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Abstract
We present 3D linear reconstructions of time-domain (TD) diffuse optical imaging differential
data. We first compute the sensitivity matrix at different delay gates within the diffusion
approximation for a homogeneous semi-infinite medium. The matrix is then inverted using
spatially varying regularization. The performances of the method and the influence of a number of
parameters are evaluated with simulated data and compared to continuous-wave (CW) imaging. In
addition to the expected depth resolution provided by TD, we show improved lateral resolution
and localization. The method is then applied to reconstructing phantom data consisting of an
absorbing inclusion located at different depths within a scattering medium.

1. Introduction
In complement of traditional techniques such as functional Magnetic Resonance Imaging,
Diffuse Optical Tomography (DOT) is emerging as a low-cost and portable method for non-
invasive cerebral imaging [1–3]. Based on the measurement of diffuse near-infrared light
attenuation through the scalp, skull and brain, DOT assesses local optical absorption due
essentially to the concentrations in oxy- and deoxy-hemoglobin. Modeling of light
propagation through the head and solving of the inverse problem enable imaging of total
hemoglobin concentration and oxygenation in the brain.

Most DOT instruments used in neuroscience are continuous wave (CW) systems, but time-
domain (TD) technology is a recent promising alternative with advantages compensating for
its increased cost and difficulty of implementation. These advantages include absolute
characterization of tissue optical properties [4,5] (both absorption coefficient μa and reduced
scattering coefficient μs′), depth resolution with single source-detector separation [6,7], and
better sensitivity to cortical activation [8,9]. TD systems introduce short pulses of light into
the tissue (up to tens to hundreds of picoseconds) and measure the temporal point spread
function (TPSF) of photons exiting after propagation through the tissue.

One application of TD system is the determination of the absolute optical properties μa and
μs′ of a tissue. One to several source-detector pairs are placed on the surface of the studied
organ. The measured TPSFs [10,11], or moments of these TPSFs [12–14] are fit non-
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linearly with a model of light propagation in a homogeneous medium [4,11], a two-layer
medium [15,16], a more realistic tissue-type segmentation of the head [17], or a complete
voxelized volume in the case of tomographic imaging [18,19].

However, for functional studies, differential imaging between a baseline state and an
activated state is sufficient, and a linear relation between changes in absorption and changes
in intensity is generally assumed valid for the small absorption changes associated with
brain function. In the backprojection method widely used for CW data reconstruction [20–
23], the change in intensity between each source and detector is translated into a local
change in absorption. A two-dimensional image is obtained by interpolation of all local
absorption changes. The method is based on a modified Beer-Lambert law where a
differential path factor (DPF) accounts for larger propagation length than source-detector
separation [24]. Hiraoka et al. extended the concept to inhomogeneous media [25], by
introducing partial DPFs describing the optical pathlengths in different tissue types, hence
taking into account the contribution from different layers to the change in attenuation.
However, no depth information is available with single distance CW data, and both cerebral
and superficial activations are projected on a single imaging plane.

This limitation of NIRS imaging in terms of depth resolution can be overcome with TD data,
where depth information is contained in the photons’ time of flights. Steinbrink et al.
applied the concept of partial DPFs to the time domain by introducing time-dependant mean
partial pathlengths (TMPP) [6]. They used a model of fifteen 2 mm thick layers, and
performed Monte Carlo simulations to calculate the time-dependant sensitivity to each layer.
They thus obtained a sensitivity matrix which they inverted by singular value
decomposition. They could distinguish between extra and intra-cerebral signals during brain
activation, with a single source-detector pair measurement. Liebert et al. used a similar
method but computed the sensitivity of three moments of the TPSF – integrated intensity,
mean time of flight, variance – to each layer [26]. They showed depth-resolved time-course
of local perfusion after dye bolus injection on healthy subjects and stroke patients [27]. We
used a simplified 3-layer model – scalp, skull, and brain – and showed that we could
experimentally distinguish between superficial systemic signals and cerebral activation
signals during a motor stimulus on a single source-detector pair [8]. In all these studies,
depth resolution has been shown, but no 3D imaging was implemented, since a single
source-detector pair was used. The technique can be extended to 2D imaging with depth
resolution by simple interpolation of all source-detector pair’s measurements [28]. However,
this approach limits the lateral resolution to approximately the source-detector separation.

In this paper, we describe an actual 3D linear reconstruction for differential imaging, based
on inversion of the forward sensitivity matrix calculated in different delay gates, in a similar
way that is sometimes implemented in CW DOT imaging [29]. We discuss the performance
and limitations of the reconstruction technique with simulated data. As already demonstrated
in previous papers, we show that TD offers the ability to localize the depth of absorption
contrast, which is not achievable with single distance CW data. Furthermore, we
demonstrate improved lateral resolution and localization for TD compared to CW. We then
apply the reconstruction technique to phantom data obtained with our time-gated system
[30].

2. Reconstruction principle
In this section, we describe the formalism implemented for the image reconstructions.
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2.1 Medium and probe geometry
For computational simplicity, the studied medium is modeled as a volume of 10 cm by 10
cm laterally, and 3 cm in depth, divided into nvox voxels of 2.5 × 2.5 × 2.5 mm3 (see Fig.
1(a)). The background optical properties were set to μs′ = 10 cm−1 and μa = 0.1 cm−1, unless
otherwise stated. The probe set on the surface of the medium has a square geometry of 4×4
sources and 3×3 detectors (source-detector separation 2.5 cm) as shown in Figs. 1(a) and
1(b). Only nearest neighbor source-detector pairs are taken into account for the
reconstructions.

2.2 Forward problem
We model light propagation in the medium with the analytical solution of the diffusion
equation for a semi-infinite homogeneous medium, calculated with the image source
technique [4], and extrapolated-boundary condition [31]. Figure 1(c) shows the resulting
TPSF obtained for one source-detector pair, all source-detector pairs yielding identical
TPSF’s since the medium is assumed semi-infinite and homogeneous. Since our
experimental TD device described in Ref. 30 is based on a time-gated detection of the TPSF,
we use in our simulations gated detection. The measurements consist in the intensity at
nGates delay gates, integrated over the gate width wGate. The gates considered in our
simulations are presented in Fig. 1(c). To comply with our experimental parameters [29],
each gate width was set to 300 ps and the delay between two gates to 500 ps.

Differential images are obtained using the normalized Born approximation for a change in
absorption: ΔI/I0 = A Δμa, where the sensitivity matrix A linearly relates the changes in the
absorption coefficient to the changes in intensity. Δμa is the vector of absorption changes at
each voxel, of length nvox, and ΔI/I0 is the vector of changes in the normalized measured
intensity, of length the number of measurements nMeas = nSD nGates where nSD is the
number of source-detector pairs and nGates the number of delay gates for each pair. In the
time domain, the terms of the sensitivity matrix A can be computed by convolution of the
direct and adjoint Green’s functions [32]:

where G(rS, rD, τ) is the time domain Green’s function (GF) solution of the diffusion
equation at delay τ for a source at position rS and a detector at position rD, rj is the position
of the jth voxel, and rS(i), rD(i) and τi are respectively the source position, detector position
and delay of the ith measurement.

In practice, we first calculated the GFs solutions of the diffusion equation at each voxel of
the medium in the frequency domain [32], for each optode (source or detector), at 101
frequencies (0 to 20 GHz, frequency step 200 MHz). The frequency-domain solutions were
then Fourier-transformed to yield the GFs in the time domain with a 25 ps time step. To
obtain the sensitivity matrix for each source-detector pair at a specific delay τ, the source
forward GF at time τ′ and the detector adjoint GF at time τ-τ′ were multiplied, the result
summed for τ′ varying between 0 and τ, and then integrated over the width wGate of the
detection gate.

Note that alternative methods to compute the sensitivity matrix could be used, in particular
analytical solutions in the time-domain for a perturbation, like described in Ref. [33] for a
transmission geometry.
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Figure 2 shows profiles of the obtained sensitivity matrix for the 8 delay gates depicted in
Fig. 1(c) (delays between 0.1 and 3.6 ns with 500 ps between two gates; wGate = 300 ps).
Figure 2(a) shows profiles of the sensitivity matrix along a source-detector vertical plane,
and Fig. 2(b) shows (x,y) profiles of the matrix at depth z = 0.75 cm. A logarithmic grayscale
was used to allow visualization of the large dynamic range of sensitivities of all 8 gates. As
expected, sensitivities at longer delays go deeper inside the medium, and also probe a wider
lateral region. From this additional information relative to traditional CW sensitivity
profiles, we can expect both depth resolution and improved lateral resolution and
localization.

2.3 Inverse Problem
From the measurements y = ΔI/I0 and the computed sensitivity matrix A, the reconstructed
image x̂ is calculated by inversion of the sensitivity matrix: x̂ = pAinvy, where pAinv is the
pseudo-inverse of matrix A, computed with the following regularization:

(1)

where:

• B = A L−1,

• L = diag (diag (ATA + λ)) is used to scale the sensitivity matrix to act as a spatially
varying regularization [34], giving higher weight to voxels with lower sensitivity. It
is a diagonal matrix of size nvox × nvox where each diagonal element is the
aggregate squared sensitivity to the corresponding voxel. The coefficient λ =
max(diag(ATA))//β enables a thresholding of the matrix in order not to give large
weighting to voxels with very small sensitivity. The choice of factor β will be
discussed in section 3.4 below.

• α is a regularization parameter, set to 10−3 in the simulations unless stated
otherwise.

• smax = max[diag (BBT)]/max(σy2),

• σy2 is the measurement covariance matrix, assumed to be diagonal. In our
simulations, we assumed a square root dependence of the noise on I with the
intensity, and thus σy2 is inversely proportional to intensity. This regularization acts
to penalize noisier measurements.

2.4. CW reconstructions
CW sensitivity matrix and data were simulated with the same model, by integration of TD
data over all time steps. CW and TD reconstructions will be compared in Section 3 to assess
the improvement offered by TD imaging.

3. Simulations: optimization, performance and comparison with CW
In this section, we assume a point-like change in absorption, simulate the corresponding
measurement vector, and reconstruct the 3D map of the absorption changes. This gives us
the imaging point spread function of our reconstruction algorithm and enables us to assess
the performance of the method and compare it to a CW reconstruction scheme.
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3.1 Reconstruction examples
Figure 3 shows examples of reconstructions for a point-like inclusion located at the lateral
position 1, between source and detector, as defined in Fig. 1(a), and with a depth z varying
between 0.5 cm and 3 cm by steps of 0.5 cm. Both CW and TD reconstructions are
presented. The rendered volume shows the contour of 80% of the maximum in the
reconstructed absorption change. The following parameters were used: 5 gates starting at
delays 0.6, 1.1, 1.6, 2.1, and 2.6 ns with a width wGate = 300 ps (gates 2 to 6 in Fig. 1(c)); β
= 20; α = 10−3; signal to noise ratio = 100 at the peak of the TPSF.

The following general observations can be made: the CW data always reconstruct the
inclusion at the same depth. If a traditional Tikhonov regularization is used instead (i.e. if A
is used in place of B in Eq.1), the CW reconstruction is pulled towards the surface (data not
shown), where the sensitivity is maximum [35]. The effect of the spatially varying
regularization matrix L is to force the reconstruction deeper under the surface. However, the
reconstructed depth is unchanged with different actual depths for the CW data.

On the contrary, the TD method reconstructs the inclusion deeper as its actual depth
increases. For the true inclusion at a depth of 1.5 and 2 cm, the reconstructed depth is
actually slightly over-estimated, which results from the effect of the regularization matrix L.
As the true inclusion gets deeper, the reconstructed depth becomes under-estimated (see
inclusion at true depth 3 cm).

We also observe that the reconstructed volume at 80% of the maximum contrast is smaller
for TD than for CW reconstructions, showing improved lateral resolution for this location of
the inclusion.

More quantitative and systematic assessment of the effect of different parameters and of the
improvement of TD over CW will be investigated in the following paragraphs.

3.2 Performance assessment
The reconstruction performances were assessed by a number of parameters. The location of
the center of mass (COM) of the reconstructed inclusion was calculated by taking into
account all voxels with a contrast above 80% of the maximum contrast in absorption: rCOM
= (Σi, Vox≥80% Riri)/(Σi, Vox≥80% Ri), where ri and Ri are respectively the position and
absorption contrast of the ith voxel. We define the localization error as the distance between
the true inclusion and the COM, both in depth and laterally. We call lateral resolution the
contrast-weighted sum of the lateral distances to the COM, over all voxels with a contrast
above 80% of the maximum contrast: Res = (Σi, Vox≥80% Ri|ρi − ρCOM|)/(Σi, Vox≥80% Ri),
where ρi and ρCOM are the lateral positions of the ith voxel and the COM respectively.

3.3 Optimal number of gates
We studied the influence of the number of gates included in the reconstruction. Figure 4(a)
shows the evolution of the reconstructed depth (depth of the COM) as a function of the true
depth of an inclusion located at lateral position 1, for different number of gates included
(starting from gate 1 on Fig. 1(c)). The reconstruction improves, more strikingly for deep
inclusions, as more late gates are included, up to 6 gates, after which the reconstruction does
not improve anymore as we include more noisy data. The first gate only brings minor
improvement for superficial inclusion (data not shown), and does not contribute to the data
reconstruction for deep inclusions. We tried other combinations (data not shown), and found
that the best one with our parameters was 5 gates every 500 ps from 0.6 ns to 2.6 ns.
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With these parameters, the inclusion can be reconstructed with a depth error under 15 %
down to approximately 2.5 cm. The reconstructed depths of deeper inclusions continue to
increase, but with larger errors, e.g. an inclusion at 3 cm is reconstructed at 2.3 cm (an
underestimation of almost 25%).

3.4 Influence of the spatially varying regularization
By penalizing more the voxels with higher sensitivity, the L matrix enables us to reconstruct
the inclusion better than a simple Tikhonov regularization [34]. However this matrix has to
be thresholded so that regions far from a source-detector pair do not inappropriately receive
larger weighting. The effect of this threshold is presented in Fig. 4(b), where the depth of the
reconstructed COM is plotted vs. the true depth of the inclusion, for CW data and TD data
with the 5-gate combination discussed above, and for a β factor of 10, 20, 50 and 100. With
CW data, the absorption is reconstructed at a constant depth whatever its true depth, and this
reconstructed depth simply increases as β increases. For TD data, a smaller threshold (large
β) enables better reconstructions for deep inclusions (z > 2.5 cm), but also leads to an
overestimated reconstructed depth for medium-deep inclusions (z around 1.5 to 2.5 cm).
Moreover, for inclusions very close to the surface (under 1 cm) located just underneath a
source or detector as in position 3 from Fig. 1(b), a large β also leads to strong artifacts (data
not shown). A β = 20 was used in the following simulations, enabling a good compromise
for reconstruction of different depths between 1 and 3 cm.

3.5 Influence of background optical properties
The evaluation of the baseline optical properties of a medium is subject to uncertainty [36].
Therefore, we tested the influence of an error in the background optical properties on the
reconstruction. We do not present data for this study, but enunciate general results we
observed. An overestimation of the scattering coefficient (μ′s,recon > μ′s,true) by 20% led to
an inclusion being reconstructed closer to the surface by approximately 1 to 3 mm, and vice
versa for an underestimation of the scattering coefficient. We did not observe an effect of an
over- or under-estimated absorption coefficient (by up to 50%) on the reconstructed depth.
For these results, the true depth of the inclusion was varied between 0.5 cm and 3 cm.

3.6 Variation of depth localization error with lateral position
One major advantage of TD data is the depth information provided by the time of flight of
photons. In Fig. 4(a), we showed the evolution of the reconstructed depth as a function of
the true depth for one particular lateral position. In Fig. 5, we present the evolution of the
reconstructed depth as a function of the lateral position of the inclusion, for a 1 cm and 2 cm
deep inclusion. In both cases, the depth error is small (within 20% at 1 cm, and about 5%
away from the edges of the medium at 2 cm).

For the inclusion located at 2cm below the surface, it also worth noting that the
reconstructed depth varies very little with the lateral position of the inclusion. This means
that the reconstruction method has no “blind zone”, and the depth reconstruction
performance remains good for any position of the inclusion. Note that we do not compare
the depth error with that obtained by CW measurements as no depth information is provided
without overlapping or multi-distance CW measurement.

3.7 Lateral localization and resolution
In this section, we study the performance of the reconstruction method in terms of lateral
localization and lateral resolution, and compare it with a CW reconstruction method. Figures
6 and 7 show the evolution of, respectively, the lateral localization error and the lateral
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resolution, for CW (left) and TD (right) reconstructions, at two different depths of the
inclusion (1 cm, top, and 2 cm, bottom) as a function of the inclusion lateral position.

For both depths, TD shows reduced error in the lateral localization and better lateral
resolution. Importantly we also note that both the lateral resolution and the lateral
localization for TD reconstructions are more uniform with the lateral position of the
inclusion relative to the probe than with a CW reconstruction.

These improvements of TD over CW for the lateral localization and resolution can be
explained intuitively based on the sensitivity profiles presented in Fig. 2. For later delay
gates, the sensitivity profile of a given source-detector probes deeper into the medium giving
us depth resolution, but also probes a larger region laterally providing additional information
to improve lateral localization and resolution.

3.8 Contrast to noise ratio improvement
We have shown in a previous study [8] that CW and TD systems yield similar contrast to
noise ratio (CNR) for typical depths of cerebral activation (1 to 2 cm) and source-detector
separations (2 to 3 cm) used in functional brain imaging, with CW even giving slightly
better CNR. The intuitive explanation of this result is the following: even though TD data
yield better contrast to deep inclusion by selecting photons which have traveled deep inside
the medium, these measurements are also impeded by a much higher noise due to the low
level of light at late delays. However the CNR of an image has to be evaluated in regards to
other metrics of the image, in particular its resolution.

In this section, we varied the regularization parameter α between 10−4 and 10, both for CW
and TD reconstructions, and studied the evolution of CNR and lateral resolution. Figure 8 is
a parametric curve of the image CNR as a function of the lateral resolution. The true
inclusion is located at position 1, and at a depth z = 1.5 cm. We compute the CNR as the
average contrast to noise ratio for all voxels of contrast above 80% of the maximum
contrast. The image noise was obtained by propagation of the measurement noise by: σx2=
pAinvσy2pAinvT, where σx2 is the image covariance matrix.

The plot illustrates the trade-off between CNR and resolution: as the regularization is
increased, the CNR of the reconstructed inclusion increases, but is counter-balanced by a
worsening of the lateral resolution. We observe that for an identical CNR of the image, the
lateral resolution is improved by TD reconstructions compared to CW. Similarly, at identical
lateral resolution, TD reconstruction enables a much higher CNR of the image.

4. Phantom reconstructions
4.1 TD instrument

Our TD system, based on a Ti: Sapphire pulsed laser and an intensified CCD camera acting
as a parallel time-gated detector, has been described in previous publications [8,29]. At each
detector position, we use a bundle of 7 fibers of different lengths by increment of 10 cm,
enabling simultaneous detection in 7 delay gates by steps of 500 ps. For functional brain
imaging, we developed a flexible probe consisting of a 4×4 array of sources and 3×3 array
of detectors in a square geometry each, with a source-detector separation of 2.5 cm (same
geometry as used for the above simulations and presented in Fig. 1(a)).

4.2 Phantom experiment
The system was tested on a liquid phantom containing a spherical absorbing inclusion. One
half of the probe was set over a tank (19×19×9 cm3) filled with a solution of intralipid and
ink (estimated optical properties: μa = 0.14 cm−1, μs′ = 10 cm−1), containing a hollow glass
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sphere of diameter 15 mm. The sphere was filled with the same intralipid solution with 70
times higher ink concentration. Images were acquired for 30 seconds with the sphere located
at position 2 (as defined on Fig. 1(b)), followed by 30 seconds of acquisition with the sphere
outside of the field of view of the probe. This procedure was repeated 5 times to increase
signal to noise ratio. We repeated the experiment for three different depths of the inclusion:
top of the sphere at a depth of 9.5 mm, 18.5 mm and 32.5 mm below the surface.

4.3 Phantom reconstructions
We calculated the contrast of the image as the percentage change in intensity between the
“off” state when the sphere is outside of the field of view, and the “on” state when it is under
the probe. We averaged the contrasts obtained from the 5 successive on/off states and used
these data to reconstruct an image. We used a regularization parameter α = 10−2 for the first
two depths of the sphere. However, for the deepest inclusion, the contrast to noise ratio was
very low, and we had to change the regularization parameter to 10−1 to obtain a reasonable
reconstruction. Figure 9 shows the reconstructions for all 3 depths of the inclusion, as well
as the true position of the top of the absorbing sphere.

The superficial inclusion is reconstructed at a depth of 7.5 mm, the second at a depth of 12.5
mm, and the deepest at 22.5 mm. In all cases the reconstruction is closer to the surface than
the true inclusion, even for medium-deep inclusions, which differs from our simulations.
Note that our simulations used a point absorption at a particular depth, while the
experimental setup consists of a 15 mm diameter inclusion. Moreover our hypothesis of
small perturbation breaks down as the solution in the glass sphere is strongly absorbing,
hence the linear assumption is probably not valid anymore. In addition, we had to use a
larger regularization parameter α than in the simulations because of the increased noise level
of the experimental data. The effect of a higher regularization parameter is also to pull the
reconstruction towards the surface (simulation data not shown). However, the formalism
developed here enables reconstruction of experimental differential data at three different
depths down to 3 cm of the true inclusion.

5. Conclusion
We presented a 3D reconstruction technique of differential TD gated data, and showed with
simulated data that the method allows both depth resolution and improved lateral resolution
and lateral localization compared to traditional CW reconstruction. With our typical
experimental parameters, we also showed that only a limited number of gates is useful for
optimal image reconstruction. The technique was used to reconstructed dynamic phantom
images, where a spherical absorbing inclusion was embedded at various depths within a
scattering intralipid solution. The technique presented here for gated measurements would
be easily adaptable to moments of TPSF, provided that careful treatment of the covariance
matrix is used in the reconstruction regularization.

Acknowledgments
We thank Anand Kumar for useful discussions on the spatially varying regularization. This work was supported by
the NIH grants P41-RR14075, R01-EB002482 and NIBIB-EB00790.

References and links
1. Obrig H, Villringer A. Beyond the visible – imaging the human brain with light. J Cereb Blood

Flow Metab 2002;23:1–18. [PubMed: 12500086]
2. Gibson AP, Hebden JC, Arridge SR. Recent advances in diffuse optical imaging. Phys Med Biol

2005;50:R1–R43. [PubMed: 15773619]

Selb et al. Page 8

Opt Express. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Special section on Optics in Neuroscience. J Biomed Opt 2005;10
4. Patterson MS, Chance B, Wilson BC. Time-resolved reflectance and transmittance for the non-

invasive measurement of tissue optical properties. Appl Opt 1989;28:2331–36. [PubMed:
20555520]

5. Ntziachristos V, Ma XH, Yodh AG, Chance B. Multichannel photon counting instrument for
spatially resolved near infrared spectroscopy. Rev Sci Instrum 1999;70:193–201.

6. Steinbrink J, Wabnitz H, Obrig H, Villringer A, Rinneberg H. Determining changes in NIR
absorption using a layered model of the human head. Phys Med Biol 2001;46:879–896. [PubMed:
11277232]

7. Torricelli A, Pifferi A, Spinelli L, Cubeddu R, Martelli F, Del Bianco S, Zaccanti G. Time-resolved
reflectance at null source-detector separation: improving contrast and resolution in diffuse optical
imaging. Phys Rev Lett 2005;95(078101):1–4.

8. Selb J, Stott JJ, Franceschini MA, Sorenson AG, Boas DA. Improved sensitivity to cerebral
dynamics during brain activation with a time-gated optical system: analytical model and
experimental validation. J Biomed Opt 2005;10:011013.

9. Montcel B, Chabrier R, Poulet P. Detection of cortical activation with time-resolved diffuse optical
methods. Appl Opt 2005;44:1942–1947. [PubMed: 15813530]

10. Eda H, Oda I, Ito Y, Wada Y, Oikawa Y, Tsunazawa Y, Takada M, Tsuchiya Y, Yamashita Y,
Oda M, Sassaroli A, Yamada Y, Tamura M. Multichannel time-resolved optical tomographic
imaging system. Rev Sci Instrum 1999;70:3595–3602.

11. Swartling J, Dam JS, Andersson-Engels S. Comparison of spatially and temporally resolved
diffuse-reflectance measurements systems for determination of biomedical optical properties. Appl
Opt 2003;42:4612–4620. [PubMed: 12916630]

12. Schweiger M, Arridge SR. Application of temporal filters to time resolved data in optical
tomography. Phys Med Biol 1999;44:1699–1717. [PubMed: 10442707]

13. Gao F, Tanikawa Y, Zhao H, Yamada Y. Semi-three-dimensional algorithm for time-resolved
diffuse optical tomography by use of the generalized pulse spectrum technique. Appl Opt
2002;41:7346–7358. [PubMed: 12477128]

14. Liebert A, Wabnitz H, Grosenick D, Möller M, Macdonald R, Rinneberg H. Evaluation of optical
properties of highly scattering media by moments of distributions of times of flight of photons.
Appl Opt 2003;42:5785–5790. [PubMed: 14528944]

15. Kienle A, Glanzmann T, Wagnières G, van den Bergh H. Investigation of two-layered turbid media
with time-resolved reflectance. Appl Opt 1998;37:6852–6862. [PubMed: 18301502]

16. Martelli F, Del Bianco S, Zaccanti G, Pifferi A, Toricelli A, Bassi A, Taroni P, Cubeddu R.
Phantom validation and in vivo application of an inversion procedure for retrieving the optical
properties of diffusive layered media from time-resolved reflectance measurements. Opt Lett
2004;29

17. Barnett AH, Culver JP, Sorensen AG, Dale A, Boas DA. Robust inference of baseline optical
properties of the human head with three-dimensional segmentation from magnetic resonance
imaging. Appl Opt 2003;42:3095–3108. [PubMed: 12790461]

18. Hintz SR, Benaron DA, van Houten JP, Duckworth JL, Liu FWH, Spilman SD, Stevenson DK,
Cheong WF. Stationary headband for clinical time-of-flight optical imaging at the bedside.
Photochem Photobiol 1999;68:361–369. [PubMed: 9747590]

19. Hebden JC, Gibson A, Yusof R, Everdell N, Hillman EMC, Delpy DT, Arridge SR, Austin T,
Meek JH, Wyatt JS. Three-dimensional optical tomography of the premature infant brain. Phys
Med Biol 2002;47:4155–4166. [PubMed: 12502040]

20. Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H. Spatial and temporal analysis
of human motor activity using noninvasive NIR topography. Med Phys 1995;22:1997–2005.
[PubMed: 8746704]

21. Gratton G, Corballis PM, Cho E, Fabiani M, Hood DC. Shades of gray matter: noninvasive optical
images of human brain responses during visual stimulation. Psychophysiology 1995;32:505–509.
[PubMed: 7568645]

22. Franceschini MA, Toronov V, Filiaci M, Gratton E, Fantini S. On-line optical imaging of the
human brain with 160 ms temporal resolution. Opt Express 2000;6:49–57. [PubMed: 19401744]

Selb et al. Page 9

Opt Express. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Boas DA, Gaudette TJ, Strangman G, Cheng X, Marota JJA, Mandeville JB. The accuracy of near
infrared spectroscopy and imaging during focal changes in cerebral hemodynamics. Neuroimage
2001;13:76–90. [PubMed: 11133311]

24. Delpy DT, Cope M, van der Zee P, Arridge S, Wray S, Wyatt J. Estimation of optical pathlength
through tissue from direct time of flight measurement. Phys Med Biol 1988;33:1433–1442.
[PubMed: 3237772]

25. Hiraoka M, Firbank M, Essenpreis M, Cope M, Arridge SR, van der Zee P, Delpy DT. A Monte
Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-
infrared spectroscopy. Phys Med Biol 1993;38:1859–1876. [PubMed: 8108489]

26. Liebert A, Wabnitz H, Steinbrink J, Obrig H, Möller M, Macdonald R, Villringer A, Rinneberg H.
Time-resolved multidistance near-infrared spectroscopy of the adult head: intracerebral and
extracerebral absorption changes from moments of distribution of times of flight of photons. Appl
Opt 2004;43:3037–3047. [PubMed: 15176190]

27. Liebert A, Wabnitz H, Steinbrink J, Möller M, Macdonald R, Rinneberg H, Villringer A, Obrig H.
Bed-side assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye-
bolus by time-resolved diffuse reflectance. Neuroimage 2005;24:426–435. [PubMed: 15627584]

28. Kacprzak M, Liebert A, Sawosz P, Zolek N, Maniewski R. Time-resolved optical imager for
assessment of cerebral oxygenation. J Biomed Opt 2007;12:034019. [PubMed: 17614727]

29. Boas DA, Chen K, Grebert D, Franceschini MA. Improving the diffuse optical imaging spatial
resolution of the cerebral hemodynamic response to brain activation in humans. Opt Lett
2004;29:1506–1508. [PubMed: 15259728]

30. Selb J, Joseph DK, Boas DA. Time-gated optical system for depth-resolved functional brain
imaging. J Biomed Opt 2006;11:044008. [PubMed: 16965165]

31. Haskell RC, Svaasand LO, Tsay TT, Feng TC, McAdams MS, Tromberg BJ. Boundary conditions
for the diffusion equation in radiative transfer. J Opt Soc Am A 1994;11:2727–2741.

32. Arridge SR. Photon-measurement density functions. Part I: Analytical forms. Appl Opt
1995;34:7395–7409. [PubMed: 21060614]

33. Carraresi S, Shatir TSM, Martelli F, Zaccanti G. Accuracy of a perturbation model to predict the
effect of scattering and absorbing inhomogeneities on photon migration. Appl Opt 2001;40:4622–
4632. [PubMed: 18360503]

34. Culver JP, Siegel AM, Stott JJ, Boas DA. Volumetric diffuse optical tomography of brain activity.
Opt Lett 2003;28:2061–2063. [PubMed: 14587815]

35. Boas DA, Dale AM. Simulation study of magnetic resonance imaging-guided cortically
constrained diffuse optical tomography of the human brain function. Appl Opt 2005;44:1957–
1968. [PubMed: 15813532]

36. Comelli D, Bassi A, Pifferi A, Taroni P, Torricelli A, Cubeddu R, Martelli F, Zaccanti G. In vivo
time-resolved reflectance spectroscopy of the human forehead. Appl Opt 2007;46:1717–1725.
[PubMed: 17356614]

37. Gao F, Zhao H, Tanikawa Y, Yamada Y. Optical tomographic mapping of cerebral
haemodynamics by means of time-domain detection: methodology and phantom validation. Phys
Med Biol 2004;49:1055–1078. [PubMed: 15104326]

Selb et al. Page 10

Opt Express. Author manuscript; available in PMC 2011 January 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
(a) 3D representation of the modeled medium and probe. (b) Probe geometry. Three lateral
locations of the inclusion commonly used in the following simulations are also displayed (c)
Simulated TPSF for one source-detector pair, with the delay gates used in the reconstruction.
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Fig. 2.
Sensitivity profiles of a single source-detector pair for the 8 delay gates presented in Fig.
1(c) in (a) a vertical plane along the source and detector and (b) a (x,y) plane located at depth
0.75 cm. The sensitivity is given per unit volume (cm3) and unit change in absorption
(cm−1).
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Fig. 3.
CW and TD reconstructions of a point-like inclusion located at position 1 and at a depth z
varying between 0.5 cm and 3 cm. The volumes show the contour of 80% of the maximum
reconstructed change in absorption.
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Fig. 4.
Reconstructed depth of the COM as a function of the inclusion true depth, for a point-like
inclusion in position 1, for (a) different delay gate combinations (β = 20), and (b) different
threshold coefficients in the spatially varying regularization matrix L (gates 2 to 6 in Fig.
1(c)).
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Fig. 5.
Depth of the COM for (a) a 1 cm deep and (b) a 2 cm deep inclusion reconstructed with TD
data (5 gates) as a function of the inclusion lateral position.
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Fig. 6.
Lateral error (cm) for a 1 cm deep inclusion (top) and a 2 cm deep inclusion (bottom)
reconstructed with CW (left) and TD (right) data, as a function of the inclusion lateral
position.
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Fig. 7.
Lateral resolution (cm) for a 1cm deep inclusion (top) and a 2 cm deep inclusion (bottom)
reconstructed with CW (left) and TD (right) data, as a function of the inclusion lateral
position.
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Fig. 8.
CNR versus lateral resolution for a regularization parameter α varying between 10−4 and 10.
CNR is given per unit volume (cm3) and unit change in absorption (cm−1) of the inclusion.
Regularization parameters of 1, 10−2 and 10−4 are indicated on the plot.
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Fig. 9.
Phantom reconstruction for three different depths of the glass sphere. The rendered volumes
show the contours at 80% of the maximum absorption contrast. The small circles represent
the top of the 7.5 mm radius sphere.
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