
www.landesbioscience.com	 Gut Microbes	 109

Gut Microbes 1:2, 109-113; March/April 2010; © 2010 Landes Bioscience
article addendum article addendum

Key words: Helicobacter pylori, NF-kB, 
CagA, TAK1, TRAF6, ubiquitination

Submitted: 01/14/10

Revised: 02/17/10

Accepted: 02/23/10

Previously published online: 
www.landesbioscience.com/journals/gut-
microbes/article/11587

*Correspondence to: Lin-Feng Chen; 
Email: lfchen@life.uiuc.edu

Addendum to: Lamb A, Yang XD, Tsang YHN, Li 
JD, Higashi H, Hatakeyama M, et al. Helicobacter 
pylori CagA activates NFκB by targeting TAK1 for 
TRAF6-mediated Lys 63 ubiquitination. EMBO 
Rep 2009; 10:1242–9; PMID: 19820695; DOI: 
10.1038/embor.2009.210.

Many of the pathologies linked to 
Helicobacter pylori are caused 

by the ability of the bacteria to induce 
chronic inflammation in the stomach 
of the host. One of the major transcrip-
tion factors that regulate inflammation is 
NFκB, which is constitutively activated 
in many cancers including some gastric 
cancers. H. pylori has been shown to 
activate NFκB using several different 
bacterial components and host signaling 
pathways in cell-type and strain-specific 
ways. Our recent studies demonstrate 
that H. pylori utilizes its virulence fac-
tor CagA to target signaling molecule 
TAK1 for the activation of NFκB. In 
this article, we will summarize our find-
ings together with other recent progress 
in the H. pylori-mediated activation of 
NFκB and discuss the role of CagA and 
TAK1 in the H. pylori-mediated activa-
tion of NFκB and gastric diseases.

Approximately half of the world’s popu-
lation is infected with H. pylori, a gram-
negative bacterium which colonizes the 
stomach and is linked to gastritis, gastric 
ulcers, MALT lymphoma and gastric ade-
nocarcinoma.1 Most infections with H. 
pylori are persistent, which causes a steady 
state of inflammation in the stomach. 
Chronic inflammation has been linked 
to many diseases, including numerous 
types of cancers.2 NFκB, a master regu-
lator of pro-inflammatory cytokines and 
anti-apoptotic signaling molecules, is one 
of the most well-studied transcription 
factors activated by H. pylori infection. 
There are many pathways that lead to the 
activation of NFκB, and many stimuli, 
including lipopolysaccharide (LPS), pep-
tidoglycan and TNFα.3 The binding of 
these ligands to their receptors leads to the 

activation of signaling pathways which 
converge upon the phosphorylation and 
activation of the IκB kinase (IKK) com-
plex. This kinase complex in turn phos-
phorylates and induces the degradation 
of IκBα, which in unstimulated condi-
tions binds and sequesters NFκB within 
the cytoplasm. NFκB, a heterodimer of 
p50 and RelA/p65, is released and moves 
into the nucleus, where it undergoes vari-
ous post-translational modifications and 
transactivates its target genes.4 Due to the 
important role of NFκB in inflammation-
related diseases and cancer, how H. pylori 
activates NFκB has been a long-standing 
question.

H. pylori colonize the mucosal layer of 
the stomach, attaching themselves to the 
gastric epithelium via various bacterial 
adhesins and epithelial receptors.5 The epi-
thelium is therefore the first point of con-
tact for the bacteria in the host. Immune 
cells attracted to the site of infection by 
cytokines released from the epithelial cells 
also respond to H. pylori.1 This further 
amplifies the immune response from the 
infection and the resulting inflammation 
damages the mucosal layer, which can 
result in ulcers, gastritis and adenocarcino-
ma.1 Although H. pylori effects responses 
from both epithelial cells and immune 
cells including monocytes and lympho-
cytes, the H. pylori-induced inflammatory 
response generated by gastric epithelial 
cells is the most studied.

Infection with cagPAI-positive H. pylori 
is associated with more severe outcomes in 
the inflammation-linked illnesses men-
tioned as compared to infection with 
cagPAI-negative H. pylori.6,7 The approxi-
mately 40 kb cytotoxin-associated gene 
(cag) pathogenicity island contains genes 
which encode a type 4 secretion system 
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processing of p100, likely by TLR4 recog-
nition of H. pylori LPS.21

In addition to LPS, other bacterial 
components are also utilized by H. pylori 
for the activation of NFκB.22 For example, 
recent papers have shown that bacterial 
peptidoglycan (PG) is delivered via outer 
membrane vesicles through the T4SS into 
host cells where it binds to pattern recog-
nition receptor NOD1, which signals to 
activate NFκB.23-25 It appears that CagA 
and PG target different cellular signal-
ing molecules for the NFκB activation. 
However, one remaining question is why 
H. pylori utilizes various components for 
NFκB activation. One possibility is that 
CagA and PG synergistically activate 
NFκB to obtain the maximal inflamma-
tory response in gastric epithelial cells. 
Another possibility is that CagA and PG 
might compensate for each other. In H. 
pylori strains where CagA is not a strong 
NFκB inducer, PG might play a domi-
nant role in initiating the inflammatory 
response. Finally, it is also possible that 
CagA and PG selectively activate specific 
subsets of NFκB target genes. While 
CagA might be mainly responsible for the 
expression of proinflammatory cytokines, 
the PG-NOD1 pathway may be more 
important for the expression of antimi-
crobial peptides,25 since the PG-NOD1-
mediated inflammatory response might 
be due largely to the activation of AP-1-
dependent expression of IL-8.26 Further 
experiments will be needed to differentiate 
among these possibilities.

It is clear that the model system and 
the strain of bacteria that are used to study 
the H. pylori-induced activation of NFκB 
can affect the requirement for various 
components of the bacteria (Fig. 1). From 
the other side, the host proteins utilized 
by the various components of H. pylori 
add another layer of complexity to the H. 
pylori-induced activation of NFκB.

Host Signaling Molecules Utilized 
by H. pylori to Activate NFκB

While great efforts have been made to 
identify the H. pylori components for 
NFκB activation and inflammation, 
determining the molecules within the host 
cells that transduce NFκB signaling also 
attracts much attention. Many cellular 

deletion of the cagA gene.16 Nevertheless, 
as cagA is monocistronic and transcribed 
in a different direction than other genes 
comprising the cag pathogenicity island 
(cagPAI),8 it is unlikely that the H. pylori 
isogenic cagA mutant strains are exerting 
“polar effects” on other genes within the 
cagPAI. Concordantly, no “polar effects” 
have been reported for the cagA-deficient 
H. pylori strains in the literature.

While CagA has clearly been shown to 
be essential for the activation of NFκB, it 
must be noted that this requirement could 
be H. pylori strain-specific. The consider-
able variation in the sequences of CagA 
from different H. pylori strains led to the 
designation of “Western” and “Eastern” 
strains based on the sequences surround-
ing the phosphorylation domains in the C 
terminus of the gene.17 These differences 
correlate with the ability of the CagA pro-
tein to associate with SHP-2 and induce the 
“hummingbird” phenotype.17 Sequence 
variations within the CagA multimeriza-
tion domain also influence these CagA-
induced phenotypes within host cells.18 In 
addition to affecting the “hummingbird” 
phenotype, strain variations have also been 
linked to variations in IL-8 production. 
Exchanging cagA genes allows low IL-8-
inducing H. pylori strains to be converted 
into high inducing strains and vice versa.11 
We hypothesize that these effects may be 
caused by increased or decreased abilities 
of these CagA proteins to bind and acti-
vate upstream signaling components, such 
as TAK1, influencing the downstream 
activity of NFκB. However, the sequences 
required for CagA to induce NFκB acti-
vation remain elusive and need further 
investigation.

Additionally, the requirement for CagA 
in the activation of NFκB could also be 
cell-type specific. CagA seems to not be 
essential for the H. pylori-induced activa-
tion of NFκB in cells other than gastric 
epithelial cells. In macrophages, H. pylori 
activated NFκB via TLR2 (for induc-
tion of IL-6 and IL-1β) and TLR4 (for 
induction of IL-12, IL-10 and IL-8).19,20 
Findings similar to those of the activa-
tion in macrophages were reported in 
lymphocytes by Ohmae et al. In human B 
lymphocytes, H. pylori activates not only 
the NFκB classical pathway, but also the 
alternative pathway, which involves the 

(T4SS) and a pathogenicity factor called 
cytotoxin-associated gene A, or CagA.8 A 
protein ranging in size from 120–145 kDa, 
CagA is injected into the host epithelial 
cells via the T4SS, where it acts on a num-
ber of different signaling pathways leading 
to inflammation and cell scattering.9

CagA-Dependent and Independent 
Activation of NFκB by H. pylori

A role for CagA in the activation of NFκB 
and the production of IL-8 has been sug-
gested by many studies. For example, 
using an interleukin-8 (IL-8) promoter-
reporter assay, Sharma et al. showed the 
requirement of CagA for NFκB activa-
tion.10 It was also shown that ectopically 
expressed CagA induced NFκB translo-
cation into the nucleus, and also induced 
IL-8 production in gastric epithelial 
cells.11,12 Additionally, NFκB activation 
and inflammation was markedly less in the 
gastric antra of Mongolian gerbils infected 
with cagA-deficient H. pylori as compared 
to infection with wild-type H. pylori.13 
However, the exact function of CagA 
in NFκB activation is still unclear. Our 
recent studies demonstrate a clear depen-
dence on the presence of CagA for NFκB 
activation by H. pylori in gastric epithe-
lial cells.14 We showed that wild-type H. 
pylori, but not the cagA-deficient isogenic 
mutant, was capable of inducing the deg-
radation of IκBα and the phosphorylation 
of RelA, enhancing the DNA-binding 
of NFκB, and activating NFκB-driven 
expression of IL-8 and TNFα.14

Despite the essential role of the cagPAI 
in the activation of NFκB and the induc-
tion of IL-8 in epithelial cells, the require-
ment for CagA, not just the T4SS, for the 
inflammatory response has been a point of 
contention nearly since the discovery of the 
pathogenicity island. It has been reported 
that the T4SS, but not CagA, is required 
for H. pylori-mediated production of IL-8 
since T4SS mutants failed to induce IL-8.15 
However, as the T4SS translocates CagA, 
impaired NFκB activation by mutants in 
which the T4SS is defective cannot rule 
out the possibility that the important com-
ponent is, in fact, CagA. Another concern 
regarding the requirement of CagA for 
H. pylori-mediated NFκB activation is 
the potential for “polar effects” from the 
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scaffolding to bring signaling molecules in 
a pathway into contact to aid in the trans-
ference of a signal.30 K63-linked ubiquit-
ination is important for the kinase activity 
of TAK1, since inhibiting its ubiquitina-
tion abolished its ability to activate NFκB. 
Also, we found that CagA enhances this 
activity as measured by TAK1 autophos-
phorylation and by the ability of TAK1 to 
activate the downstream kinase complex 
IKK, which is directly phosphorylated 
and activated by TAK1.14

Consistently, two other studies also 
show that TRAF6-mediated K63-linked 
ubiquitination is essential for the activa-
tion of TAK1 and NFκB.31,32 The ubiq-
uitinated lysine residue(s) of TAK1 in 
response to H. pylori infection remains 
unidentified. It has been shown that lysine 
34 of TAK1 is ubiquitinated by TRAF6 
in response to TGFβ, and ubiquitination 

in the CagA-dependent or -independent 
H. pylori-mediated activation of NFκB is 
not clear.

Our recent studies give biochemical evi-
dence to show that CagA activates NFκB 
by hijacking TAK1 in gastric epithelial 
cells. We demonstrate that H. pylori acti-
vation of NFκB requires TAK1, and that 
CagA increases the TAK1-dependent acti-
vation of NFκB.14 In our findings, CagA 
is injected into the host epithelial cells, 
where it binds to TAK1 and enhances its 
TRAF6-dependent lysine (K) 63-linked 
ubiquitination. Emerging evidence sug-
gests that activation of TAK1 and IKK is 
regulated by TRAF6-mediated K63-linked 
ubiquitination of TRAF6 itself, IRAK1 
and NEMO.29 Different from K48-linked 
polyubiquitination, which represents a 
signal for degradation by the proteasome, 
K63-linked polyubiquitination acts as 

signaling molecules have been suggested 
to be involved in H. pylori-mediated 
NFκB activation in epithelial cells or in 
immune cells. Besides Nod1, which has 
been discussed above, H. pylori was shown 
to induce the interaction between PAK1 
and NIK, a kinase which in turn activates 
the IKK complex for NFκB activation.27 
Also, interference with MyD88, TRAF2, 
TRAF6 or TAK1 signaling was shown 
to downregulate H. pylori activation of 
NFκB.14,19,28 While roles for MyD88, 
TRAF6 and TAK1 have been validated 
by siRNA knockdown, some of these 
studies used dominant negative forms of 
the signaling molecules which are apt to 
have non-specific effects. Depletion of 
these signaling molecules using siRNA 
will be able to further confirm these 
findings. Furthermore, whether some of 
these signaling molecules are involved 

Figure 1. H. pylori activation of NFκB via CagA-dependent and CagA-independent pathways. (A) CagA-dependent activation of NFκB. CagA is 
injected into host epithelial cells where it interacts with TRAF6 and TAK1 or Met to activate NFκB through TAK1 or Akt, respectively. Akt then activates 
IKK directly or indirectly via TAK1. Akt could also activate NFκB by indirect phosphorylation of RelA. (B) CagA-independent activation of NFκB. Host 
immune cells are stimulated by H. pylori products, such as LPS, via TLR pathways for the activation of NFκB. Alternatively, peptidoglycan injected into 
cells via the T4SS stimulates Nod1 activity leading to NFκB activation. Solid arrow: known interaction or activation; solid arrow with question mark: 
proposed interaction or activation; dashed arrow: activation through multiple steps.
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could be used to combat development of 
the diseases linked to H. pylori infection.
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IKK,29 and it may be that it binds to the 
ubiquitin chains on TAK1.

While our studies clearly demonstrate 
the importance of TAK1 and TAK1 ubiq-
uitination in CagA-dependent H. pylori-
mediated NFκB activation, studies from 
others also suggest that some other mol-
ecules might be targeted by CagA and 
involved in the CagA-dependent NFκB 
activation. Suzuki et al. reported that CagA 
interacted with the hepatocyte growth fac-
tor receptor Met, resulting in the activa-
tion of PI3K and Akt, which led to the 
activation of NFκB and β-catenin.39 Since 
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tein, and is also known to oligomerize,35 
this binding and oligomerization may 
also lead to the recruitment of TRAF6. 
TRAF6 is recruited to the membrane by 
the dimerization of other membrane recep-
tors, and it dimerizes in turn and becomes 
an active E3 ubiquitin ligase,30 which we 
found to be required for the ubiquitination 
of TAK1.14 Akt was also recently found 
to be ubiquitinated by TRAF6, which 
proved important for its phosphorylation 
and activation.40 Although a role for Akt 
has been suggested in the activation of 
NFκB by H. pylori,39,41 how Akt activates 
NFκB is not clear. Akt might activate 
IKK directly or indirectly through TAK1, 
or Akt might activate NFκB by inducing 
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While TAK1 is activated in vitro by bind-
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nearly every pathway that is activated by 
H. pylori, including the JNK, ERK and 
p38 MAPK pathways.43 We suggest that 
our CagA-dependent mechanism of acti-
vation for TAK1 in NFκB activation may 
also contribute to the downstream activa-
tions of these other pathways, furthering 
our understanding of the role which CagA 
plays in the host cells. Determining the 
precise way by which CagA stimulates the 
TRAF6-dependent ubiquitination and 
activation of TAK1 would clarify the H. 
pylori-induced inflammatory response, 
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of this lysine correlates with the activ-
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