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Determining the affinities of T cells in poly-
clonal responses is essential for understanding 
the outcome of cell-mediated immunity di-
rected toward both foreign and self-antigens. 
The prevailing models of clonal selection and 
avidity maturation suggest that cells bearing the 
highest affinity TCRs for antigen are selectively 
expanded (Savage et al., 1999; Malherbe et al., 
2004; Price et al., 2005), but the range in affini-
ties of the T cells and the frequency of low  
affinity responders is unknown. The potential 
importance of low affinity T cells contributing 
to immunity is supported by the findings that 
monoclonal CD8+ T cells can proliferate to low 
affinity antigens (Zehn et al., 2009). In addition 
to foreign antigens, T cells specific for self-
peptides that drive autoimmune disease could 
comprise another subset of low affinity cells as 
a result of tolerance mechanisms (Liu et al., 
1995; Bouneaud et al., 2000; Zehn and Bevan, 
2006). Although low affinity T cells may poten-
tially contribute to responses to both foreign 
and self-antigens, it has been unclear how  

extensively low affinity T cells participate in 
polyclonal T cell responses where high affinity 
clonotypes are also present.

Insight into TCR affinity for antigen has 
been provided by three-dimensional and two-
dimensional (2D) technologies, such as surface 
plasmon resonance, Förster resonance energy 
transfer, or micropipette-based assays (Alam and 
Gascoigne, 1998; Kersh et al., 1998; Huang  
et al., 2010; Huppa et al., 2010). However, to date, 
studies have only considered monoclonal TCRs 
and cannot reveal T cell frequency and breadth  
of affinities comprising an antigen-specific poly-
clonal population (Alam and Gascoigne, 1998; 
Kersh et al., 1998; Huang et al., 2010; Huppa  
et al., 2010). Peptide–MHC (pMHC) tetramers 
based on an enhanced TCR avidity via multi-
valent interactions provide the most valuable 
technique for detecting the frequency of anti-
gen-specific T cells (Altman et al., 1996; Moon 
et al., 2007), yet the extent to which their lim-
ited avidity may preclude detection of low affinity 
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T cell affinity for antigen initiates adaptive immunity. However, the contribution of low 
affinity cells to a response is unknown as it has not been possible to assess the entire 
affinity range of a polyclonal T cell repertoire. In this study, we used a highly sensitive two-
dimensional binding assay to identify low affinity cells in polyclonal autoreactive and 
pathogen-reactive CD4+ T cell populations specific for myelin oligodendrocyte glycoprotein 
(MOG) and lymphocytic choriomeningitis virus (LCMV) antigens, respectively. Low affinity 
CD4+ T cells, below detection with peptide–major histocompatibility complex class II tetra-
mers, were at least as frequent as high affinity responders and contributed significant 
effector cytokines in both primary antigen–specific responses. We further demonstrated 
that MOG- and LCMV-specific CD4+ T cells possessed similarly broad ranges in their affini-
ties (>100-fold wide), only differing in the frequencies of low and high affinity cells. Thus, 
low as well as high affinity CD4+ T cells are critical effectors in autoimmune and pathogen-
specific responses.
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As an alternative measure of determining the frequency of 
antigen-specific CD4+ T cells, we used the micropipette ad-
hesion frequency assay, which measures the 2D interactions of 
receptor–ligand interactions (Chesla et al., 1998; Huang et al., 
2007, 2010). In this assay, a single T cell was brought in and 
out of contact with an RBC coated with pMHC II to yield 
an adhesion frequency (the percentage of adhesions out of the 
total number of contacts, as described in Materials and meth-
ods). After stimulation with antigen for 1 wk in vitro, polyclonal 
MOG35–55 and GP61–80 CD4+ T cells bound only with their 
respective antigens but not RBCs alone or irrelevant antigen 
(Fig. 1, C and D). 2D analysis revealed a range in adhesion 
frequencies, and antigen-specific CD4+ T cell frequencies 
were determined by the percentage of T cell binding above 
irrelevant antigen background (>0.1; see hCLIP103–117-IAb in 
Fig. 1, C and D). Surprisingly, the majority of the MOG35–55 
CD4+ T cells were antigen specific (69.2 ± 6.0%), eightfold 
higher than the tetramer-based frequencies measured in par-
allel (8.7 ± 1.6%; Fig. 1 E). Moreover, the micropipette assay 
identified a similar wide range in adhesion frequencies and a 
2.5-fold increase over tetramer-positive GP61–80 CD4+ T cells 
(76.9 ± 3.4% vs. 30.9 ± 8.8%; Fig. 1 E). Thus, 2D binding 
demonstrated that most CD4+ T cells in short-term cultures 
were antigen specific in contrast to the differences in frequency 
identified using pMHC II tetramer (Fig. 1 B).

pMHC II tetramer–negative CD4+ T cells are low affinity  
but elicit robust effector responses
The degree of tetramer binding is critically dependent on 
TCR avidity (Crawford et al., 1998; Savage et al., 1999; Fassò 
et al., 2000; Slifka and Whitton, 2001), a parameter deter-
mined by intrinsic TCR affinity (Vollers and Stern, 2008; 
Wooldridge et al., 2009) and TCR levels (Crawford et al., 
1998; Mallone et al., 2005). However, MOG35–55 and GP61–80 
CD4+ T cells expressed similar levels of surface TCRs (Fig. S1). 
To determine whether TCR affinity caused the deficiency in 
tetramer detection of polyclonal CD4+ T cells, we used the 
micropipette-based assay to define 2D affinities. The effective 
2D affinity (AcKa, in µm4) of the T cell was derived from the 
adhesion frequency at equilibrium and expressed as a product 
of the two cells’ contact areas (Ac) and 2D affinity (Ka). The 2D 
affinities were derived at 5 s because binding of both T cell 
populations reached equilibrium within seconds of contact 
(Fig. S2). The adhesion frequency was dependent on the  
molecular densities of TCR and pMHC and can potentially 
detect a dynamic range of affinities spanning six orders of 
magnitude (102–108 µm4; Huang et al., 2010), with lower 
affinity T cells requiring increased pMHC densities.

For comparable adhesion frequencies, GP61–80 CD4+ T cells 
(Fig. 1 D) required lower levels of antigen than many MOG35–55 
CD4+ T cells (Fig. 1 C), which is indicative of overall higher 
affinity. Indeed, the population-averaged effective 2D affinity 
of GP61–80 CD4+ T cells was 26-fold higher than MOG35–55 
CD4+ T cells (4.21 ± 1.48 × 104 µm4 and 1.63 ± 0.48 × 
105 µm4, respectively; Fig. 2 A). Moreover, the effective 2D 
affinities paralleled the functional avidities (inverse of peptide 

T cells (Vollers and Stern, 2008; Wooldridge et al., 2009) is 
unknown. Developing sensitive and accurate measurements 
of T cell antigen reactivity is therefore of utmost importance 
to dissect the nature of the polyclonal T cell response.

Recently, we used a 2D-based affinity analysis, which mea-
sures TCR–pMHC binding in the cell membrane–anchored 
context (Huang et al., 2010; Huppa et al., 2010) to define a 
1,000-fold range in affinities corresponding to response levels 
between a monoclonal CD8+ T cell and a panel of altered 
peptide ligands (Huang et al., 2010). In this study, we har-
nessed the sensitivity of the 2D binding assay to define the 
antigen-specific frequencies and affinities of two polyclonal 
IAb-restricted CD4+ T cell populations specific for a self- 
antigen, myelin oligodendrocyte glycoprotein (MOG)35–55, 
which induces experimental autoimmune encephalomyelitis 
(EAE; Mendel et al., 1995), and a foreign-antigen, glycopro-
tein (GP)61–80, the dominant T helper epitope for lympho-
cytic choriomeningitis virus (LCMV; Oxenius et al., 1995; 
Homann et al., 2001). The 2D analysis revealed significantly 
larger frequencies of antigen-reactive CD4+ T cells for both 
antigens as compared with pMHC II tetramers. Polyclonal  
T cell affinities were diverse, covering more than a 100-fold 
range of affinities, with a fraction identified as high affinity 
and tetramer positive and many as low affinity and tetramer 
negative. We defined the 2D affinity necessary for pMHC II 
tetramers to bind CD4+ T cells and found that the low affinity 
tetramer-negative CD4+ T cells contributed significantly to 
the effector cytokine response. The presence of low and high 
affinity T cells greatly expands the previously estimated fre-
quencies of polyclonal CD4+ T cell populations in peak ef-
fector responses (Homann et al., 2001; Moon et al., 2007; 
Williams et al., 2008).

RESULTS
pMHC II tetramers underestimate the frequencies  
of polyclonal CD4+ T cells
Polyclonal antigen-reactive CD4+ T cell frequencies are tradi-
tionally measured by pMHC II tetramers or functional experi-
ments. To compare their responses, we generated in vitro 
polyclonal myelin- and viral-reactive CD4+ T cells (see Materials 
and methods) and investigated the response with MOG38–49-IAb 
and GP66–77-IAb tetramers encompassing the respective core 
CD4+ T cell epitopes (Fig. 1 A; Mendel et al., 1996; Homann  
et al., 2007; Sabatino et al., 2008). After 1 wk of stimulation  
in vitro, three times as many GP61–80 CD4+ T cells were identified 
by tetramer than MOG35–55 CD4+ T cells (32.4 ± 7.7% and  
9.6 ± 2.8%, respectively; Fig. 1 B). Of interest, the tetramer- 
positive frequency of MOG35–55 CD4+ T cells remained rel-
atively static (mean of 11.2 ± 2.4%) on repeated rounds of in 
vitro restimulation with antigen, whereas the tetramer-positive 
population specific for GP61–80 CD4+ T cells expanded to 59.2 ± 
7.0% of the culture (Fig. 1 B). The tetramer data seemed strik-
ingly low for the antigen-reactive MOG35–55 CD4+ T cells in 
particular and raised the possibility that the pMHC II tetramers 
were not detecting all antigen-specific CD4+ T cells.

http://www.jem.org/cgi/content/full/jem.20101574/DC1
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whole, all tetramer-positive CD4+ T cells had an affinity 
>1.10 × 104 µm4, and all tetramer-negative CD4+ T cells 
had an affinity <1.52 × 105 µm4 (Fig. 2 F). We were unable 
to more precisely pinpoint the affinity threshold for tetramer 
binding as the measurements were based on the MOG35–55 
and GP61–80 experimental means and because the intermedi-
ate tetramer-binding CD4+ T cells were excluded during cell 
sorting (Fig. S3, A and B). The presence of high and low affin-
ity (henceforth broadly distinguished by the 2D affinity cutoff 
for tetramer binding) MOG35–55 and GP61–80 CD4+ T cells 
indicated that both populations were comprised of T cell clo
notypes possessing a large (>100-fold), mostly overlapping 
span of affinities (7.92 × 107 to 2.01 × 104 µm4 for MOG35–55 
and 5.37 × 106 to 5.53 × 104 µm4 for GP61–80; Fig. 2 F).

Despite their lower affinity, the tetramer-negative  
CD4+ T cells elicited robust effector functions as similar 
percentages of tetramer-positive and -negative MOG35–55 

concentration for half-maximal proliferation, 1/EC50) as GP61–80 
CD4+ T cells had a 61-fold higher functional avidity than 
MOG35–55 CD4+ T cells (Fig. 2 B).

pMHC tetramers provide a useful tool for separating the 
polyclonal MOG35–55- and GP61–80-specific CD4+ T cells in 
two distinct populations based on reactivity to the tetramer 
(Fig. S3, A and B). Essentially all tetramer-positive CD4+  
T cells (>94%) were detected by 2D binding, showing high 
adhesion frequencies at low antigen densities (Fig. 2, C–E). 
Importantly, the majority of tetramer-negative CD4+ T cells 
(68.6 ± 6.2% of MOG35–55 and 75.0 ± 0.0% of GP61–80) also 
bound to antigen in the micropipette assay (Fig. 2, C–E). 
Nevertheless, tetramer-negative MOG35–55 and GP61–80 CD4+ 
T cells had lower effective 2D affinities (6.67 ± 3.14 × 106 µm4 
and 8.36 ± 2.49 × 106 µm4, respectively) than their  
tetramer-positive counterparts (1.48 ± 0.27 × 104 µm4 and 
3.91 ± 0.83 × 104 µm4, respectively; Fig. 2 F). Taken as a 

Figure 1.  Tetramer versus 2D detection of polyclonal MOG35–55 and GP61–80 CD4+ T cells. (A) Polyclonal MOG35–55 and GP61–80 CD4+ T cells (after  
1 wk in culture) were stained with the indicated tetramers in representative experiments. (B) MOG35–55 and GP61–80 CD4+ T cells were restimulated with 
antigen for 1 wk (single stimulation [stim]) or for a consecutive 4 wk (repeated stimulation), and the mean percentages ± SEM of tetramer-positive CD4+  
T cells were measured in at least four independent experiments per group (*, P = 0.03; **, P = 0.0001). (C) Polyclonal MOG35–55 CD4+ T cells were tested for 
adhesion to the indicated concentrations (IAb/square micrometer) of MOG38–49-IAb, hCLIP103–117-IAb, and no IAb in a representative experiment. (D) Repre-
sentative adhesion frequencies of polyclonal GP61–80 CD4+ T cells binding to GP66–77-IAb, hCLIP103–117-IAb, and no IAb. (E) The mean frequency ± SEM of 
antigen-specific binding by tetramer and 2D analysis was measured in parallel for polyclonal CD4+ T cells after 1 wk of passage in vitro (*, P = 0.0002;  
**, P = 0.0003). Data were based on four (MOG35–55) and three (GP61–80) independent experiments.

http://www.jem.org/cgi/content/full/jem.20101574/DC1
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but not irrelevant antigen by both tetramer (Fig. 3 A) and 
2D analysis (Fig. 3 B). The mean frequency of tetramer-
positive MOG35–55 CD4+ T cells isolated from the CNS of 
mice with peak EAE symptoms was 8.2 ± 1.3% (Fig. 3 C), 
similar to previous findings (Korn et al., 2007; Sabatino  
et al., 2008). In parallel with the in vitro data, eightfold 
more CNS-infiltrating MOG35–55 CD4+ T cells were de-
tected by 2D binding (63.6 ± 6.9%; Fig. 3 C). Moreover, 
the population-averaged effective 2D affinity of MOG35–55-
specific CD4+ T cells from the CNS was 7.95 ± 2.77 × 
106 µm4, which was comparable (2.1-fold lower) with the 
in vitro analysis (Fig. 2 A). This affinity level explains the 
low degree of tetramer staining as it was below the thresh-
old for tetramer binding (Fig. 2 F). Thus, the majority of 

(54.6 ± 7.4% and 58.7 ± 19.1%, respectively) and GP61–80 
(81.4 ± 4.8% and 65.6 ± 5.7%, respectively) CD4+ T cells 
produced TNF and/or IFN- after antigen stimulation  
(Fig. 2 G). Considering that tetramer-negative cells were 
not exclusively antigen reactive by 2D binding analysis,  
cytokine was produced at a higher frequency than in the 
tetramer-positive populations.

Low affinity tetramer-negative CD4+ T cells in the central 
nervous system (CNS) dominate during peak EAE
An added strength of the micropipette assay is that its in-
creased sensitivity to antigen allows assessment of ex vivo 
polyclonal T cell responses. CD4+ T cells isolated from the 
CNS after EAE induction bound specifically to MOG38–49-IAb 

Figure 2.  2D affinity and antigen specificity of tetramer-positive and -negative CD4+ T cells. (A) The mean affinities ± SEM of polyclonal 
MOG35–55 and GP61–80 CD4+ T cells were based on 62 MOG35–55 CD4+ T cells (six independent experiments) and 54 GP61–80 CD4+ T cells (three independent 
experiments encompassing seven different antigen densities; *, P = 0.03). (B) The mean ± SEM functional avidities (1/EC50, based on proliferation) of poly-
clonal MOG35–55 (1.8 ± 1.3 × 106 M1) and GP61–80 (1.1 ± 0.6 × 108 M1) CD4+ T cells were based on six and four independent experiments, respectively  
(*, P = 0.04). (C and D) Representative adhesion frequencies of tetramer-positive and -negative sorted MOG35–55 (C) and GP61–80 (D) CD4+ T cells were per-
formed at the indicated antigen densities. (E) The mean percentage ± SEM of antigen-specific 2D binding of tetramer-positive and -negative MOG35–55 
and GP61–80 CD4+ T cells was based on three (MOG35–55) and two (GP61–80) independent experiments. (F) The mean 2D affinities of tetramer-positive and  
-negative MOG35–55 and GP61–80 CD4+ T cells were based on at least three independent experiments per group. The affinity threshold for tetramer binding 
is shown by the dotted lines, representing the lowest affinity for tetramer-positive CD4+ T cells (>1.104 µm4) and the highest affinity for tetramer- 
negative CD4+ T cells (<1.52 x 105 µm4). (G) The mean percentage ± SEM of cytokine-producing (IFN- and TNF) tetramer-positive and -negative  
MOG35–55 and GP61–80 CD4+ T cells was based on three and two independent experiments, respectively.
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High frequency of LCMV-specific tetramer-negative CD4+  
T cells at the peak effector phase
To measure ex vivo antiviral CD4+ T cells, we analyzed the 
GP61–80 LCMV-specific CD4+ T cell response at its peak, 8 d 
postinfection with LCMV Armstrong (Homann et al., 2001; 
Whitmire et al., 2006). CD4+ T cells from the spleen bound 
specifically to GP66–77-IAb by tetramer (Fig. 4 A) and 2D analy
sis (Fig. 4 B). Interestingly, although 8.9 ± 0.4% of CD4+  
T cells from the spleen were detected by pMHC II tetramer, 
33.7 ± 4.8% were in fact GP61–80 specific by 2D adhesion 
analysis (Fig. 4 C). This frequency closely matched the per-
centage (37.2%) of CD44+ CD4+ T cells that were induced 
by LCMV at day 8 postinfection. The mean effective 2D  
affinities (1.65 ± 0.79 × 104 µm4) of the GP61–80 CD4+ T cells 
in LCMV infection were again 2.6-fold less than in vitro 
GP61–80 CD4+ T cells (Fig. 2 A). Although viral-specific CD4+ 
T cells displayed an overall higher 2D affinity than myelin-
specific CD4+ T cells, pMHC II tetramer nonetheless under-
estimated their frequency by fourfold.

CD4+ T cells penetrating the CNS at the peak of EAE were 
in fact MOG35–55 specific.

The presence of a large frequency of predominantly 
tetramer-negative MOG35–55 CD4+ T cells in the CNS 
during EAE suggested that low affinity myelin-reactive 
CD4+ T cells contributed to disease pathogenesis. To de-
fine the effector function of low affinity MOG35–55 CD4+ 
T cells in the CNS, we isolated CD4+ T cells from the 
CNS at the peak of EAE and assessed their ability to produce 
IFN- and TNF (Fig. 3 D). Approximately 2.4-fold more 
CD4+ T cells produced cytokine in response to MOG35–55 
peptide stimulation than were detected by tetramer (19.0 ± 
3.6% vs. 8.0 ± 0.7%, in parallel experiments; Fig. 3 E).  
Because not all antigen-specific CD4+ T cells produced 
cytokine (Fig. 2 G) and because the tetramer-negative 
MOG35–55 CD4+ T cells outnumbered their tetramer-positive 
counterparts by 8:1 (Fig. 3 C), this indicated that the 
majority of proinflammatory cytokine-secreting MOG35–55-
specific CD4+ T cells were of low affinity.

Figure 3.  Dominance of proinflammatory low affinity myelin-reactive CD4+ T cells during EAE. (A and B) Representative tetramer (A) and 2D 
binding (B) of CNS-infiltrating CD4+ T cells to MOG38–49-IAb and hCLIP103–117-IAb. (C) The mean frequency ± SEM of MOG35–55-specific binding by tetramer 
and 2D analysis was based on three experiments performed in parallel, and CNS tissue was pooled together from 6–10 mice per experiment (*, P = 0.004). 
(D) Representative frequency of cytokine-producing (IFN- and TNF) CD4+ T cells isolated from the CNS during acute EAE after stimulation with MOG35–55 
or no peptide (no stimulation [stim]). (E) The mean percentage ± SEM of CNS-infiltrating MOG35–55 CD4+ T cells was compared in parallel by MOG38–49-IAb 
tetramer and the percentage producing cytokine (IFN- and TNF) upon stimulation with MOG35–55 (no stimulation background subtracted) from two inde-
pendent experiments (CNS tissue pooled from 12–24 mice; *, P = 0.04).
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DISCUSSION
T cells mount a response against antigens that is typically 
clonally diverse, but often experiments analyzing cell-mediated 
immunity must use monoclonal cells to facilitate analysis of 
cell fate, location, frequency, and affinity. Biophysical analyses 
of T cell affinity have almost exclusively focused on a single 
TCR species complicating extrapolation to polyclonal popu-
lations. The focus on one clonal TCR very likely limits our 
understanding into the range of affinities comprising the  
antigen-activated T cell population and prevents investigation 
into the distinct possibility that low affinity T cells appreciably 
participate in immunity (Gronski et al., 2004; Zehn et al., 
2009). In this study, we applied a micropipette-based 2D 
binding technology to measure the affinities and frequencies 
of polyclonal CD4+ T cells by taking advantage of its capabil-
ity over other measures to resolve low affinity monoclonal 
TCR–pMHC interactions (Huang et al., 2010). Beyond al-
lowing analysis of polyclonal CD4+ T cell affinity, 2D analysis 
revealed significantly larger numbers of antigen-specific CD4+  
T cells than can be quantified using pMHC II tetramers.

To determine the contribution of low affinity T cells to 
overall effector function, splenocytes 8 d postinfection were 
sorted into GP66–77-IAb tetramer-positive and -negative CD4+ 
T cells and assessed for cytokine production (TNF and  
IFN-) in response to GP61–80 stimulation. In the absence of 
the GP66–77-IAb tetramer-positive CD4+ T cells, the tetramer-
negative population produced approximately half of the  
total cytokines detected at all doses of antigen (Fig. 4 D). 
There was no significant difference (P = 0.80) in the EC50 
values for cytokine production from the LCMV tetramer-
positive or -negative or intact (i.e., unsorted) CD44+ CD4+ 
T cell populations (Fig. 4 E). The data were displayed as a 
percentage of maximal response because essentially all of the 
tetramer-positive CD4+ T cells were antigen reactive, whereas 
LCMV-specific CD4+ T cells comprised a third or less of the 
total and tetramer-negative CD4+ T cell populations. Thus, 
LCMV-specific, tetramer-negative CD4+ T cells were pres-
ent at a greater frequency than the tetramer-positive popula-
tion and produced a substantial fraction of the overall effector 
cytokine response.

Figure 4.  Low affinity viral-specific CD4+ T cells contribute significant effector responses during LCMV infection. (A and B) Representative 
tetramer (A) and 2D binding (B) of CD4+ T cells from the spleen at day 8 LCMV to GP66–77-IAb and hCLIP103–117-IAb. (C) The mean frequency ± SEM of GP61–80 
CD4+ T cells in the spleen during LCMV infection by tetramer and 2D analysis was performed in parallel in three independent experiments (two spleens 
pooled per experiment; *, P = 0.007). (D and E) At day 8 postinfection, total CD44+ CD4+, tetramer-positive CD44+ CD4+, or tetramer-negative CD44+ CD4+ 
T cells were stimulated with the indicated concentrations of GP61–80 peptide, and the mean total ± SEM percentages of (D) and percentage of maximal ± 
SEM (E) cytokine-producing (IFN- and TNF) cells were assessed in four independent experiments (two to four spleens pooled per experiment).
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maturation (Savage et al., 1999; Malherbe et al., 2004; Price et al., 
2005) because they did not dominate over their low affinity 
counterparts at the peak of the primary immune response or on 
extended culture in vitro. Similarly, the affinities of the GP61–80 
CD4+ T cells were broadly distributed and contained a signif-
icant population of low affinity LCMV-reactive CD4+ T cells 
detectable by 2D binding but not pMHC II tetramer. The 
presence of low affinity GP61–80 CD4+ T cells further demon-
strates a lack of exclusive dominance by higher affinity T cell 
clones during a primary pathogen-specific response or on suc-
cessive selective cycles with antigen in vitro. Thus, it is appears 
that breadth in affinity is maintained within a CD4+ poly-
clonal population, at least during the peak effector response.

To detect antigen-reactive CD4+ T cells by 2D analysis, 
the T cells had to recognize and proliferate to antigen en-
countered in vivo, regardless of low or high affinity. More-
over, we identified low and high affinity T cells within the  
immune-relevant tissues. In the case of the CNS, its immune 
privileged status would be presumed to allow primarily the 
myelin-reactive CD4+ T cells, which we demonstrated by 2D 
analysis. Further demonstrating the active role of tetramer-
negative CD4+ T cells in immunity was their ability to con-
tribute substantially to the overall cytokine responses. We found 
that the relative cytokine contribution of tetramer-negative 
CD4+ T cells was approximately equal to or greater than the 
high affinity responders in viral immunity. Moreover, the high 
and low affinity LCMV-specific CD4+ T cells had the same 
functional avidities despite their inherent 2D affinity differ-
ences, which is likely the result of tuning to the same level  
of antigen in vivo (Grossman and Paul, 1992; Slifka and  
Whitton, 2001). The prevalence of cytokine-positive low  
affinity myelin-reactive CD4+ T cells clearly outnumbered the 
small frequency of tetramer-positive MOG35–55 CD4+ T cells, 
demonstrating the importance of low affinity effectors in 
CNS autoimmunity.

However, cytokine analyses of CD4+ T cell effector func-
tion are limited because we and others have shown that not 
all antigen-specific CD4+ T cells produce cytokine (Weaver 
et al., 1998; Bettelli et al., 2006; Whitmire et al., 2006; Williams  
et al., 2008). Because tetramer and intracellular cytokine stain-
ing usually cannot be performed concurrently, they are often 
performed in parallel. Although we confirm in this study 
what others have shown, that pMHC II tetramer and cyto-
kine responses were approximately equal in LCMV infec-
tion (Homann et al., 2001; Williams et al., 2008), we 
demonstrated that the tetramer-negative CD4+ T cells were 
major contributors to the effector cytokine response. Thus, 
an identical frequency of antigen-specific CD4+ T cells by 
cytokine and tetramer is fortuitous as opposed to being an 
indication that they are the same high affinity responding  
T cell population.

In conclusion, 2D analysis resolved the affinity of poly-
clonal T cell responses and revealed that low affinity CD4+  
T cells participated during autoimmunity and viral infection, 
although they were accompanied by high affinity counterparts 
in both cases. Characterization of low affinity cell frequency 

pMHC tetramers provide an important technique for 
quantifying the immune response and can be used to define a 
polyclonal population of antigen-specific precursor or effec-
tor T cells, yet their limited avidity inherently restricts the 
range of affinities that can be analyzed. Indeed, the ex vivo 
GP61–80 and MOG35–55 CD4+ T cell populations were four- 
and eightfold larger, respectively, than indicated by pMHC II 
tetramer. These differences between GP61–80- and MOG35–55-
specific CD4+ T cells as prototypical foreign- and self-specific 
responses mirror other studies in which CD4+ T cells specific 
for foreign antigens (Homann et al., 2001; Moon et al., 2007) 
were more prevalent and easier to detect by tetramer than 
those specific for self-antigens (Gebe et al., 2003; Bischof  
et al., 2004; Falta et al., 2005; Korn et al., 2007). Regard-
less, pMHC II tetramer underestimated the frequency of  
MOG35–55 and GP61–80 CD4+ T cells, as the pMHC II tetra-
mer staining was only accurate to the extent that the under
lying T cell responses were dominated by high affinity T cells. 
It is currently unknown whether pMHC II tetramers are a 
sufficient surrogate for tracking CD4+ T cell responses. Interest-
ingly, the CD4+ T cells possessed similar overlapping distri-
butions of low to high affinities for MOG35–55 and GP61–80.  
In fact, the effective 2D affinities of tetramer-negative or  
-positive cells were essentially the same regardless of T cell 
specificity for the myelin or viral antigens.

Previous work in CD4+ T cells suggested rapid domi-
nance of high affinity T cell clonotypes (Savage et al., 1999; 
Malherbe et al., 2004), yet these studies were based on pMHC 
II tetramer measurements. By including tetramer-negative 
CD4+ T cells in our analysis, a 2D affinity range >100-fold 
wide was present at the peak immune response for both for-
eign and self-antigens. This indicates heterogeneity in TCR 
affinity regardless of antigen specificity during the polyclonal 
primary immune responses and may raise issues over the ac-
curacy that a monoclonal T cell population possessing a single 
affinity completely reflects the ongoing immune processes. 
For example, monoclonal MOG35–55-specific CD4+ T cells 
may differ because of limited affinity diversity from polyclonal 
populations of cells. In fact, the MOG35–55-specific 2D2 TCR 
transgenic, while a valuable model to highlight many features 
associated with demyelinating disease, generates a variant 
form of EAE (Bettelli et al., 2003, 2006; Wasserman and 
Evavold, 2008). Interestingly, 2D2 T cells are undetectable by 
the MOG-IAb tetramer (unpublished data) yet pathogenic 
(Bettelli et al., 2003, Wasserman and Evavold, 2008), demon-
strating that low affinity MOG35–55 CD4+ T cells can induce 
EAE. We are in the process of carrying out experiments to 
test the concept that autoimmune disease outcome relates to 
the affinity range and diversity of the response.

Although our experiments do not directly address the ef-
fect of thymocyte negative selection or peripheral events in 
shaping T cell affinity as we examined expanded cell popula-
tions, the mere presence of high affinity MOG35–55 CD4+  
T cells suggests that their clonal deletion was absent or in-
complete. Moreover, the stable existence of high affinity self-
reactive T cells refines our ideas on clonal selection and avidity 
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PerCP), and 7-AAD. For assessing the cytokine response in LCMV, CD4+  
T cells purified from the spleen at day 8 postinfection were sorted into  
GP66–77-IAb tetramer-positive and -negative CD44+ CD4+ T cells.

Cell preparation for micropipette adhesion frequency assay. Human 
RBCs were isolated in accordance with the Institutional Review Board at 
the Georgia Institute of Technology and prepared as previously described 
(Huang et al., 2007, 2010). RBCs coated with various concentrations of  
Biotin-X-NHS (EMD) were coated with 0.5 mg/ml streptavidin (Thermo 
Fisher Scientific), followed by 1–2 µg of pMHC II monomer. The pMHC-
coated RBCs were stained with anti-MHC II FITC antibody, and T cells 
were stained with anti-TCR FITC antibody. The site densities of IAb mono-
mers per RBC and TCRs per T cell were derived using FITC MESF beads 
(Bangs Laboratories) as previously described (Huang et al., 2007, 2010) and 
normalized for the F/P ratios of the antibodies.

2D TCR affinity analysis. The details of the micropipette adhesion frequency 
assay are described in detail elsewhere (Huang et al., 2007, 2010). In brief, a 
pMHC-coated RBC and T cell were placed on apposing micropipettes and 
brought into contact by micromanipulation for a controlled contact area (Ac) 
and time (t). The T cell was retracted at the end of the contact period, and the 
presence of adhesion (indicating TCR–pMHC ligation) was observed micro-
scopically by elongation of the RBC membrane. This contact–retraction cycle 
was performed 50 times per T cell–RBC pair to calculate an adhesion fre-
quency (Pa). The contact area was kept constant for all experiments so it would 
not affect the affinity comparison. For each experiment, a mean Pa was calcu-
lated based only on T cells that bound specifically to antigen. The population-
averaged 2D affinity (AcKa) using the mean Pa at equilibrium (where t → ) was 
calculated using the following equation: AcKa = ln[1-Pa()]/(mrml), where mr 
and ml reflect the receptor (TCR) and ligand (pMHC) densities, respectively.

Statistical analysis. Statistical analyses were performed using Prism 4 (Graph-
Pad Software, Inc.). Two-way Student’s t tests were used for all statistical com-
parisons, except in the comparison of the EC50 values of cytokine-producing 
CD4+ T cells in LCMV, where a one-way analysis of variance was used.

Online supplemental material. Fig. S1 shows that MOG35–55 and GP61–80 
CD4+ T cells do not differ in their TCR levels. Fig. S2 demonstrates that the 
adhesion frequencies of polyclonal MOG35–55 and GP61–80 CD4+ T cells 
reach steady-state within several seconds of binding. Fig. S3 shows the repre-
sentative purities of tetramer-positive and -negative MOG35–55 and GP61–80 
CD4+ T cells after cell sorting. Online supplemental material is available at 
http://www.jem.org/cgi/content/full/jem.20101574/DC1.
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