNA 
methylation. Consistent with the suggestion that gene expression 

profiles are altered in association with DNA methylation related to 
IDH mutation, an analysis of glioblastoma gene expression sub-
types showed that IDH mutation occurred almost exclusively in 
proneural glioblastomas (31).

More broadly, and similar to the hypermethylation phenotype 
we describe here, hypermethylator phenotypes have previously 
been associated with other cancers. This phenotype was first 
described in colon cancer and is commonly referred to as CpG 
Island Methylator Phenotype (CIMP) (32). Specifically, colorectal 
cancers can be divided in CIMP-high, CIMP-low, and non-CIMP 
based on the methylation of five to eight specific gene promoters 

Figure 3. Association  between  IDH  mutation  and  methylation  pheno-
type in gliomas. A) The number of statistically significantly differentially 
hyper- and hypomethylated loci (Q < .05 and |Db| > 0.2), are plotted by 
tumor  IDH mutation  status. B) Recursively partitioned mixture model 
(RPMM) of glioma samples with both methylation and mutation data  
(n = 95). Methylation profile classes are stacked in rows separated by 
red lines, class height corresponds to the number of samples in each 
class. Class methylation at each CpG locus (columns) is the mean meth-

ylation for all samples in a class where blue designates methylated CpG 
loci (average b = 1), and yellow designates unmethylated CpG loci (av-
erage b = 0). To the right of the RPMM is the clustering dendrogram. 
C) Methylation-class-specific IDH mutation status (Fisher P = 3.0 × 10216). 
D) Kaplan–Meier survival probability strata for IDH mutant (red, n = 57) 
and  IDH  wild-type  (black,  n  =  38)  tumors,  tick marks  are  censored 
observations  and  banding patterns  represent  95%  confidence 
intervals. 



152   Articles | JNCI  Vol. 103, Issue 2  |  January 19, 2011

(33,34). Similar to IDH in glioma, CIMP status in colon tumors 
has been associated with specific mutations; CIMP-high with 
BRAF and CIMP-low and non-CIMP with KRAS (35). Recently, 
Noushmehr et al. (36) described a CIMP in glioblastomas, termed 
G-CIMP, which they found to be tightly associated with IDH1 
mutation. In a number of lower-grade gliomas, Noushmehr et al. 
performed methylation profiling of eight markers of G-CIMP and 
confirmed that IDH1 mutation is associated with G-CIMP in low-
grade tumors, which is consistent with our array-based findings. 
Furthermore, more than 83% of G-CIMP-positive glioblastomas 
with IDH1 mutation were of the proneural glioblastoma gene ex-
pression subtype (36), additional evidence supporting an associa-
tion between distinct, IDH-related methylation in our data (from 
diverse glioma histological subtypes), and a specific gene expression 
phenotype. In addition, MGMT methylation is often investigated 
in glioma because it has been associated with increased sensitivity 
to alklyating agents such as temozolomide and can affect response 
to therapy (37). In fact, increased MGMT methylation can also 
distinguish CIMP-high and CIMP-low from non-CIMP in colon 
cancer (38). Our results, consistent with previous work (9), demon-
strate an association between increased MGMT methylation and 
IDH mutation. Finally, some studies have reported CIMP-positive 
colon cancers to have a relatively better prognosis (39), and from 
both the work of Noushmehr et al. and ours, this appears to be 
consistent with the pattern of survival observed in CIMP gliomas.

The association between IDH mutation and a homogenous 
methylation profile across several histological subtypes suggests 
that genetic and epigenetic alterations are not independent. This 
observation also has profound implications for the development of 
new therapies for glioma. Although pharmacological inhibition of 

2-hydroxyglutarate has been suggested as a possible approach to 
treating IDH mutant gliomas (40) such drugs do not yet exist. 
However, DNA methylation is a modifiable therapeutic target; 
DNA methyltransferase inhibitors and histone deacetylase inhibi-
tors are in clinical trials and showing some promise for the treat-
ment of hematopoietic malignancies (41–43). Our work suggests 
that a simple diagnostic test for DNA methylation (or mutation) 
can identify a class of tumors for which the modification of DNA 
methylation may have therapeutic efficacy. This class of tumors is 
not discernable by any of the classic histopathologic or tumor 
markers for glioma. The recognition that IDH mutation has value 
as a clinical prognostic marker and is associated with a broad DNA 
methylation phenotype suggests that glioma therapeutic protocols 
that reverse DNA methylation should be pursued.

Our study has a few limitations. Although we studied 131 his-
tologically diverse tumors, we did not have IDH mutation, TP53 
mutation, and EGFR amplification data on all subjects and had 
somewhat limited statistical power to explore the relationships 
between IDH mutation and these alterations. Future investiga-
tions that include larger numbers of histologically diverse samples 
and higher-resolution methylation array techniques, along with 
measurements of other somatic alterations (IDH mutation, mRNA 
expression, and copy number), will afford a more comprehensive 
understanding of the molecular and chromosomal characteristics 
that distinguish glioma subtypes. Understanding whether these 
glioma molecular and chromosomal subtypes are differentially 
associated with glioma risk loci (44) also will help to understand 
the etiology and possibly outcomes of this often catastrophic 
disease.

In summary, our work demonstrates a clear relationship 
between genetic and epigenetic events in human gliomas by asso-
ciating IDH mutations with a homogenous methylation profile, 
and demonstrates that profiles of methylation differ by histological 
subtype of disease. Additionally, and consistent with previous work, 
we also showed that patients with IDH mutation have significantly 
improved survival. Advances in therapy for glioma may be realized 
by targeting DNA methylation. Much attention has recently been 
given to the utility of MGMT methylation in predicting response 
to therapy, and our data further suggest that other DNA methyla-
tion markers may improve clinical assessment, guide therapies, and 
potentially uncover novel therapeutic avenues altogether.
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