Serum Triiodothyronine and Thyroxine in the Neonate and the Acute Increases in These Hormones Following Delivery

J. ABUID, D. A. STINSON, and P. R. LARSEN

From the Division of Endocrinology and Metabolism, Department of Medicine and the Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213

ABSTRACT Low trijodothyronine (T_3) and high normal thyroxine (T₄) concentrations are present in cord sera from full term infants. To examine this phenomenon further, radioimmunoassay of T₃ and T₄ was carried out in paired maternal and cord sera as well as capillary sera from neonates at different intervals after delivery. Free T₃ and free T₄ concentrations were also estimated in cord and maternal sera by equilibrium dialysis. In 12 paired specimens, the T₃ concentration in cord sera was significantly lower than the maternal level (51 \pm 4 vs. 161 \pm 11 ng/100 ml, mean \pm SE). Mean free T₃ concentration was also lower in the cord samples $(0.15\pm0.02 \text{ vs. } 0.31\pm0.04 \text{ ng}/100 \text{ ml})$, whereas total and free T₄ concentrations were not significantly different. Umbilical vein and artery samples from 11 neonates did not differ significantly in their T₃ and T₄ concentrations. In seven infants the mean T₃ concentration increased from 51 ± 3 ng/100 ml at delivery to 79 ± 13 at 15 min and 191 ± 16 at 90 min. In four other infants the mean T₃ concentration at 24 and 48 h was not significantly different from the 90 min value of the previous group. Less pronounced changes were observed for T₄ which increased from $12.3\pm2.0 \ \mu g/100$ ml (mean \pm SE) at delivery to 14.1 \pm 1.9 at 90 min and appeared to have reached a plateau at approximately twice the cord value by 24-48 h after delivery.

The maternal-fetal gradient observed for free T_a is further evidence of the autonomy of the fetal thyroidpituitary axis. The time course of the abrupt increase in serum T_a in the neonate suggests that it results from the earlier acute increase in serum TSH which occurs shortly after birth. This suggests that the neonatal thyroid contains significant quantities of T_3 . Therefore, unavailability of thyroidal T_3 does not appear to explain the low total and free T_3 concentrations present in the sera of newborns.

INTRODUCTION

We have recently reported that the concentration of triiodothyronine $(T_s)^{1}$ in cord sera from full term infants is in the range observed in hypothyroid adults while thyroxine (T_4) levels are in the high normal adult range (1). The reason for this discrepancy is not immediately apparent. In order to examine this phenomenon more closely and to determine whether free T_s concentration was also decreased, paired maternal and cord sera as well as capillary samples from neonates were examined. In addition, the relative changes in T_s and T_4 in the neonate were compared during the period of endogenous thyroid stimulating hormone (TSH) release which normally occurs at the time of delivery (2).

METHODS

Serum samples were obtained from patients at Magee Women's Hospital, Pittsburgh, Pa., after informed consent of the mother. All were normal pregnancies with either vaginal delivery or elective cesarian section. Maternal samples were taken immediately after delivery or just before hysterotomy. Cord samples were usually obtained by direct puncture of the umbilical vein or artery. Capillary blood from infants was obtained by heel puncture, 400 μ l of serum being adequate to measure total T₃ and T₄ levels.

 T_s immunoassay. Radioimmunoassay of T₃ was performed as previously described using 50 and/or 25 μ l of serum (1). Incubation and antiserum dilution were adjusted to allow displacement of 10-20% of the tracer T₃ by 12.5 pg

The Journal of Clinical Investigation Volume 52 May 1973.1195-1199 1195

This material was presented in part at the American Thyroid Association Meeting, September 1972.

Dr. Larsen is a Career Development Awardee, U. S. Public Health Service Award no. AM-70401.

Received for publication 1 November 1972 and in revised form 26 December 1972.

¹. Abbreviations used in this paper: DFT₃, dialyzable fraction of T_3 ; DFT₄, dialyzable fraction of T_4 ; T_5 , triiodo-thyronine; T_4 , thyroxine; TSH, thyroid stimulating hormone.

	Maternal			Cord			Maternal			Cord		
	T 3	DFT₃	FT3	T3	DFT ₈	FT3	T4	DFT4	FT4	T₄	DFT4	FT₄
	ng/100 ml	%	ng/100 ml	ng/100 ml	%	ng/100 ml	µg/100 ml	%	ng/100ml	µg/100 ml	%	ng/100 mi
C. N.	135	0.22	0.30	72	0.30	0.22	18.5	0.012	2.22	12.7	0.016	2.03
S. P.	175	0.18	0.32	52	0.25	0.13	13.8	0.012	1.66	16.2	0.015	2.43
A. W.	135	0.21	0.28	32	0.28	0.09	9.3	0.014	1.30	7.5	0.020	1.50
B. J.	115	0.13	0.15	76	0.24	0.18	14.5	0.008	1.16	18.4	0.015	2.76
C. K.*	198	0.16	0.32	42	0.39	0.16	15.6	0.008	1.09	8.2	0.016	1.31
C. L.	108	0.23	0.25	39	0.27	0.10	8.4	0.013	1.09	9.0	0.017	1.49
J. B.*	174	0.23	0.40	29	0.41	0.12			_			_
T. L.*	123	0.40	0.49	46	0.35	0.16	9.6	0.013	1.25	11.7	0.012	1.40
Mean	145	0.22	0.31	49	0.31	0.15	12.8	0.011	1.40	12.0	0.016	1.85
\pm SEM	12	0.03	0.04	6	0.02	0.02	1.4	0.001	0.16	1.6	0.001	0.22
$P\ddagger$	< 0.025					< 0.025						
P§	< 0.005					. NS						

 TABLE 1

 Total and Free Thyroid Hormone Concentrations in Paired Maternal and Cord Sera

* Delivered by elective cesarian section.

‡ For the difference in dialyzable fraction (*t* test for paired samples).

§ For the difference in free hormone concentration (t test for paired samples).

of unlabeled T_{3} . Results are the mean of at least two sets of duplicate determinations. All measurements (maternal and infant) of a given subject were performed simultaneously to eliminate interassay variability. T_{3} levels in normal adult sera are 110±25 ng/100 ml (SD).

 T_4 immunoassay. Radioimmunoassay of T_4 was performed by a method similar to that used for T_3 . This will be described in greater detail in a subsequent communication.² The T_4 values obtained using this method correlate well with those obtained by the competitive binding protein technique (correlation coefficient, 0.97). The normal range for T_4 in euthyroid adults with normal thyroxine-binding globulin levels is 5.1-11.5 μ g/100 ml.

Dialyzable fraction of T_s and T_4 . The dialyzable fraction of T_s and T_4 (DFT_s and DFT₄) was determined by a modification of the method of Oppenheimer, Squef, Surks, and

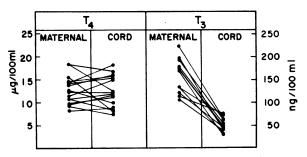


FIGURE 1 Total T_3 and T_4 concentrations in paired maternal and cord sera from full term infants. Samples were obtained from infants after either vaginal delivery (12 pairs for T_4 ; 8 pairs for T_3) or elective cesarian section (4 pairs for both T_3 and T_4). Cord values correspond to umbilical artery, umbilical vein, or the mean of both determinations.

^a Submitted for publication.

Haver (3). [¹⁸¹I]T₃ and predialyzed [¹²⁵I]T₄ were used in order to obtain simultaneous determinations of both free fractions. Tracer enrichment was less than 2 μ g T₄/100 ml and less than 1 μ g T₃/100 ml. Serum was diluted 1/25 in Krebs-Ringer phosphate buffer (pH 7.4) containing 0.001 M Na azide prior to dialysis. The dialyzable fraction is calculated as counts per milliliter of dialysate per counts per milliliter of dialysand after trichloroacetic acid precipitation. The mean DFT₃ is 0.29±0.02% (SD) and the mean DFT₄ is 0.022±0.002% (SD) in normal sera.

RESULTS

 T_s and T_4 concentrations in maternal and cord serum. Mean maternal T_s and T₄ concentrations were 161 ng/ 100 ml and 12.9 µg/100 ml, slightly above our normal range for both hormones. The mean T₈ value in cord blood was 51 ng/100 ml, significantly lower than the mean for the paired maternal values (P < 0.001). The individual pairs are depicted in Fig. 1, and the two- to fivefold difference between the maternal and fetal T₈ values is apparent. The mean T₄ in cord serum was 12.6 µg/100 ml, not significantly different from the maternal level.

In 11 subjects, serum from the umbilical artery and vein were analyzed separately. The mean T_s concentration in the umbilical artery was 42 ± 3 ng/100 ml (SE)^s and in the umbilical vein was 43 ± 4 ng/100 ml, not significantly different. There was also no statistical difference in the mean T_s concentration in these two groups $(10.1\pm0.7 \text{ vs. } 10.5\pm0.6 \,\mu\text{g}/100 \text{ ml}, \text{ respectively}).$

⁸ All subsequent values given will be mean \pm SEM unless otherwise indicated.

		Τ3		T4 Min after delivery*			
	М	in after de	livery*				
Subject	Cord	15	90	Cord	15	90	
		ng/100 ml		µg/100 ml			
J. B.‡	39	44	166	8.3	9.9	11.1	
C. K.‡	42	53	180	8.2	10.0	9.8	
P. P.‡	44	78	136	11.6	13.0	14.7	
T. L.‡	46	93	204	11.7	<u> </u>	16.6	
R. S.	54		230	9.9		13.7	
S. S.	65	69	231	12.5	12.2	18.9	
W. B.	67	136	390§	23.8	23.2	41.6§	
Mean	51	79	191	12.3	13.3	14.1	
SEM		13	16	2.0	2.5	1.9	
$P \parallel$		< 0.05	< 0.001		NS	< 0.00	

 TABLE 11

 Serum Thyroid Hormone Levels in Infants During the First 90 Min After Delivery

* Times are approximate since 3-5 min were usually required to obtain capillary samples.

‡ Delivered by elective ceasarian section.

§ 120 min sample; not included in calculations.

|| For difference from cord mean (*t* test for paired samples).

In addition, there was no statistically significant difference between the total cord T₃ and T₄ concentrations in infants following either spontaneous labor or elective cesarian section (for both serum T₃ and T₄, 0.1 > P> 0.05 by unpaired t Test).

Free T_s and free T_s concentrations in maternal and cord sera. The mean dialyzable fraction of T_s was 0.31% in eight specimens of cord serum, significantly greater than the value of 0.22% in maternal samples (P < 0.025) (Table I). Nevertheless, the mean free T_s concentration in the cord sera was 0.15 ng/100 ml, less than one-half of the value in the maternal sera (P < 0.005). Despite the slightly higher dialyzable fraction of T_s in cord sera (0.016% vs, 0.011%), the free T_s concentrations were not significantly different in the two groups.

Changes in serum T_s and T_s concentrations in infants following delivery. As early as 15 min following delivery, slight but statistically significant increases in T_s concentrations were observed (Table II). The mean T_s concentration in these infants was 79 ng/100 ml at 15 min as opposed to 52 ng/100 ml at birth. However, a marked increase in the mean total T_s level to 191 ng/ 100 ml was observed at 90 min after birth, an almost fourfold increase over the mean cord level. In the case of T_s, the changes observed within this period were less pronounced so that by 15 min no significant increase was detected. By 90 min, the T_s concentrations were significantly elevated (14.1 vs. 12.3 µg/100 ml at birth).

TABLE III Changes in Serum T₃ and T₄ During the First 2 Days After Delivery

		Т з		T 4			
Subject	Cord	24 h	48 h	Cord	24 h	48 h	
		ng/1	00 ml	µg/100 ml			
С. Р.	45	182	141	12.2	25.4	19.3	
N. N.*	46	182	127	_			
E. K.	69	353	208	15.2	21.7	23.1	
R. S.	54	308	287	9.9	19.9	23.4	
Mean	51	262	191	12.4	22.3	21.9	
SEM	4	41	37	1.5	1.6	1.3	
P_{+}^{\ddagger}		< 0.025	< 0.05		< 0.05	< 0.05	
P§			NS			NS	

* Delivered by elective cesarian section.

[‡] For difference from cord value (*t* test for paired samples).

§ For difference from 24 h value (t test for paired samples).

In the four other infants in whom T₃ concentrations were measured at 24 and 48 h, the levels were significantly elevated over the cord value (Table III). The mean value of 191 ng/100 ml at 48 h did not differ statistically from the value of 262 ng/100 ml at 24 h. In the case of T₄, the 24-h levels were almost twice those at delivery and were essentially unchanged through the next 24 h.

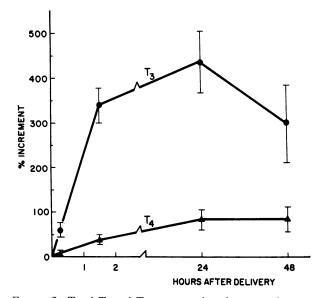


FIGURE 2 Total T_3 and T_4 concentrations in neonatal serum after delivery. Composite representation of the percentage increment in total T_3 and T_4 observed at the different times studied. Values were calculated as the percentage increase relative to the cord value in each subject. The brackets indicate the SEM. The number of samples is listed in Tables II and III.

Triiodothyronine and Thyroxine in the Neonate 1197

A composite representation of the relative increments observed at the various times studied shows the differences in the magnitude of the changes for total T_3 and T_4 concentrations (Fig. 2). There is a mean increment of 50% in total T_3 content at 15 min, while at 90 min the T_3 concentration is 300-400% of the cord value. There appears to be no further significant increment at 24 or 48 h. In comparison, the T_4 concentration increased more slowly and appeared to plateau at 24 h at a maximum value which was 190% of the cord level.

DISCUSSION

The low total T₃ and high normal T₄ concentrations found in these cord sera are similar to our previous observations in a smaller group (1). Hotelling and Sherwood, using the Sterling technique for T₃ measurement, have also reported that total Ts concentration is lower in cord than in maternal sera, though the absolute values reported were higher than those we have obtained (4). The mean T₃ concentration in cord sera is near the mean we have observed in patients with primary hypothyroidism $(39\pm21 \text{ ng}/100 \text{ ml}, \text{SD})$ and appears to be the same in both umbilical artery and vein. The dialyzable fractions of T₃ in maternal and cord sera reported here are in agreement with previous studies by Dussault, Row, Lickrish, and Volpé, though our total Ts values are much lower due to technical improvements that have occurred since the earlier studies (5, 6). The mean free T₃ concentration in the cord sera, calculated from the total T₃ and dialyzable fraction, is less than one-half of the maternal level as opposed to the free T₄ concentration which is not different. The maternal-fetal gradient for free T₃ indicates there is a placental barrier to the movement of T₃ from mother to fetus. This finding supports previous evidence suggesting that placental transfer of T₃ in the human is incomplete. Earlier reports have shown that in order to cause significant suppression of fetal serum T₄ concentration, quantities of T₃ greatly in excess of physiological requirements (150-300 μ g/day) must be administered to the mother (5, 7). Along with the previous demonstration of higher levels of TSH in fetal, as opposed to maternal serum, the maternal-fetal free T_s gradient is evidence consistent with the hypothesis that the fetal thyroid-pituitary axis functions independently of the mother (8).

The explanation for this phenomenon is not apparent. Current estimates suggest that as much as 40-70% of the circulating T₈ in the adult is derived from peripheral T₄ to T₈ conversion (9, 10). Therefore, the low T₈ level in cord sera could be due to a decreased peripheral T₄ to T₈ conversion in the fetus. Alternatively, it could be due to a lack of T₈ secretion by the fetal thyroid due either to decreased T₈ release or preferential synthesis of T₄ in utero. The latter explanation appears to be un-

1198 J. Abuid, D. A. Stinson, and P. R. Larsen

likely in view of the extremely rapid increase in T₃ concentration observed in the first 90 min of life. This, in turn, probably results from the increased secretion of TSH which occurs at birth with peak levels found at age 30 min (2). If so, it would appear to be indicative of adequate thyroidal T₃ stores. If the rapid increase in Ts concentration were to be derived from a rapid increase in T₄ to T₃ conversion, the rate of this process would have to be severalfold greater than the rate in adults to account for the abrupt increase in T₃ concentration. Furthermore, T4 to T8 conversion would have to decrease just as rapidly to account for the steadily increasing ratio of serum T4 to serum T8 after age 1-2 h, when significant increases in the serum T4 concentrations begin to appear (Fig. 2). The interpretation of these increases in serum T₈ and T₄ concentrations observed after birth as being a result of endogenous TSH secretion is made more attractive by the similarity of the pattern of these changes to the relative increases in serum T₃ and T₄ in adults following exogenous TSH. In the euthyroid adult, the relative increase in serum T₈ concentration is also greater and earlier than the increase in the serum T₄ concentration (1, 10). While this analysis would appear to be valid in general, final determination of the relative changes in the actual secretion rates of T₃ and T₄ cannot be made without knowledge of the metabolic clearance rates of both hormones during this period.

It is possible that the low free T_{3} concentration in fetal serum could explain the slight elevation previously observed in fetal serum TSH in the presence of normal free T_{4} levels (8, 11). It is also possible that this low free T_{3} triggers the TSH release at delivery. However, this interpretation implies an abrupt change in the hypothalamic-pituitary sensitivity to free T_{3} levels from the state which exists prior to delivery. Whether or not such a change occurs is an area for current speculation and further study.

ACKNOWLEDGMENTS

The authors would like to express their appreciation to Miss Jitka Dockalova, Mrs. Darina Sipula, and Mrs. Fu-Mei Wu for their careful technical assistance. We are also grateful to Mrs. Loretta Malley for expert secretarial assistance.

These studies were supported by National Institutes of Health Grant no. AM-14283 from the National Institute of Arthritis and Metabolic Diseases and Grant no. 0-20 from the Health Research and Services Foundation of Pittsburgh, Pa.

REFERENCES

- 1. Larsen, P. R. 1972. Direct immunoassay of triiodothyronine in human serum. J. Clin. Invest. 51: 1939.
- 2. Fisher, D. A., and W. D. Odell. 1969. Acute release of thyrotropin in the newborn. J. Clin. Invest. 48: 1670.

- 3. Oppenheimer, J. H., R. Squef, M. I. Surks, and H. Haver. 1963. Binding of thyroxine by serum proteins evaluated by equilibrium dialysis and electrophoretic techniques. Alterations in nonthyroidal illness. J. Clin. Invest. 42: 1769.
- 4. Hotelling, D. R., and L. M. Sherwood. 1971. The effects of pregnancy on circulating triiodothyronine. J. Clin. Endocrinol. Metab. 33: 783.
- 5. Dussault, J., V. V. Row, G. Lickrish, and R. Volpé. 1969. Studies of serum triiodothyronine concentration in maternal and cord blood: transfer of triiodothyronine across the human placenta. J. Clin. Endocrinol. Metab. 29: 595.
- Fisher, D. A., and J. H. Dussault. 1971. Contribution of methodological artifacts to the measurement of T₃ concentration in serum. J. Clin. Endocrinol. Metab. 32: 675.

- Raiti, S., G. B. Holzman, R. L. Scott, and R. M. Blizzard. 1967. Evidence for the placental transfer of triiodothyronine in human beings. N. Engl. J. Med. 277: 456.
- 8. Greenberg, A. H., P. Czernichow, R. C. Reba, J. Tyson, and R. M. Blizzard. 1970. Observations on the maturation of thyroid function in early fetal life. J. Clin. Invest. 49: 1790.
- 9. Pittman, C. S., J. B. Chambers, Jr., and V. H. Read. 1971. The extra-thyroidal conversion rate of thyroxine to triiodothyronine in normal man. J. Clin. Invest. 50: 1187.
- Larsen, P. R. 1972. Triiodothyronine: a review of recent studies of physiology and pathophysiology in man. Metab. (Clin. Exp.). 21: 1073.
- Fisher, D. A., C. J. Hosel, R. Garza, and C. A. Pierce. 1970. Thyroid function in the preterm fetus. *Pediatrics*. 46: 208.