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Abstract

Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human
genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and
mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary
medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an
evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1
evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating
Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues.
By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome
duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous
system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An
additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the
echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L
gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-
retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine
residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function.
We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of
DIA1-family members will have implications for our understanding of autism and mental retardation.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental

condition commonly diagnosed in early childhood. ASD is

characterized by deficits in verbal and non-verbal communication,

social interaction, and by displays of restricted and/or repetitive

behaviours (Mendelian Inheritance in Man accession number

209850). In the absence of definitive neuropathological markers,

these deficits remain the sole diagnostic indicators of autism. ASD

has the greatest heritable basis of any developmental cognitive

disorder, based on twin and family studies, with heritability

estimates of around 90% [1–9]. In addition, spontaneous genetic

alterations cause around 10% of cases [10–12]. As expected, many

of the genes implicated in ASD have direct or indirect roles in

synapse formation and function [13–19]. The secretory pathway

plays a key role in neuron function, and abnormalities in secretion

and secretory cargo have been found in increasing numbers of

ASD patients [20–23]. Genes affecting secretory pathway traffic

are also reported to be affected in those with ASD [12,24].

Furthermore, post-translational modification of proteins in the

secretory pathway via phosphorylation and sulphation are

abnormal in ASD patients, as are genes involved in glycosylation

events within the Golgi apparatus lumen [12,25–28].

The wide phenotypic presentation of ASD is reflected in the

increasing number of different gene changes identified in those

affected [29]. Many genes implicated in ASD are of known

function, while for other genes a role in brain function is yet to be

identified. Many of the characterized and uncharacterized genes

have orthologues in model organisms, which can be used to study

biological function. The mouse model is the most widely used to

experimentally manipulate candidate genes for ASD susceptibility

[30]. Zebrafish, which have highly complex social behaviours, are

also emerging as useful models for vertebrate neurodevelopment

and autism research [31–34]. Increasing use is also being made of

smaller organisms to further our understanding of neurobiology

and neurological disorders. For example, the fruit fly Drosophila

melanogaster encodes many homologues of human neuronal genes,

including significant numbers implicated in neurological disease

[35,36]. Indeed, the first specific therapeutic treatment for a

condition with co-morbid ASD symptoms was reported using a

Drosophila model of fragile X syndrome [37]. This study [37]

demonstrated for the first time that genetic defects such as ASD

and mental retardation might be treatable after birth using drugs,

rather than more complex gene therapy-based approaches.

Recently, in a study of consanguineous families, an unchar-

acterized gene was implicated in the etiology of ASD [38].
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Deletion of this gene, known as c3orf58, was hemizygous in the

unaffected parents and an unaffected sibling, but homozygous in a

child with ASD. The gene was therefore renamed DIA1, for Deleted

In Autism 1 [38]. We have recently identified a second human gene,

closely related to DIA1, which we have named DIA1R, for DIA1-

Related [39]. DIA1R mutations and deletions are associated with X-

linked mental retardation and/or ASD-like syndromes [39]. In

order to further understand the biological role of DIA1 and DIA1R,

we have used an in silico approach to study the wider DIA1 gene

family. We report that DIA1 is restricted to metazoans, while the

closely-related homologue, DIA1R, is restricted to vertebrates, with

the latter being strikingly absent from fish with a solitary lifestyle.

An additional DIA1 family member was found in echinoderm and

cephalochordate genomes, which we name DIA1L (DIA1-Like). By

contrast to the DIA1 and DIA1R gene products, which encode

signal peptides, DIA1L gene products are predicted to be cytosolic.

Unexpectedly, Caenorhabditis elegans lacks an identifiable DIA1

homologue, suggesting gene loss in the nematode lineage.

Homologues of DIA1 could not be detected prior to evolution of

the Cnidaria, coinciding with the development of the first

primitive synapses [40]. These findings provide us with evolution-

ary support for a role of DIA1 homologues in neuronal function.

We have therefore identified a new gene family, the DIA1-family,

where there is increasing evidence two members, DIA1 and

DIA1R, play a vital role in normal human brain function.

Results

Identification of DIA1 orthologues
The human (Homo sapiens) gene c3orf58, at chromosome position

3q24, has recently been renamed DIA1 on the basis of its deletion

in ASD [38]. Human DIA1 has known orthologues in the genome

of ten animal species [39,41]. To characterize the DIA1 family in

detail, we used Basic Local Alignment Search Tool (BLAST) and

keyword searches (search term: c3orf58) of publicly-available

databases to identify further sequences orthologous to human

DIA1. In total, thirty five full-length (Tables 1, S1, and S3) and

forty five partial (Table S2) DIA1 orthologues were identified.

‘Partial DIA1 orthologues’ are those where the full-length gene or

cDNA sequence is currently incomplete (partial), due to gaps in

genomic sequence or because of the limited read-length of

expressed sequence tag (EST) sequencing data. Protein length

varied from 345 (Drosophila willistoni and D. yakuba DIA1) to 477

(Ciona intestinalis DIA1) amino acids, equating to between 40 and

54 kDa in predicted molecular mass (Tables 1 and S3). The

average length of DIA1 proteins identified was 376 amino acids,

with insect gene products, especially those of Drosophila species,

being shorter than those from most other species (Table 1 and

Table S3). Accession numbers of all DIA1 orthologues are

provided in Tables S1 and S2.

Species containing DIA1 orthologues were restricted to a single

eukaryotic supergroup: the Opisthokonta (Tables 1, S1-S3). DIA1

orthologues were not found in any other eukaryotic supergroup

(Plantae, Amoebozoa, Chromalveolata, Excavata, or Rhizaria)

despite the availability of complete genome sequences from all

supergroups, except the Rhizaria. Within the Opisthokonta, DIA1

orthologues were not found in any fungal species and were

restricted to the genomes of metazoan species. Within the

Metazoa, a DIA1 orthologue was not detected in sequence from

the phylum Placozoa or phylum Porifera, possibly due to a scarcity

of data. By contrast, orthologues were identified in species within

the phylum Cnidaria, Mollusca, Annelida, Platyhelminthes,

Echinodermata, Arthropoda, and Chordata (Tables S1 and S2).

Within the phylum Chordata, DIA1 orthologues were present in

the subphylum Urochordata (sea squirt, C. intestinalis), Cephalo-

chordata (lancelet, Branchiostoma floridae) and Vertebrata. DIA1

orthologues were strikingly absent from the phylum Nematoda,

including the completed genomes of Caenorhabditis elegans and C.

briggsae. These findings are summarized in Figure 1.

DIA1 paralogues in zebrafish
The genome of each metazoan species encode only a single

DIA1 gene, with the exception of the zebrafish (Danio rerio) and

minnow (Pimephales promelas) genomes, which encode two closely

related DIA1 genes (Tables 1, S1 and S2). We will refer to the

closely related DIA1 paralogues in these two fish species as DIA1a

and DIA1b. ESTs for both DIA1 paralogues were detected in the

D. rerio and P. promelas EST databases (Tables S1 and S2),

indicating expression of both paralogues, and arguing against one

copy being a pseudogene of the other. By contrast, the ‘completed’

genomes sequence of pufferfish Takifugu rubripes (Fugu), Tetraodon

nigroviridis, and the medaka Oryzias latipes, encode only a single

DIA1 orthologue (Tables S1 and S2).

Amino acid alignments of the D. rerio DIA1a and DIA1b gene

products reveal an overall 88/98% amino acid identity/similarity

(Figures 2 and S1). At the nucleotide level, the mRNA sequences

are 77% identical (Table S1). While only partial sequence is

available for the P. promelas DIA1 paralogues, amino acid

alignments of the available sequences (see Table S2) reveal that

DIA1a of P. promelas has greater similarity to DIA1a from D. rerio

(than to DIA1b from D. rerio), while DIA1b of P. promelas is more

similar to DIA1b from D. rerio (than to DIA1a from D. rerio). The

available data support a model where ostariophysan fish, but not

fish from other superorders, encode two functional, closely related

DIA1 paralogues. These findings, superimposed on a simplified

fish phylogeny, are summarized in Figure 3.

Comparison of DIA1 proteins
To compare DIA1 proteins with each other, we used three

methods: (i) BLAST analyses, (ii) amino acid alignments, and (iii)

phylogenetic analyses (see later). First, we used pair-wise protein

BLAST analyses to generate ‘expect values’ (E-values) as a means

of comparing the similarity between DIA1 orthologues (Table S3).

All full-length DIA1 gene products were compared to DIA1 from

five key species. The DIA1 sequences used for comparison of all

identified DIA1 proteins were those from a species representative

of the phyla Cnidaria (Nematostella vectensis), Echinodermata

(Strongylocentrotus purpuratus), Arthropoda (D. melanogaster), and

Chordata, where a representative of both the subphyla Urochor-

data (C. intestinalis) and Vertebrata (H. sapiens) were included, with a

representative from the class Mammalian, class Aves, and class

Neopterygii for the latter subphylum. When proteins are

compared using this method, the smaller the E-value, the greater

the similarity between two compared proteins. E-values of greater

than 1.0 are generally considered insignificant. Our analyses found

significant pair-wise E-values between all of the DIA1 gene

products examined (Table S3). The only exceptions (where E-

values were greater than 1.0) were in pair-wise comparisons

between DIA1 from C. intestinalis and Drosophila species. By

contrast, significant similarity (less than 1.0) was found between C.

intestinalis DIA1 and DIA1 from all other insect species. We

evaluate and discuss these similarities and differences in more

detail later. Our comparisons therefore support the hypothesis that

the DIA1 orthologues form a metazoan protein family.

Secondly, amino acid alignments were employed to compare

DIA1 gene products at the amino acid level. While in pair-wise

comparisons vertebrate DIA1 proteins were between 78–100%

identical and 97–100% similar (Table S4), an amino acid
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Table 1. Physical characteristics of DIA1 proteins and similarity to orthologues from key species.

BLASTPd similarity toe:

Metazoan speciesa

Length
protein
(amino
acids) pIb

Molecular
massc (kDa)

H.
sapiens

G.
gallus

D.
rerio (a)

C.
intestinalis

S.
purpuratus

D.
melanogaster

N.
vectensis

Cnidaria

Nematostella vectensis 402 5.6 44.7 8e-46 4e-44 6e-49 1e-15 6e-47 7e-08 -

Echinodermata

Strongylocentrotus purpuratus 431 7.9 49.7 6e-80 3e-81 5e-84 3e-17 - 2e-08 2e-42

Arthropoda

Hexapoda

Aedes aegypti 395 6.0 45.7 6e-16 6e-15 2e-14 1e-04 5e-16 6e-14 5e-15

Anopheles gambiae 412 5.4 47.3 2e-06 3e-08 9e-09 0.10 5e-12 4e-10 0.018

Culex pipiens 400 5.1 45.2 2e-13 4e-13 8e-16 5e-04 1e-15 2e-13 2e-18

Drosophila melanogaster 348 5.3 40.0 1e-06 7e-07 2e-08 .10 2e-08 - 5e-08

Nasonia vitripennis 404 5.1 46.2 3e-53 7e-53 2e-54 1e-11 9e-47 2e-08 4e-36

Chordata

Urochordata

Ciona intestinalis 477 9.3 54.5 2e-29 1e-31 3e-34 - 3e-17 .10 4e-14

Cephalochordata

Branchiostoma floridae 398 5.2 46.1 3e-101 5e-98 9e-104 2e-31 5e-81 7e-12 6e-43

Vertebrata

Neopterygii

Danio rerio (a) 432 8.6 50.0 0.0 0.0 - 6e-32 8e-82 2e-07 1e-46

Danio rerio (b) 429 8.7 49.4 0.0 0.0 0.0 6e-31 4e-80 2e-06 3e-44

Gasterosteus aculeatus 434 8.9 50.0 0.0 0.0 0.0 6e-33 5e-81 3e-06 2e-44

Oryzias latipes 434 8.8 50.1 0.0 0.0 0.0 2e-32 3e-83 3e-06 2e-44

Takifugu rubripes 435 8.8 50.1 0.0 0.0 0.0 3e-34 8e-84 1e-07 6e-47

Tetraodon nigroviridis 425 8.7 49.2 0.0 0.0 0.0 6e-32 6e-82 1e-05 9e-45

Tetrapoda

Gallus gallus 429 8.6 49.0 0.0 - 0.0 3e-29 4e-79 7e-06 9e-42

Xenopus tropicalis 429 8.7 49.3 0.0 0.0 0.0 7e-32 3e-80 1e-06 7e-45

Bos taurus 430 8.8 49.5 0.0 0.0 0.0 1e-29 6e-80 2e-06 3e-41

Canis familiaris 430 8.8 49.5 0.0 0.0 0.0 1e-29 6e-80 2e-06 3e-41

Homo sapiens 430 8.8 49.4 - 0.0 0.0 1e-29 7e-80 2e-06 3e-41

Macaca mulatta 430 8.8 49.5 - 0.0 0.0 1e-29 7e-80 2e-06 3e-41

Monodelphis domestica 430 8.8 49.3 0.0 0.0 0.0 9e-30 6e-80 8e-07 2e-42

Mus musculus 430 8.9 49.5 0.0 0.0 0.0 2e-30 5e-79 9e-06 8e-41

Pan troglodytes 430 8.8 49.5 0.0 0.0 0.0 1e-29 6e-80 2e-06 3e-41

Pongo pygmaeus 430 8.8 49.5 0.0 0.0 0.0 1e-29 7e-80 2e-06 3e-41

Pteropus vampyrus 430 8.9 49.5 0.0 0.0 0.0 4e-29 7e-80 2e-05 8e-41

Rattus norvegicus 430 8.9 49.5 0.0 0.0 0.0 2e-30 5e-79 9e-06 8e-41

Tursiops truncatus 430 8.8 49.5 0.0 0.0 0.0 1e-29 7e-80 2e-06 3e-41

aDIA1 homologues were restricted to the Metazoa, but were not found in the phylum Porifera or Nematoda. Partial homologues, including those found in the phylum
Mollusca and Annelida (Table S2), are not shown. See Table S1 for accession numbers of full length DIA1 proteins. Only a single Drosophila species DIA1 is included
here. Table S3 is an expanded version of this Table.

bIsoelectric point calculated using the assumption that all residues have pKa values equivalent to that of isolated residues, and so may not accurately represent the
value for the folded protein.

cIsotopically-averaged molecular weight prediction in kiloDaltons.
dThe BLASTP E-value measures the statistical significance threshold for protein sequence matches. The smaller the number, the better the match. Computer shorthand

nomenclature is used to present E-values when values are small. For example, 5e-01 = 0.5 and 5e-04 = 0.0005. Values below 1e-250 are indicated as zero, and details of
those greater than 10 are not provided. A dash is used when protein alignments have 100% identity.

eProteins were compared to DIA1from H. sapiens, C. intestinalis, S. purpuratus, or D. melanogaster, or N. vectensis by protein BLAST. The DIA1 proteins used for
comparison were chosen as representives from Class Mammalia, Class Aves, and Class Neopterygii within the subphylum Vertebrata, subphylum Urochordata, phylum
Echinodermata, phylum Arthropoda, and phylum Cnidaria, respectively.

doi:10.1371/journal.pone.0014547.t001

Characterizing the DIA1 Family

PLoS ONE | www.plosone.org 3 January 2011 | Volume 6 | Issue 1 | e14547



alignment of DIA1 proteins from all species revealed only 10

absolutely conserved amino acids (Figure S2): 3 cysteines in the

amino-terminal portion; a cysteine glycine and arginine in the

central region; and an asparagine, an aspartate and two further

cysteines in the carboxy-terminal portion. Blocks of highly

conserved regions of amino acids within the DIA1 gene products

were also identified, with the extreme amino-terminal region

showing the greatest diversity (Figures 2 and S2). These alignments

provide evidence that conserved regions of DIA1 are vital to the

core biological function of the protein, and support the notion that

this biological role is conserved in all metazoan species with a

DIA1 orthologue.

Identification of DIA1R orthologues
The human gene currently annotated as cXorf36 is closely

related to DIA1, and has recently been renamed DIA1R [39]. The

human DIA1R gene is X-linked, located on the short arm of the X

chromosome at position Xp11.3, and has orthologues in at least

Figure 1. DIA1-family superimposed on a simplified metazoan phylogeny. DIA1 is absent from the genome sequences of nematodes (grey
font) as well as fungi, plants, amoebozoa and chromalveolates (not shown). Due to a paucity of sequence data, it is unclear whether a DIA1
homologue is absent from the Porifera (grey font). DIA1L was exclusively found in echinoderm and cephalochordate genomes (underlined), which
also encode DIA1. DIA1L is absent from tunicates, but a current dearth of sequence data precludes evaluation of hemichordate genomes for DIA1L
homologues (indicated by a dotted bold grey line on right hand side, and a lack of underline). A bold dotted black line (right-hand side) indicates that
the presence of DIA1R has been confirmed in cartilaginous fish but, probably due to a lack of sequence data, DIA1 has yet to be identified in this class
of chordates. Both a DIA1 and DIA1R gene are present in vertebrate genomes (bold font), with a notable absence of DIA1R in acanthopterygian fish
(asterisk). Furthermore, two DIA1 paralogues were identified in the genomes of fish from the superorder Ostariophysi, but not in fish from other
superorders (see Figure 3). Data for the schematic metazoan phylogeny were from numerous sources [157–163]. Proposed rounds of whole-genome
duplication (WGD) are indicated by filled black spheres, where two WGDs occurred early in the vertebrate lineage (1R/2R) and a third WGD (3R) in the
ray-finned fish lineage before the diversification of teleosts [43,164,165]. Proposed duplications of DIA1-family genes are indicated by red circles, and
‘loss’ of DIA1-family genes by grey squares. Dashed arrows are used to annotate events occurring in our current model of DIA1-family evolution.
Further details of two different models of DIA1-family duplication and ‘loss’ events in the fish lineage (*) can be found in Figure 3, where some fish
species encode DIA1 paralogues, while others lack DIA1R. Accession numbers of DIA1, DIA1R, and DIA1L sequences can be found in Tables S1-S5,
Table S7 and Table S9.
doi:10.1371/journal.pone.0014547.g001
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Figure 2. Amino acid sequence comparison of DIA1 from key species. The sequence alignment was generated using CLUSTALW [47].
Identical amino acids are highlighted in red font and indicated below the alignment with an asterisk (*). Strongly similar amino acids are highlighted
in green font and indicated below the alignment with a colon (:). Weakly similar amino acids are highlighted in blue font and indicated below the
alignment with a full stop (.). Dissimilar amino acids are in black font. Amino acids conserved in all DIA1 proteins, as determined by alignment of DIA1
gene products from all species (Figure S2), are underlined (*). Amino acid numbering is provided above the alignment. Gaps required for optimal
alignment are indicated by dashes. Standard single-letter amino acid abbreviations are used. Organism abbreviations use the first letter of the genus
name, followed by the first four letters of the species (e.g. Homo sapiens DIA1 is abbreviated to HsapiDIA1). The two D. rerio DIA1 paralogues are
abbreviated as DreriDIA1a and DreriDIA1b. Full species names and accession numbers can be found in Table S1.
doi:10.1371/journal.pone.0014547.g002
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Figure 3. Fish-centric models of DIA1-family evolution. In both models (A and B), the genome of the hypothetical chordate ancestor encodes
two DIA1-family genes: DIA1 and DIA1L. The DIA1L gene has been ‘lost’ in the urochordate/vertebrate lineage, preceding the 1/2R whole genome
duplications (WGDs). A duplicated copy of DIA1, which we have called DIA1R, was retained subsequent to the 1/2R WGD event, with both DIA1 and
DIA1R identified in lamprey, fish, and tetrapod genomes. In the fish lineage, however, two different models, (A) and (B), could account for our current
knowledge of DIA1 family members. In model (A), the DIA1 duplication generating DIA1a and DIA1b coincides with the 3R WGD. Two lineage-specific
‘losses’ of DIA1a have then occurred: the first in the G. morhua lineage, and the second in the Protacanthopterygian/Acathopterygian lineage. There
are too few data available to determine whether the channel catfish encodes DIA1a, DIA1b, both, or neither. In model (B), the DIA1 duplication leading
to DIA1a and DIA1b in ostariophysans does not coincide with 3R but, instead, is specific to the ostariophysan lineage. Both model (A) and (B) both
predict DIA1R gene loss in the acanthopterygian lineage. Proposed rounds of WGD [43,164,165] are indicated by filled black spheres: numbering of
the WGDs is provide in black boxes: those occurring early in the vertebrate lineage marked as 1R/2R and that in the ray-finned fish lineage marked as
3R. Proposed duplications of DIA1-family genes are indicated by red circles, and ‘loss’ of DIA1-family genes by grey squares. Data for the schematic
fish phylogeny were from numerous sources [162,166–169].
doi:10.1371/journal.pone.0014547.g003
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four vertebrate species [39]. We carried out BLAST searches using

the human DIA1R sequence and keyword searches (search term:

cXorf36) to identify further DIA1R orthologues. We use the term

‘orthologue’, rather than ‘paralogue’, to describe those genes most

similar to DIA1 or to DIA1R, as DIA1R and DIA1 proteins differ

substantially at the amino acid level, and are predicted to have

evolved specific, yet-related, cellular functions. Reciprocal BLAST

searches were used to confirm that newly identified DIA1R

sequences had greatest similarity to DIA1R, rather than to DIA1.

Reciprocal BLAST searches also ensured all currently available

DIA1 and DIA1R sequences were identified, and no false positives

were included. Our findings are highlighted below.

Unlike DIA1 orthologues, which were found in most metazoan

phyla, DIA1R orthologues were restricted to the phylum Chordata.

Furthermore, within the Chordata, DIA1R expression is restricted

to the subphylum Vertebrata, including the early-branching

lamprey species Petromyzon marinus (Tables S5 and S6). DIA1R was

not found in subphylum Urochordata or Cephalochordata

genomes. No evidence for DIA1R pseudogenes or closely-related

paralogues was detected in any of the available sequence databases.

All genomes encoding a DIA1R gene also had a DIA1 gene, with the

exception of the EST databases for cartilaginous fish species and a

single ostariophysan species (Ictalurus punctatus), where partial DIA1R

sequences (Table S6), but not DIA1 sequence(s) was detected. Due

to limited EST and genomic data for these species, we currently

assume this absence is due to a lack of sequence data, rather than

gene loss. Together, these data indicate that DIA1R arose from a

DIA1 gene duplication event occurring prior to the expansion of the

vertebrates, which diverged from the cephalochordates around 520

million years ago [42], and this coincides with the well-documented

whole-genome duplication events in the ancestral vertebrate, prior

to vertebrate expansion [43].

Absence of DIA1R in acanthopterygian fish
While DIA1R was detected in several fish species (Tables S5 and

S6), there was a striking absence of DIA1R orthologues from the

‘completed’ genomes of acanthopterygian fish species including the

genomes of Gasterosteus aculateus (stickleback), O. latipes (medaka fish),

T. nigroviridis and T. rubripes (both pufferfish). By contrast, DIA1R

was found in the genomes of fish from the superorders Ostariophysi

(D. rerio and I. punctatus) and Protacanthopterygii (Salmo salar),

although current EST data does not support the presence of DIA1R

in the genome of another ostariophysan species, P. promelas.

Conversely, while a DIA1R EST from the channel catfish (I.

punctatus) was identified, a corresponding DIA1 EST was not found

in this species. At present, it is mostly likely that the apparent

absence of DIA1R in P. promelas, and DIA1 in I. punctatus, is due to

limitations in EST data, rather than because of gene loss.

Therefore, two paralogues of DIA1 are present in ostariophysan

fish, but only a single DIA1R orthologue; while in the

protacanthopterygian fish, we only find evidence for a single

DIA1 and DIA1R gene (Tables S1, S2, S5 and S6). By contrast, in

acanthopterygian genomes, only a single DIA1 gene is detected and

DIA1R is absent. The timing of the DIA1 gene duplication (to form

DIA1a and DIA1b) and the loss of DIA1R in acanthopterygians can

only be further delineated when additional fish sequence data

becomes available. Nonetheless, these data provide evidence for

both DIA1 gene duplication and DIA1R gene loss events during

evolution of teleost fish. Two models for DIA1 and DIA1R evolution

in teleost fish, are discussed later, and are summarized in Figure 3.

Comparison of DIA1R proteins
To compare DIA1R proteins with each other, we used three

methods: (i) BLAST analyses, (ii) amino acid alignments, and (iii)

phylogenetic analyses. First, we used pair-wise protein BLAST

analyses to generate ‘expect values’ (E-values) to assess the

similarity between DIAR1 orthologues (Table 2). All full-length

DIA1R gene products were compared with DIA1R from three key

vertebrate species. The DIA1R sequences used for comparison

with all identified full-length DIA1Rs were representative species

from the subphylum Vertebrate; one each from Class Mammalia,

Class Aves, and Class Neopterygii. Our analyses found significant

pair-wise similarity (i.e. E-values less than 1.0) between the all of

DIA1R gene products examined (Table 2). The highest pair-wise

E-value (indicating the least similarity) was obtained when DIA1R

from S. salar (Atlantic salmon) was compared to that of Gallus gallus

(chicken), and was a value of 7e-77. As expected, each DIA1R

protein was more similar to other DIA1R proteins, than to DIA1

proteins from the same species (Table 2). For example, the pair-

wise E-value for DIA1R from S. salar compared to DIA1 from G.

gallus was 1e-44, indicating less similarity to DIA1 than to DIA1R

from the same species. Our comparisons therefore support the

existence of a DIA1R-subfamily within the DIA1-family, where

the subfamily genes are exclusive to the subphylum Vertebrata.

Comparison of DIA1 to DIA1R gene products is discussed in

detail in the section below.

Secondly, we carried out amino acid alignments of all DIA1R

orthologues (Figure S3 and Table S4). This comparison revealed a

high level of amino acid identity and similarity between DIA1R

proteins from all species, with an overall 27% amino acid identity

and 53% similarity across gene products from all species. Poorest

conservation was within the extreme amino-terminal portion,

which forms a signal peptide (see later). Comparison between

DIA1R gene products in a pair-wise manner revealed 45–97%

identity and 76–97% similarity between each pair (Table S4).

Further comparison of DIA1R proteins was carried using

phylogenetic analyses and this data will be presented and discussed

later.

Comparison of DIA1 and DIA1R proteins
To compare DIA1R orthologues with their DIA1 counterparts,

three approaches were used: (i) pair-wise amino acid alignments,

(ii) amino acid alignments of all full length DIA1 and DIA1R

proteins identified, and (iii) phylogenetic analyses. The phyloge-

netic analyses are provided later.

First, a detailed pair-wise comparison of DIA1 and DIA1R gene

products was performed, using amino acid sequence from all

species where both genes had been identified (Table S4). These

analyses lead to two notable findings. (i) All DIA1R amino acid

sequences are around 30% identical and 60% similar to their

DIA1 counterpart of the same species (Table S4). (ii) The pair-wise

amino acid identity between DIA1 homologues of two given

species was always greater than that of the DIA1R proteins of

those same species (Table S4). For example, while DIA1 from H.

sapiens and Macaca mulatta (rhesus macaque) are 100% identical at

the amino acid level, the DIA1R proteins from these same species

are only 97% identical. Similarly, DIA1 from Rattus norvegicus (rat)

and Mus musculus (mouse) are 100% identical at the amino acid

level, while the DIA1R proteins from these same species are only

91% identical. The greater divergence of DIA1R, compared to

DIA1, is more apparent when sequences from more evolutionary

distant species are compared. For example, DIA1 from H. sapiens

and Gallus gallus (fowl) are 90% identical (96% similar), but DIA1R

proteins from these two species are only 65% identical (87%

similar). These findings indicate greater evolutionary pressures

favouring the conservation of DIA1, compared to DIA1R. More

rapid evolution of one copy of a duplicated gene is a well-
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documented phenomenon [44,45] and greater DIA1R divergence,

than DIA1 divergence, is therefore expected.

Secondly, an amino acid alignment of all DIA1 and DIA1R

proteins was created (Figure S4). This comparison found a total of

eight amino acids that were absolutely conserved in DIA1 and

DIA1R from all species, and these are highlighted in Figure 4. The

conserved residues are: three cysteine residues in the amino-

terminal portion, a cysteine and glycine residue in the central

portion, and three cysteine residues in the C-terminal portion.

Overall, there was greater amino acid conservation between DIA1

and DIA1R proteins in the central portion, which suggests this

region mediates a key, conserved protein function.

Tunicate DIA1 is similar to both DIA1 and DIA1R from
other species

On examination of amino acid alignments of DIA1 and DIA1R

gene products, it was noticeable that the C. intestinalis (a tunicate)

sequence contained frequent amino acid insertions of various

lengths, when compared to the DIA1 and DIA1R sequence from

all other species (Figure S4). These insertions were most prominent

in the amino- and carboxy-terminal portions of the C. intestinalis

DIA1 protein, rather than the central region. We therefore

investigated the relationship of C. intestinalis DIA1 with other DIA1

family members in greater detail.

First, pair-wise amino acid alignments of DIA1 of C. intestinalis

with DIA1 and DIA1R of key vertebrate species (H. sapiens, M.

musculus, G. gallus, D. rerio), were carried out (Table S7). These

analyses revealed that C. intestinalis DIA1 was only marginally

more similar to DIA1 than to DIA1R from other species, being on

average 23.5% identical (55% similar) to the representative

vertebrate DIA1 proteins, and 22% identical (55% similar) to

the DIA1R proteins.

Secondly, reciprocal pair-wise E-values between C. intestinalis

DIA1, and DIA1 and DIA1R of the same key vertebrate species

(H. sapiens, M. musculus, G. gallus, D. rerio), were generated (Table

S7). These analyses revealed that C. intestinalis DIA1 showed

greater similarity (i.e. lower E-values) to DIA1, than DIA1R

orthologues using the BLAST algorithm (Table S7), with E-values

of around e-32 when compared to the vertebrate DIA1 proteins,

Table 2. Physical characteristics of DIA1R proteins and similarity to orthologues from key species.

BLASTPd similarity toe:

DIA1R from- DIA1 from-

Speciesa

Length
(amino
acids) pIb

Molecular
massc (kDa) H. sapiens G. gallus D. rerio H. sapiens G. gallus D. rerio (a)

METAZOAf

Chordata

Vertebrata

Neopterygii

Danio rerio 417 8.7 47.2 1e-105 7e-81 - 2e-42 3e-44 1e-43

Salmo salar 453 8.7 50.5 6e-101 7e-77 1e-130 8e-41 1e-44 1e-42

Tetrapoda

Aves

Gallus gallus 430 8.7 49.0 3e-142 - 2e-85 1e-34 6e-35 1e-35

Mammalia

Bos taurus 433 8.4 48.1 0.0 9e-128 8e-108 3e-40 5e-43 1e-43

Dipodomys ordii 434 7.8 48.5 0.0 2e-127 5e-102 2e-40 5e-42 1e-43

Equus caballus 433 8.8 48.7 0.0 3e-132 9e-109 2e-41 2e-42 3e-43

Homo sapiens 433 8.1 48.6 - 8e-136 9e-106 3e-41 2e-44 7e-45

Macaca mulatta 433 8.1 48.6 0.0 4e-134 1e-104 7e-42 4e-44 4e-45

Monodelphis domestica 432 8.6 49.0 0.0 1e-139 1e-110 8e-46 2e-47 1e-48

Ornithorhynchus anatinus 432 8.9 48.8 2e-168 3e-131 5e-103 8e-40 5e-40 7e-44

Mus musculus 435 8.1 49.0 0.0 4e-129 2e-104 4e-38 3e-40 3e-40

Rattus norvegicus 435 8.5 48.8 0.0 6e-129 4e-106 4e-42 2e-44 1e-44

Sorex araneus 431 8.8 48.1 0.0 6e-123 1e-100 2e-38 7e-41 1e-42

aSee Table S5 for accession numbers of full length DIA1R proteins.
bIsoelectric point calculated using the assumption that all residues have pKa values equivalent to that of isolated residues, so may not accurately represent the value for

the folded protein.
cIsotopically averaged molecular weight prediction in kiloDaltons.
dThe BLASTP E-value (Expect value) measures the statistical significance threshold for protein sequence matches. The smaller the number, the better the match.

Computer shorthand nomenclature is used to present E-values when values are small. For example, 5e-01 = 0.5 and 5e-04 = 0.0005. Values lower than 1e-250 are
treated as zero. A dash is used when alignments have 100% identity.

eProteins were compared to DIA1 (or DIA1a when paralogues were present) and DIA1R from Homo sapiens, Gallus gallus or Danio rerio by BLASTP. The proteins used for
comparison were chosen as representatives from the Class Mammalia, Class Aves, and Class Neopterygii within the subphylum Vertebrata.

fDIA1R orthologues are only found in the subphylum Vertebrata and not in other subphyla or phyla. For example, DIA1R orthologues are not found in the phylum
Nematoda, Platyhelminthes, Cnidaria, Echinodermata, or Arthropoda.

doi:10.1371/journal.pone.0014547.t002
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Figure 4. Amino acid sequence alignment of DIA1 and DIA1R proteins from key species. Gene products from species with known full-
length DIA1 and DIA1R orthologues were aligned using CLUSTALW [47], with DIA1 from the cnidarian species Nematostella vectensis (NvectDIA1),
included for comparative purposes. Identical amino acids are highlighted in red font and indicated below the alignment with an asterisk (*). Strongly
similar amino acids are highlighted in green font and indicated below the alignment with a colon (:). Weakly similar amino acids are highlighted in
blue font and indicated below the alignment with a full stop (.). Dissimilar amino acids are in black font. Amino acids conserved in all DIA1 and DIA1R
proteins, as determined by alignment of the DIA1 and DIA1R gene products from all species (Figure S4), are underlined (*). Amino acid numbering is
provided above the alignment. Gaps required for optimal alignment are indicated by dashes. Standard single-letter amino acid abbreviations are
used. Organism abbreviations use the first letter of the genus name, followed by the first four letters of the species (e.g. Homo sapiens DIA1R is
abbreviated to HsapiDIA1R). Full species names and accession numbers can be found in Tables S1 and S4. Predicted signal peptide cleavage sites for
human DIA1 and DIA1R (Figure S5) are indicated by arrows above or below the alignment, respectively.
doi:10.1371/journal.pone.0014547.g004
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but only e-25 when compared to the DIA1R proteins from the

same species. These findings suggest that C. intestinalis DIA1 indels

are causing difficulties when comparisons are made with other

protein family members. Close examination of the C. intestinalis

DIA1 gene structure did not reveal any annotation errors

contributing to the indels in the C. intestinalis DIA1 sequence,

nor were any pseudogenes, or other DIA1-related sequences,

detected in the C. intestinalis genome (data not shown). These

results highlight the differing results that can be obtained using

different alignment algorithms, such as BLAST [46] or CLUS-

TALW [47], and the intrinsic difficulties in obtaining optimal

amino acid alignments for sequences with insertions. Our

conclusions are that C. intestinalis contains a single copy of a

divergent DIA1 (not a DIA1R) gene, and that this divergence will

impact on the phylogenetic relationships we later derive.

Signal peptides in DIA1 and DIA1R orthologues
Human DIA1 and DIA1R, have amino-terminal signal peptides

for protein targeting to the secretory pathway [39,48]. Signal

peptide functionality is supported by localization of DIA1 to the

lumen of the Golgi apparatus [48]. We therefore analyzed all

available DIA1 and DIA1R gene products for signal peptides, and

predicted signal peptide cleavage sites, using three of the best-

performing algorithms [49,50]. The methods used were: (i) the

neural network algorithm of SignalP v3.0 [51], (ii) the hidden

Markov model of SignalP v3.0 [51], and (iii) the Sigcleave

algorithm at EMBOSS [52]. Use of multiple algorithms also gives

us the maximal possible confidence about the results, if they

concur. No trans-membrane domains were predicted, nor ER-

retrieval or retention motifs detected (data not shown).

Our analyses of 35 full length DIA1 orthologues revealed signal

peptides (SPs) in gene products from all species, using all three

prediction methods (Figure S5). Furthermore, concordant SP

cleavage sites were predicted by all three methods for DIA1

proteins from 6 species, with very similar cleavage sites predicted

for DIA1s from a further 11 species (i.e. where 2 of the 3 methods

predicted a cleavage site aligning with the concordant site, and the

remaining method predicted the adjacent amino acid as the

cleavage site). As similar cleavage site prediction results were

obtained for DIA1 proteins from all tetrapod species, the cleavage

site for tetrapod DIA1 cleavage is predicted to be conserved, and

to occur after alanine-37 (using H. sapiens DIA1 numbering). By

contrast, the signal peptide cleavage site for DIA1 from Drosophila

species is predicted to be after proline-24 (using D. melanogaster

DIA1 numbering). While there is a consensus for SP presence in

DIA1s from other species, there was no consensus for the cleavage

site (Figure S5). Less concordance in prediction of the cleavage site

for these species may reflect a current lack of information about

the SP recognition process in such species. The majority of model

proteins on which the prediction algorithms are based are from

tetrapods, and less is known about cleavage of signal peptides in

proteins from other species.

Our analyses of DIA1R orthologues likewise revealed the

presence of SPs in DIA1R gene products from all species using all

three prediction methods (Figure S5). While there was a consensus

for SP presence in all DIA1Rs, there was no consensus for the

position of the cleavage site, as only two species showed

concordance in cleavage sites prediction from all three methods.

Based on our data, the best prediction for the SP cleavage site for

mammalian DIA1R is after serine-31 (using H. sapiens DIA1R

numbering). Overall, we show SPs are predicted for both DIA1

and DIA1R from all species, however the exact amino acid

composition of luminal DIA1 and DIA1R gene products will

require experimental validation. Such data will be of benefit for

refining the algorithms used for signal peptide cleavage sites,

particularly in non-tetrapod species. Our data indicate that

translocation into the ER and transportation to the Golgi

apparatus will be a common property of all DIA1 and DIA1R

gene products.

DIA1-like homologues in amphioxus and echinoderm
BLAST searches of the non-redundant (NR) database revealed

the presence of additional, DIA1-like genes in some species,

which we refer to as DIA1L, for DIA1-like gene. These gene

products were restricted to the genomes of S. purpuratus (an

echinoderm) and B. floridae (a cephalochordate). Initially, we

thought these products may be due to annotation errors or be

pseudogenes. Indeed, analysis of the annotated S. purpuratus

DIA1L gene did reveal a splicing error in the gene model, which

we corrected (Table S8 and Figure S10). The EST database

provides evidence that the S. purpuratus DIA1L gene is expressed

(Table S8).

By contrast to the echinoderm genome, which has a single

DIA1L gene, three full-length DIA1L paralogues were identified in

the B. floridae genome, which we have called DIA1La, DIA1Lb, and

DIA1Lc (Table S8). Of the three full-length B. floridae DIA1L genes,

two contain introns, indicating they are not processed pseudogenes

(Table S8). EST data supports the expression of DIA1Lb and the

intron-less B. floridae DIA1Lc gene (Table S8). For the latter, this

indicates the lack of introns is due to intron-loss events, rather than

DIA1Lc being a pseudogene. For B. floridae, EST sequencing is still

very much a work in progress, and this may explain the current

lack of expression data for the amphioxus DIA1La gene. Together

these data indicate a duplication of DIA1 early in the deuterostome

lineage, generating what is now DIA1L (Figure 1). However, we

cannot rule out an alternative hypothesis: that the duplication

event generating DIA1L preceded protostome-deuterostome di-

vergence, and that DIA1L was lost early in the protostome lineage.

Strikingly, while the echinoderm genome encodes a single copy of

DIA1 and of DIA1L, the cephalochordate genome encodes a single

copy of DIA1 and multiple copies of DIA1L. This indicates

cephalochordate lineage-specific duplication of DIA1L. A lack of

DIA1L in later-branching deuterostomes, indicates DIA1L homo-

logues were ‘lost’ prior to tunicate divergence.

Comparison of DIA1L and DIA1 gene products
Amino acid alignments reveal S. purpuratus DIA1 and DIA1L

have approximately 15% identical amino acids while, overall, 40%

of aligned amino acids are similar (Table S9 and Figure S7). The

corrected S. purpuratus DIA1L gene product is 636 amino acids in

length (Table S8), compared to 431 residues for the homologous S.

purpuratus DIA1 gene product (Table 1; Table S1). The B. floridae

DIA1La gene product is 483 amino acids in length and the B.

floridae DIA1Lb gene product 539 residues, again both longer than

DIA1 (418 amino acids) of the same species. By contrast, B. floridae

DIA1Lc is shorter (398 amino acids) than the parental DIA1 gene

product. B. floridae DIA1La, DIA1Lb and DIA1Lc are all

approximately 20% identical (55% similar) to each other at the

amino acid level (Figure S7; Table S9) and S. purpuratus DIA1L is

most similar to B. floridae DIA1Lc (,60% similar/20% identical).

By contrast to the variability between DIA1L gene products, the

DIA1 gene products of S. purpuratus and B. floridae show greater

similarity to each other (,75% similar/40% identical). This

finding indicates greater evolutionary pressure favouring the

conservation of DIA1 sequences, compared to that favouring

sequence conservation in the duplicated DIA1L gene(s), over the

same evolutionary time-period.
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Conservation within the DIA1 protein family
To determine key amino acids conserved across all members of

the DIA1 protein family, amino acid alignments of DIA1, DIA1R,

and DIA1L gene products were performed (Figure S7). Absolute

conservation of four residues across the whole DIA1-protein family

was found. These residues were: two cysteines in the amino-

terminal region, a central glycine residue, and a further cysteine in

the carboxy-terminal region of the proteins (Figure S7). In total, 15

highly conserved motifs, can be delineated (Table 3), however

hydrophobic motif 1 is weakly conserved in DIA1L proteins and

Drosophila DIA1 proteins, motif 12 is absent from DIA1L proteins,

motifs 4 and 14 are absent from Drosophila DIA1 proteins,

and motif 14 is only weakly conserved in DIA1R and DIA1L

proteins (Figures S7–S9). We are currently investigating further

the structure and function of the identified DIA1-family motifs.

Overall, greatest amino acid similarity is found in the central

portion of the extended DIA1 family (Figure 5), indicating a core

role for this region in function, not only of DIA1 and DIA1R, but

also of DIA1L. The relationship between DIA1-family gene

products is examined further below, using phylogenetic methods.

DIA1L proteins lack signal peptides
By contrast with both DIA1 and DIA1R gene products (Figure

S5), DIA1L proteins do not encode predicted signal peptides (data

not shown). As for DIA1 and DIA1R, we analyzed DIA1L gene

products for the presence of trans-membrane domains and,

similarly, none were detected (data not shown). We therefore

conclude that while DIA1 and DIA1R can enter the endoplasmic

Table 3. DIA1-family motifs.

Motif* Alignment consensus** Human DIA1 sequence*** Comment

1 F-L-x-L FLqL This motif is conserved in DIA1 and DIA1R proteins, but less-
strongly conserved in DIA1L proteins (which are not targeted to
the secretory pathway). The penultimate leucine in the motif is
absent from Drosophila DIA1 proteins.

2 C-x-A-C-x-G-x(3,5)-C CpACfGtswC Motif contains two of the absolutely conserved DIA1-family
residues.

3 A-x-Y-x(6,15)-L AqYgepreggrrrvvklrL The tyrosine is conserved in 73% of DIA1-family members. In
some family members it is replaced by a tryptophan or
phenylalanine, or there is an adjacent (or nearby) residue that is
a tyrosine.

4 I-C-x(8,10)-C ICkratgrprC Absent from DIA1 from Drosophila species.

5 V-x(4,11)-C-x-S-x(6,10)-Y-x-E VegwsdlvhCpSqrlldrlvrrYaE The tyrosine is conserved in 85% of DIA1-family proteins.

6 L-x(3)-L-x-x-N-x-x-P-L-V-L-Q LlltLafNpePLVLQ The proline and glutamine residues of this motif are absent
from DIA1L proteins from amphioxus.

7 G-W-P-x(5)-G-x-C-G GWPfakylGaCG Motif contains one of the absolutely conserved DIA1-family
residues.

8 L-x-x-Y LwsY The tyrosine is conserved in 77% of DIA1-family members. In
some family members it is replaced by a tryptophan or
phenylalanine, or there is an adjacent (or nearby) tyrosine
residue.

9 R-x-D-L-A-x-Q-L-M-x-I-x(3)-L RvDLAwQLMeIaeqL The first amino acid (R) of this motif is poorly conserved in
DIA1R proteins.

10 F-x-L-Y-x-x-D-x(5)-F-A-V FaLYlldvsfdnFAV The tyrosine is conserved in 73% of DIA1-family members. In
some family members it is replaced by a tryptophan or
phenylalanine, or there is an adjacent (or nearby) residue that is
a tyrosine. The aspartate of this motif is absent from DIA1R
proteins.

11 K-V-x-I-D-x-E-x-V-x-V-x-D KViIvDaEnVlVaD The central glutamate is not conserved in DIA1R proteins.

12 C-x(3,4)-A-C-x(6,8)-C CdkeAClsfskeilC The final cysteine is well-conserved, but the remainder of motif
is poorly conserved in insect and tunicate DIA1. Motif absent
from DIA1L proteins.

13 [D-x-N-x-Y-x-x]-C-x-x-L-L [DhNyYav]CqnLL Motif contains one of the absolutely conserved DIA1-family
residues. An expanded, tyrosine-containing motif [in square
brackets] is found in this position in DIA1 and DIA1L, but not
DIA1R, proteins (see Figures S8 and S9).

14 G-x-L-H-x(3,4)-E GlLHDPPsE Motif found in DIA1 only, with the exception of Drosophila DIA1
proteins. Absent from DIA1R and DIA1L.

15 L-x-E-x(16,18)-L LdEcanpkkrygrfqaakeL Consensus is conserved in more than 80% of DIA1 family but,
while the final leucine is highly conserved, the first leucine is
absent from 75% of DIA1R proteins. The charged residue is
poorly conserved in DIA1 of insects.

*Motifs numbered in amino- to carboxy-terminal direction.
**Consensus motif is that from the Boxshade consensus line using 80% similarity threshold (Figure S8), unless otherwise indicated. Underlined residues = 100%
conserved. Standard single-letter amino acid abbreviations are used, where x = any amino acid, and x(6,8) indicates 6, 7, or 8 poorly/non-conserved amino acids present
in that position.
***Motif-conforming residues are in upper case; poorly or non-conserved amino acids in lower case.
doi:10.1371/journal.pone.0014547.t003
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Figure 5. Amino acid sequence alignment of DIA1-family proteins from key species. All full-length DIA1, DIA1R, and/or DIA1L gene
products were aligned using CLUSTALW (Figure S7), and this figure represents excerpts from this master alignment, where proteins from the
following phyla only are represented: Cnidaria (N. vectensis DIA1: NvectDIA1), Arthopoda (D. melanogaster DIA1: DmelaDIA1), Echinodermata (S.
purpuratus DIA1 and DIA1L: SpurpDIA1 and SpurpDIA1L), Cephalochordata (B. floridae DIA1 and DIA1L paralogues: BflorDIA1, BflorDIA1La, b, and c),
and Chordata. The latter includes representatives of the subphylum Urochordata (C. intestinalis DIA1: CinteDIA1) and subphylum Vertebrata (H.
sapiens DIA1 and DIA1R: HsapiDIA1 and HsapiDIA1R). Amino acid numbering from the master alignment (Figure S7) is provided above the alignment.
Gaps required for optimizing the master alignment (Figure S7) are indicated by dashes. Standard single-letter amino acid abbreviations are used.
Organism abbreviations use the first letter of the genus name, followed by the first four letters of the species (e.g. Homo sapiens DIA1R is abbreviated
to HsapiDIA1R). Full species names and accession numbers can be found in Tables S1, S4 and S7. The predicted location of the DIA1 and DIA1R signal
peptides (SP) are indicated above the alignment (Figure S5). Conserved amino acid motifs detected in the master alignment (Table 3, Figure S7) are
indicated in numbered boxes above the alignment. Consensus amino acids for each motif are indicated below the alignment. Amino acids absolutely
conserved across the whole DIA1-family are indicated in red upper-case letters, those strongly conserved across the whole DIA1-family are in green,
and those weakly conserved across the whole DIA1-family in blue (Figure S7). In addition, black lower-case letters indicate amino acids conserved in
over 80% of DIA1-family sequences (Figure S8), while grey lower-case letters indicate conservation in 50–80% of DIA1-family sequences (Figure S9).
doi:10.1371/journal.pone.0014547.g005
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reticulum, DIA1L proteins cannot, and will fulfil a cytosolic

function. The altered sub-cellular localization of DIA1L compared

to the parental DIA1 may contribute to the sequence divergence of

DIA1L proteins compared to that of DIA1 proteins (Table S9).

Subcellular relocalization has previously been described as a

mechanism for duplicate gene retention [53–55] and as a factor

contributing to asymmetric sequence divergence [56].

Identification of further DIA1L homologues in amphioxus
While a single DIA1L homologue was found in the echinoderm

genome, and three full-length DIA1L homologues in the

cephalochordate B. floridae (Table S8), we also found evidence

that further DIA1L homologues may exist in the B. floridae genome.

In the first assembly (August, 2009) of the B. floridae genome, 14

incomplete DIA1L genes were annotated. In the most recent

assembly (October, 2009), we found evidence for five partial

DIA1L genes (Table S10), in addition to the 3 full-length

amphioxus DIA1L homologues. Our analyses (below) suggest the

number of DIA1L homologues, however, will be eight, as some of

the partial DIA1L genes represent redundant allelic copies (Table

S10). Further analysis is hampered by gaps in the genomic

sequence.

The currently annotated five incomplete DIA1L genes in the B.

floridae genome were identified by BLAST searches of the NR

database (Table S10). We have numbered the partial (DIA1L-pt)

genes DIA1L-pt1–DIA1L-pt5, for discussion purposes. Two of the

DIA1L partial genes, DIA1L-pt3 and DIA1L-pt4 are similar to each

other and share synteny (Table S10), and will most likely prove to

be alleles of each other (and be re-annotated in a future assembly

of the B. floridae genome). Expression of DIA1L-pt3 and its

proposed allele DIA1L-pt4 is supported by EST data (Table S10)

but, at present, expression data for DIA1L-pt5 is lacking. DIA1L-

pt1 and DIA1L-pt2 are annotated as adjacent genes encoded on

opposite DNA strands. A single EST with 93% identity to both

DIA1L-pt1 and DIA1L-pt2 suggests expression of at least one of

these genes (Table S10). However, the significance of a lack of

expression data for DIA1L-pt5 is unclear, as it must be appreciated

that, for B. floridae, EST sequencing is still limited. Therefore, while

a duplication of DIA1 early in the deuterostome lineage generated

DIA1L, there has been large-scale lineage-specific expansion of the

DIA1L in the cephalochordate lineage. Strikingly, despite the

retention of DIA1L homologues in echinoderms and cephalochor-

dates subsequent to this gene duplication event, DIA1L is absent in

all later-branching deuterostomes, indicating DIA1L was ‘lost’ or

diverged dramatically (precluding detection) prior to tunicate

divergence (see Figure 1).

A non-processed DIA1 pseudogene in the mosquito C.
pipiens?

The C. pipiens genome contains a second DIA1-like gene (Table

S1) classified as putatively translated on the NR-database

(accession number XP_001867819). However, there is some

evidence for re-classification of the C. pipiens gene as a non-

processed pseudogene (Table S1) and we are currently investigat-

ing this possibility in more detail. The presence of non-processed

pseudogene provides evidence of a past lineage-specific DIA1 gene

duplication event in C. pipiens. No non-processed or processed

pseudogenes were detected in other species using genomic BLAST

searches.

DIA1 family phylogeny
To assess the evolutionary relatedness of the DIA1 family genes,

a phylogenetic tree, based on the alignment of the amino acid

sequences of all DIA1 homologues (Figure S7) was generated, using

a distance-based neighbour-joining method [57]. Figure 6 illus-

trates our current knowledge of the evolutionary relationship

between DIA1, DIA1R, and DIA1L. Four key features were

highlighted by these analyses. (i) DIA1R orthologues cluster with

each other, supporting the hypothesis of a gene duplication, and

subsequent divergence of the duplicated gene. (ii) Evidence for a

second DIA1 duplication in the teleost lineage is highlighted by the

clustering of the two DIA1 paralogues from D. rerio first with each

other, rather than with DIA1 from other vertebrates. By contrast,

the D. rerio DIA1R orthologue clusters with DIA1R of other

vertebrates, not with the D. rerio DIA1 paralogues. (iii) Clustering of

the DIA1L gene products of sea urchin (S. purpuratus) and

amphioxus (B. floridae) together, supports the scenario of a DIA1

gene duplication early in the deuterostome lineage, followed by a

lineage-specific expansion of DIA1L in B. floridae. (iv) DIA1 from

the sea squirt, C. intestinalis, did not branch in the position expected

from the known phylogenetic relationship of species (Figure 2).

Our neighbourhood-joining analysis found C. intestinalis DIA1

clustering with the DIA1R orthologues, rather than the DIA1

orthologues, of other species (Figure 6). However, C. intestinalis

does not encode a DIA1R gene, and has only one DIA1 gene,

although the resulting gene product has characteristics interme-

diate to DIA1 and DIA1R of other species (see above). The

unusual branching of C. intestinalis DIA1 may be due to one or

more of the following factors: loss of a duplicated gene, convergent

evolution, and/or limitations in the phylogenetic reconstruction

method. Use of other amino acid alignment methods (data not

shown) and different methods of phylogenetic reconstruction, such

as maximum-likelihood (Figure S11) or Bayesian analysis (Figure

S12), did not alter the branching of the C. intestinalis DIA1 gene to

that consistent with the current evolutionary model of species.

In summary (Figures 1 and 6), the earliest-branching metazoan

in which DIA1 was detected was the cnidarian, N. vectensis. The

origin of DIA1L can be traced back to early in the deuterostome

lineage, where a DIA1 gene duplication event and subsequent

divergence occurred. In the cephalochordate lineage, large-scale,

lineage-specific duplication of DIA1L has occurred, leading to an

estimated 7 copies of DIA1L in the B. floridae genome. DIA1L loss

(or divergence precluding detection) then occurred prior to

urochordate branching, and DIA1L homologues are not detected

in urochordates or vertebrates. The origin of DIA1R (via DIA1

duplication) coincides with the two WGDs occurring early in

vertebrate evolution, and humans and other vertebrates have two

DIA1 homologues: DIA1 and DIA1R. By contrast, further DIA1

gene duplication has occurred in the fish lineage which may have

coincided with the teleost WGD, or alternatively an event specific

to the ostariophysan lineage (Figure 3). Loss of DIA1R has

occurred in the acanthopterygian fish lineage. Together, our data

support the hypothesis that multiple gene duplication and gene

‘loss’ events have occurred during the evolution of the DIA1

family. Three subfamilies of expressed extant genes exist that share

a number of common motifs: DIA1, DIA1R, and DIA1L. The DIA1

and DIA1R gene products from all species are targeted to the

lumen of the secretory pathway and DIA1L gene products to the

cytoplasm. Animal models may be useful in understanding why

defective DIA1 and DIA1R gene products cause ASD and/or

mental retardation.

Discussion

Defective human DIA1 and DIA1R genes, despite their

ubiquitous tissue expression, are implicated in the etiology of

autism, autism-like syndromes, and/or mental retardation [38,39].
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Figure 6. Evolutionary relationships between DIA1-family members. The evolutionary history of the DIA1 family was inferred using the
neighbour-joining method [57]. The optimal tree is shown, with statistical reliability of branching assessed using 1000 bootstrap replicates [155],
where percentage values are shown next to the branches. The tree is drawn to scale, with branch lengths in the same units as those of the
evolutionary distances used to infer the phylogenetic tree. The evolutionary distances were computed using the Poisson correction method [170] and
units are the number of amino acid substitutions per site. All positions containing gaps were eliminated from the dataset (Figure S10). There were a
total of 258 positions in the final dataset. Phylogenetic analyses were conducted in MEGA4 [150]. The tree was rooted on the cnidarian N. vectensis
DIA1 sequence (NvectDIA1), as highlighted with an asterisk. Organism abbreviations use the first letter of the genus name, followed by the first four
letters of the species. Full species names and accession numbers can be found in Tables S1, S4 and S7.
doi:10.1371/journal.pone.0014547.g006
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Little is known about DIA1 or DIA1R, except that the genes are

ubiquitously expressed and they encode signal peptides for

targeting to the secretory pathway, with DIA1 localizing to the

lumen of the Golgi apparatus [39,48]. Here we confirmed the

presence of a signal peptide for secretory pathway targeting in

DIA1 and DIA1R gene products from all species, and have studied

the evolutionary history of the DIA1 gene, finding its emergence

coincided with the development of the early nervous system. By

contrast, the closely related DIA1R gene is exclusive to vertebrate

genomes. We further identify a related gene DIA1L in echinoderm

and amphioxus genomes only, where the gene products are

predicted to be cytoplasmically-targeted. Therefore, the recently

identified human DIA1 gene is part of a larger, evolutionarily-

related gene family.

DIA1 evolution coincided with early nervous tissue
development

We found DIA1 to be conserved from cnidarians to humans, but

we found no evidence for DIA1 in the currently available poriferan

sequence databases. Cnidarians have a basic nervous system, but

are constructed on principles similar to those of complex

metazoans, including the formation of organized nerve networks

[58]. The cnidarian apical pole is considered a primitive head, and

it is currently thought that nervous tissue first evolved in cnidarians

or a closely-related ancestor [58,59]. Therefore, the detection of

DIA1 coincides with the evolution of a neuronal network,

providing circumstantial evidence for a key role of DIA1 in

neuronal function.

Absence of DIA1 in nematodes
Unexpectedly, DIA1 was absent in nematodes, including the

completed genomes of C. elegans and C. briggsae. There are two

possible explanations for this finding: (i) nematodes have lost the

DIA1 gene and have no need for an equivalent gene; or (ii) a

nematode DIA1 is still present, but it is undetectable due to

evolutionary divergence. This apparent nematode-specific gene

loss is not without precedent: it has been found that, while 20% of

S. purpuratus genes are found in fruit fly, only 15% are present in

nematode. Furthermore, while S. purpuratus has members of 97%

of the human kinase subfamilies, while Drosophila lacks 20%, and

nematodes 32% [60]. Indeed, more than half of the putative

nematode genes are unique to the phylum, with 23% being

species-specific [61]. Even within the nematode phylum, organ-

isms only share only around 60% of their genes [61]. Finally, a

study of ESTs from the Cnidarian Acropora millepora showed that

over 10% of the Acropora ESTs with clear human homologs, have

no representatives in the Drosophila or Caenorhabditis genomes [62].

Clearly, secondary gene loss in the nematode lineage is becoming

an increasingly well-documented phenomenon.

The hypothesis that the lack of detection of DIA1 in nematode

genomes is due to divergence, however, is also supported by the

rapid evolutionary rates reported in the nematode lineage [63–66],

with genome rearrangements occurring approximately four times

faster in the worm than in the fly [67] and 50-fold the rate in

vertebrates [68]. Our finding of DIA1 in arthropod genomes, but

its absence in nematode genomes, is not without precedent as only

35% of genes in C. elegans and D. melanogaster are considered

orthologous [69]. Therefore, while nematodes have provided

insights into many areas of neurobiology, there are also nematode-

specific phenomena. A lack of a DIA1 homologue in nematodes

may be related to some of the differences in neurobiology found in

nematodes compared to other metazoans [70–74]. Our overall

model is that DIA1 evolved in an ancestor of the cnidarians and,

despite being ubiquitously expressed in mammalian tissues

[39,41,75], gene loss has a marked impact on neurological

function in humans, thereby probably causing the symptoms of

ASD. Whatever the secretory-pathway role of DIA1 is, it is now

defunct or significantly different, in nematodes.

Evolution of the DIA1-related gene DIA1R
We have recently described a ubiquitously-expressed DIA1-

related gene in the human genome, DIA1R, where deletion or

mutation is linked to ASD-like syndromes and/or X-linked mental

retardation [39]. Unlike DIA1, which we found present in the

genome of most metazoans, we found DIA1R to be restricted to the

subphylum Vertebrata within the phylum Chordata, and DIA1R is

absent from urochordate and cephalochordate genomes. There-

fore, the emergence of DIA1R coincides with the timing of the

known two whole genome duplication (WGD) events, which

occurred early in the vertebrate lineage around 500 million years

ago [43,76–79]. These WGDs preceded the dramatic rise of

vertebrate life that occurred during the Cambrian explosion and

coincided with the development of larger brains, a neural crest,

and cranial placodes. Indeed, genome duplications often precede

species-expansion, although links between genome duplication and

increased species diversity remains correlative [80]. Certain genes

were preferentially maintained after the vertebrate WGD events

including transporters and kinases, with many being involved in

signal transduction and development [81–83]. This provides

circumstantial evidence for the involvement of DIA1-family genes

in such processes. Together, these data indicate that DIA1R is a

post-2R gene with a role in brain function.

Identification of a cytosolic homologue of DIA1: DIA1L
DIA1-like homologues, termed DIA1L, were detected in the

genomes of S. purpuratus (an echinoderm) and B. floridae (a

cephalochordate). Our data suggest an origin of DIA1L by DIA1

duplication early in the deuterostome lineage. Other gene families

known to have diversified by gene duplication subsequent to the

protostome-deuterostome divergence include the myosin light

chain family [84], and the ST8Sia family of sialyltransferases [85].

Unlike both DIA1 and DIA1R, DIA1L proteins were unexpectedly

found to lack signal peptides, and are therefore predicted to have a

cytosolic location and function. There are a number of possible

explanations for the restriction of DIA1L to echinoderm and

cephalochordate genomes: (i) S. purpuratus and B. floridae are unique

in their requirement for a DIA1-family role in both the cytoplasm

and secretory pathway, resulting in subsequent loss of the gene in

other species; (ii) Other species require cytoplasmic DIA1-family

activity and achieve this by currently uncharacterized splicing

events; or (iii) The DIA1L gene diversified rapidly after divergence

of cephalochordates and is no longer recognizable as a DIA1L

homologue in extant chordate genomes. While we currently

cannot differentiate between these hypotheses, we favour the latter

hypothesis, as the central portion of B. floridae DIA1La shows weak

amino acid similarity to an as-yet-uncharacterized human gene

product (data not shown).

Intensive gene duplication pre-dating vertebrate DIA1
duplication

While the echinoderm, S. purpuratus, encodes a single DIA1 and

a single DIA1L gene, the amphioxus genome encodes a single

DIA1 gene, and multiple DIA1L genes. While three of the DIA1L

genes in B. floridae are well-documented, the current genome

assembly also provides evidence for a further 5 DIA1L genes

(although two of these may be allelic). These data provide evidence

for a large-scale expansion of DIA1L specific to the amphioxus
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lineage. The genome of B. floridae was previously considered

relatively unduplicated [86,87], however more recent evidence

documents large-scale duplication of genes from certain functional

categories in the amphioxus lineage. These include nuclear

hormone receptors [88], opsins [42], tyrosine-kinase superfamily

genes [89], and receptors and receptor-adaptors of the innate

immune system [90]. It has therefore been suggested that the

vertebrate WGD events, occurring subsequent to amphioxus

divergence, were symptoms of a pre-existing predisposition toward

genomic structural change [78]. Our data support the hypothesis

that the early vertebrate WGDs were preceded by remarkable

gene-family expansion and genome rearrangements.

Duplication and loss of DIA1-family genes in teleost fish
Two closely-related DIA1 paralogues were found in the genome

of the ostariophysan fish D. rerio and P. promelas: DIA1a and DIA1b.

There are two possible explanations for this finding: (i) origin of

the duplicated DIA1 gene during the fish-specific WGD (also

known as ‘3R’), with retention in the ostariophysan lineage, but

loss of the duplicated in gene in both the paracanthopterygian and

acanthopterygian/protanthopterygian fish lineages, or (ii) a DIA1

gene duplication event occurring early after divergence of the

ostariophysan lineage, with maintenance of the duplicated gene

in this lineage. The two possible evolutionary scenarios are

superimposed on a fish-centric phylogenetic tree in Figure 3.

There are current precedents for complicated evolutionary path-

ways for other teleost genes. Both the Elopomorpha, Ostariophysi,

Salmoniformes, and Acanthipterygii have lineage-specific dupli-

cations of the vitellogenin (Vtg) genes occurring after the 3R WGD

event (our unpublished data; [91]). By contrast, two independent

losses of the androgen receptor-B (AR-B) gene, subsequent to the

3R WGD, have occurred, one at the base of the Otophysi and

another at the base of the Salmoniformes [92]. The precise

evolutionary history of the DIA1 paralogues in fish cannot be

reconstructed until significantly more fish sequence data become

available.

Why ostariophysan fish have retained three DIA1-family genes

is unclear. Features specific to ostariophysan fish include: small,

horny projections called unculi; a bony Weberian apparatus; the

release of a pheromone known as the alarm substance, when

frightened; and highly social behaviour [93]. As we propose the

DIA1 and DIA1R gene products play a ubiquitous role in the

secretory pathway [39], it is possible that DIA1-family homologues

play a role in generating these ostariophysan-specific features.

Zebrafish are a widely-used model organism for studying verte-

brate development in both normal and pathologic conditions [33]

and are also being used to study the etiology of neurological

disorders including Alzheimer disease [94] and schizophrenia

[34,95–97]. Indeed, due to overlapping genes, risk factors and

neurological findings, methodology applicable to studies of

schizophrenia is also highly relevant to autism [98–106]. The

ability to manipulate the genome and quantitate effects on

behavioural phenotypes, including social skills, makes the zebrafish

an attractive model organism to study the etiology of autism

[31,107,108].

Another unexpected finding was the absence of a DIA1R gene

from the genomes of acanthopterygian fish, including the

‘completed’ genomes sequence of pufferfishes T. rubripes (Fugu)

and T. nigroviridis, and the medaka O. latipes. It would be unusual to

have gaps encompassing the same gene in all three species, and

unprecedented to also have the same gene unrepresented in the

EST databases of all acanthopterygian fish, unless it is not encoded

by those species. It is possible DIA1R is present and functional,

but has diverged beyond recognition in acanthopterygian fish.

However, there is a precedent for ‘loss’ of other genes during

acanthopterygian fish evolution, and therefore we consider this a

more likely phenomenon. For example, loss of Hox-family genes,

and melanocortin receptor genes have occurred in pufferfish when

compared to zebrafish [109,110]. Indeed, while 5,918 orthologous

genes are found between the medaka and pufferfish, only 1,365

are found between medaka and zebrafish [111].

Given the proposed ubiquitous role of DIA1R in secretion, with

specific effects on brain function [39], loss of DIA1R in

acanthopterygian fish would be expected to relate to structural

and/or functional differences in acanthopterygian fish compared

to fish from other superorders. Indeed, differences in brain

structure and function have been reported between species from

the superorder Ostariophysi and Acanthopterygii [112–116]. Of

possible relevance to the etiology of ASD, the fish lacking DIA1R

are considered solitary in nature, while those with DIA1R are

considered schooling fish [117].

Evolution of urochordate DIA1
Comparative analyses of the DIA1 gene product of the

urochordate C. intestinalis revealed both DIA1- and DIA1R-like

characteristics. The unusual phylogenetic placement of C.

intestinalis DIA1 is not without precedent. It is well-known that

the Ciona lineage is fast-evolving, making topologies unreliable

[118]. Indeed, it has been reported that both the sea urchin and

amphioxus genomes are more representative of the ancestral

deuterostome than that of C. intestinalis, due to its considerable

evolutionary changes [42]. In the future, the use of further

sequence data from other urochordate species may resolve this

issue. The unique characteristics of tunicate DIA1 and its sequence

divergence may relate to traits specific to that lineage. For

example, tunicates are the only animals capable of producing

cellulose, which is a major component of the characteristic ‘tunic’

which is a defining feature of the subphylum Tunicata [119].

Evolutionary divergence of DIA1, and modification of its role

within the secretory pathway, may be required for tunic secretion.

We are currently investigating the evolution of C. intestinalis DIA1

in more detail.

Conservation within the DIA1 protein family
Amino acid sequence alignments revealed a number of amino

acids conserved across the DIA1 protein family. Absolutely

conserved amino acids found were: two cysteine residues in the

amino-terminal region, a centrally-located glycine residue, and a

further cysteine residue in the carboxy-terminal region. Conserved

cysteine residues have been implicated in the dimerisation of some

proteins [120] and can be essential components of metal- or

calcium-ion binding sites [121–124]. However, none of the known

consensus sequences for such motifs are found in DIA1 or DIA1R.

We identified 15 unique motifs characteristic of the DIA1-family,

and suggest that hydrophobic motif-1 may be a Golgi-retention

motif in DIA1 and DIA1R proteins. While the retention of Golgi-

resident proteins with TM domains is well-studied [125], retention

of fully-luminal Golgi proteins is sparse. However, an amino-

terminal leucine-rich region is essential for Golgi retention of the

NEFA/NUC family of Ca2+-binding EF-hand/leucine zipper

proteins [126]. None of the remaining DIA1-family motifs have a

predicted function in proteins localized to the lumen of the ER or

Golgi apparatus.

Arthropod DIA1 proteins were found to differ from those from

other species and form their own phylogenetic clade. DIA1-motif 1

was poorly conserved in arthropod DIA1 proteins, while motifs 4

and 14 were absent in DIA1 from Drosophila species. As a result of

these differences, most of the Drosophila DIA1 proteins did not have
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significant similarity to that of the divergent C. intestinalis DIA1 by

BLAST, although there was sufficient similarity to have significant

matches to DIA1 proteins from all other species. By contrast,

DIA1 from the wasp species Nasonia vitripennis was the most similar

to non-arthropod DIA1 proteins. This finding was not unexpected,

as around 25% of Nasonia genes are more similar to human genes

than to their Drosophila counterparts, reflecting the derived nature

of many Drosophila genes [127]. Overall, amino acid similarity was

greatest in central part of the DIA1 family sequences, compared to

the amino- and carboxy-terminal portions, indicating the central

part of DIA1 contains the core functional domain of this protein.

Conclusion
We have demonstrated that DIA1 and DIA1R, but not DIA1L,

encode signal peptides for targeting to the secretory pathway.

Together, with the finding that DIA1 or DIA1R mutations occur in

patients with ASD and/or mental retardation [38,39], a role for

DIA1 and DIA1R within the secretory pathway of cells is

suggested as causative. While we propose that both DIA1 and

DIA1R encode a hydrophobic amino-terminal Golgi-retention

motif, in the absence of known functional protein motifs and

domains, ongoing studies on human DIA1 and DIA1R are required

to determine the exact role(s) of these genes in cellular function,

particularly the effects on cognitive function.

Materials and Methods

Detection of DIA1-family homologues
The human DIA1 amino acid sequence [38,48] or human

DIA1R amino acid sequence [39] were retrieved from the

National Center for Biotechnology Information (NCBI) Entrez

Protein database, and used in BLAST and keyword searches

(search terms: c3orf58 or cXorf36) of the NR protein database at

the NCBI [46,128,129]. EST and genomic databases at the NCBI

were searched using the TBLASTN algorithm [46]. Additional

BLAST and keyword searches were carried out on: the Ensembl

database, including preliminary genome assemblies [130,131]; the

Joint Genome Institute (JGI) database [132], including the

placozoan species Trichoplax adhaerens [133]; and SilkDB, the

silkworm sequence database [134]. Databases were last searched

in August 2009, with the exception of B. floridae, where information

was updated using assembly data from October 2009.

Protein alignments and analyses
Protein sequence alignments were generated with CLUSTALW

(version 1.8) [47] at NPS@ [135] with manual alignment of some

positions. Boxshade (version 3.21), available at EMBnet [136–

137], was used to format some amino acid alignments. The

ExPASy Compute pI/MW tool was used to calculate theoretical

molecular weights and isoelectric points [138]. Three trans-

membrane prediction methods were used to analyze protein

sequences: TMpred [139], TMAP [140], and HMMTOP version

2.0 [141]. Signal peptides were evaluated using SignalP version 3.0

[51,142] or the SigCleave algorithm [52], which is part of the

EMBOSS software suite [143]. Amino acid motifs and domains

were investigated using the following resources: MOTIF at

GenomeNet [144]; PSORT-II [145]; the Conserved Domain

Database at the NCBI, which also contains data from Pfam,

SMART and COG [146]; and the ELM resource [147].

Phylogeny
Gblocks version 0.91b was used to eliminate poorly aligned

positions and divergent regions in aligned protein sequences

[148,149]. The evolutionary history of the DIA1 family was

inferred using the neighbour-joining method [57] in MEGA4

[150], or using the PhyML maximum-likelihood algorithm [151–

152] or Bayesian inference [153] via the ‘Phylogeny.fr’ web-server

[154]. Statistical reliability of branching was assessed using either

bootstrap replicates [155] or approximate likelihood ratio testing

[156].
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Figure S1 Amino acid sequence comparison of DIA1a and

DIA1b from zebrafish. The sequence alignment was generated

using CLUSTALW [47]. Identical amino acids are highlighted in

red font and indicated below the alignment with an asterisk (*).

Strongly similar amino acids are highlighted in green font and

indicated below the alignment with a colon (:). Weakly similar

amino acids are highlighted in blue font and indicated below the
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font. Amino acid numbering is provided above the alignment.
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abbreviations are used. Organism abbreviation uses the first letter

of the genus name, followed by the first four letters of the species

(i.e., Danio rerio DIA1a is abbreviated to DreriDIA1a). Accession

numbers can be found in Table S1.

Found at: doi:10.1371/journal.pone.0014547.s011 (0.01 MB

PDF)

Figure S2 Amino acid sequence comparison of DIA1 proteins.

The sequence alignment of all full-length DIA1 proteins was

generated using CLUSTALW [47]. A consensus amino acid

sequence is presented below the alignment, where uppercase

letters indicate absolutely conserved amino acids. Regions of

greater than 50% conservation are shaded (identical amino acids

are in black boxes and similar amino acids in grey boxes). Amino

acid numbering is provided on the left-hand side of the alignment.

Gaps required for optimal alignment are indicated by dashes. The

alignment reveals that 10 amino acids are absolutely conserved

(2% identity), with a further 6% amino acids being similar,

providing an overall similarity of 8%. Standard single-letter amino

acid abbreviations are used. Organism abbreviation uses the first

letter of the genus name, followed by the first four letters of the

species (e.g., Strongylocentrotus purpuratus DIA1 is abbreviated to

SpurpDIA1). Accession numbers and full species names can be

found in Table S1.

Found at: doi:10.1371/journal.pone.0014547.s012 (0.08 MB

PDF)

Figure S3 Amino acid sequence comparison of DIA1R proteins.

The sequence alignment was generated using CLUSTALW [47].

Identical amino acids are highlighted in red font and indicated

below the alignment with a red asterisk (*). Strongly similar amino

acids are highlighted in green font and indicated below the

alignment with a green colon (:). Weakly similar amino acids are

highlighted in blue font and indicated below the alignment with a

blue full stop (.). Dissimilar amino acids are in black font. Amino

acid numbering is provided above the alignment. Gaps are

indicated by dashes. The alignment shows 124 identical amino

acids (27% identity), with a further 27% similar amino acids,

providing an overall similarity of 54%. Standard single-letter

amino acid abbreviations are used. A consensus line is provided

below the alignment where the number ‘‘2’’ is inserted when no

consensus amino acid is found. Organism abbreviations use the

first letter of the genus name, followed by the first four letters of the

species (e.g., Monodelphis domestica DIA1R is abbreviated to

MdomeDIA1R). Accession numbers and full species names can

be found in Table S5.

Found at: doi:10.1371/journal.pone.0014547.s013 (0.03 MB

PDF)

Figure S4 Amino acid sequence alignment of DIA1 and DIA1R

proteins. The sequence alignment of all full-length DIA1 and

DIA1R proteins was generated using CLUSTALW [47]. A

consensus amino acid sequence is presented below the alignment,

where uppercase letters indicate absolutely conserved amino acids.

Regions of greater than 50% conservation are shaded (identical

amino acids are in black boxes and similar amino acids in grey

boxes) and 56% of aligned positions showed conservation in

.50% of sequences. Only 8 amino acids are absolutely conserved

(,2% identity), with a further 23 amino acids being similar (,5%)

in all DIA1 and DIA1R proteins. Amino acid numbering is

provided on the left-hand side of the alignment. Gaps required for

optimal alignment are indicated by dashes. Standard single-letter

amino acid abbreviations are used. Organism abbreviations use

the first letter of the genus name, followed by the first four letters of

the species (e.g., Gallus gallus DIA1R is abbreviated to Ggall-

DIA1R). Accession numbers and full species names can be found

in Tables S1 and S5.

Found at: doi:10.1371/journal.pone.0014547.s014 (0.13 MB

PDF)

Figure S5 Signal peptide localization in DIA1 and DIA1R

proteins. The sequence alignment and consensus sequence of the

amino terminal region of all full-length DIA1 and DIA1R proteins

is from Figure S4. Abbreviations are as in Figure S4. DIA1R

proteins were grouped together in the top portion of the figure,

with aligned DIA1 proteins below, where arthropod sequences are

placed above, nonvertebrate/nonarthropod sequences below, and

vertebrate DIA1 sequences in the middle (see annotation on right-

hand side of alignment). Initiation methiones were not manually

aligned. Bold red amino acids represent the last amino acid of the

amino-terminal signal peptide predicted using the NN algorithm

[51]. Bold blue amino acids represent the last amino acid of the

signal peptide predicted using the HMM prediction method [51].

Bold purple amino acids represent the last amino acid of the signal

peptide predicted by both NN and HMM prediction methods.

Bold underlined amino acids represent the last amino acid of the

signal peptide predicted by the Sigcleave algorithm [52]. Lack of

an underlined residue indicates no signal peptide cleavage site was

predicted within the aligned region by Sigcleave, and lack of a red

residue (or purple) indicates no signal peptide cleavage site

predicted by the NN algorithm. The most commonly predicted

site for cleavage of DIA1R signal peptides or vertebrate and

arthropod DIA1 signal peptides are indicated with arrows above

the alignment.

Found at: doi:10.1371/journal.pone.0014547.s015 (0.03 MB

PDF)

Figure S6 Amino acid sequence comparison of DIA1L proteins.

A single DIA1L protein from S. purpuratus (SpurpDIA1L) and three

DIA1L paralogues from B. floridae (BflorDIA1La, BflorDIA1Lb,

BflorDIA1Lc) were aligned using CLUSTALW [47]. Identical

amino acids shared between all four proteins are highlighted in red

font and indicated below the alignment with a red asterisk (*).

Strongly similar amino acids are highlighted in green font and

indicated below the alignment with a green colon (:). Weakly

similar amino acids are highlighted in blue font and indicated

below the alignment with a blue full stop (.). Dissimilar amino acids

are in black font. Amino acid numbering is provided above the

alignment. Gaps are indicated by dashes. The alignment shows

7% identical amino acids, with a further 20% similar amino acids,

providing an overall similarity of 27%. Amino acid similarity and

identity shared at the amino-terminal ends of the three longer

DIA1L proteins are indicated using the coloured fonts described

above, but the corresponding annotations (*, : and .) are in grey

font below the alignment. Standard single-letter amino acid

abbreviations are used. Accession numbers can be found in

Table S8.

Found at: doi:10.1371/journal.pone.0014547.s016 (0.02 MB

PDF)

Figure S7 Amino acid sequence comparison of DIA1-family

proteins. The sequence alignment of all full-length DIA1, DIA1R

and DIA1L proteins was generated using CLUSTALW [47].

Identical amino acids are highlighted in red font and indicated

below the alignment with a red asterisk (*). Strongly similar amino

acids are highlighted in green font and indicated below the

alignment with a green colon (:). Weakly similar amino acids are

highlighted in blue font and indicated below the alignment with a

blue full stop (.). Dissimilar amino acids are in black font. Amino

acid numbering is provided above the alignment. Gaps are

indicated by dashes. The alignment shows only 4 identical amino
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acids and 18 similar amino acids conserved across the entire

protein family (3% similarity). Standard single-letter amino acid

abbreviations are used. Organism abbreviations use the first letter

of the genus name, followed by the first four letters of the species

(e.g., Pteropus vampyrus DIA1 is abbreviated to PvampDIA1).

Accession numbers and full species names can be found in Tables

S1, S5 and S8.

Found at: doi:10.1371/journal.pone.0014547.s017 (0.05 MB

PDF)

Figure S8 Amino acids conserved in at least 80% of DIA1-

family members. The sequence alignment of all full-length DIA1,

DIA1R and DIA1L proteins was generated using CLUSTALW

[47]. A consensus amino acid sequence is presented below the

alignment, where uppercase letters indicate absolutely conserved

amino acids. Regions of greater than 80% conservation are shaded

(identical amino acids are in black boxes and similar amino acids

in grey boxes), and 10% of aligned positions showed conservation

in .80% of sequences. Amino acid numbering is provided on the

left-hand side of the alignment. Gaps required for optimal

alignment are indicated by dashes. Standard single-letter amino

acid abbreviations are used. Organism abbreviations use the first

letter of the genus name, followed by the first four letters of the

species (e.g., Salmo salar DIA1R is abbreviated to SsalaDIA1R).

Accession numbers and full species names can be found in Tables

S1, S5 and S8.

Found at: doi:10.1371/journal.pone.0014547.s018 (0.10 MB

PDF)

Figure S9 Amino acids conserved in at least 50% of DIA1-

family members. The sequence alignment of all full-length DIA1,

DIA1R and DIA1L proteins was generated using CLUSTALW

[47]. A consensus amino acid sequence is presented below the

alignment, where uppercase letters indicate absolutely conserved

amino acids. Regions of greater than 50% conservation are shaded

(identical amino acids are in black boxes and similar amino acids

in grey boxes), and 38% of aligned positions showed conservation

in .50% of sequences. Amino acid numbering is provided on the

left-hand side of the alignment. Gaps required for optimal

alignment are indicated by dashes. Standard single letter amino

acid abbreviations are used. Organism abbreviations use the first

letter of the genus name, followed by the first four letters of the

species (e.g., Tursiops truncatus DIA1 is abbreviated to Ttrun-

DIA1R). Accession numbers and full species names can be found

in Tables S1, S5 and S8.

Found at: doi:10.1371/journal.pone.0014547.s019 (0.14 MB

PDF)

Figure S10 DIA1-family amino acid sequences in FASTA

format. Each DIA1-family amino acid sequence starts with a

‘‘.’’ (greater-than) symbol followed by the species abbreviation

and protein type (e.g., Oryzias latipes DIA1 is abbreviated to

OlatiDIA1 and Pongo pygmaeus DIA1R to PpygmDIA1R). Follow-

ing the initial title line is the actual amino acid sequence, in

standard single-letter code. Accession numbers, full species names,

and differences to current database sequence data (due to

corrections) can be found in Tables S1, S5 and S8.

Found at: doi:10.1371/journal.pone.0014547.s020 (0.04 MB

PDF)

Figure S11 Maximum-likelihood tree of DIA1-family proteins.

Proteins encoded by each full-length DIA1-family gene were

aligned using CLUSTALW [47] and subjected to maximum-

likelihood analysis [151] using PhyML phylogeny software [135].

Approximate likelihood-ratio test for branch-support statistics

[156] was carried out, and percentage values are shown next to

branches. Branch lengths are proportional to the number of amino

acid substitutions per site (see scale bar). G-blocks were used to

eliminate poorly aligned positions and divergent regions, since

they may not be homologous or may have been saturated by

multiple substitutions [148]. The tree was rooted on the cnidarian

N. vectensis DIA1 sequence (NvectDIA1), as highlighted with an

asterisk. Organism abbreviations use the first letter of the genus

name, followed by the first four letters of the species. Full species

names and accession numbers can be found in Tables S1, S4

and S7.

Found at: doi:10.1371/journal.pone.0014547.s021 (0.12 MB

PDF)

Figure S12 Phylogeny of the DIA1-family reconstructed using a

Bayesian phylogenetic approach. A subset of DIA1-family gene

products were aligned using CLUSTALW [47] and subjected to

Bayesian inference of phylogeny using the MrBayes programme

[153]. The number above each branch refers to the Bayesian

posterior probability of the node, given as a percentage (e.g., 77

represents a posterior probability of 0.77). Branch lengths are

proportional to the number of amino acid substitutions per site (see

scale bar). Gblocks were used to curate the alignment [148]. The

tree was rooted on the cnidarian N. vectensis DIA1 sequence

(NvectDIA1), as highlighted with an asterisk. Organism abbrevi-

ations use the first letter of the genus name, followed by the first

four letters of the species. Full species names and accession

numbers can be found in Tables S1, S4 and S7.

Found at: doi:10.1371/journal.pone.0014547.s022 (0.07 MB

PDF)
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