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The pollen tube attractant peptide LUREs of Torenia
fournieri are diffusible peptides that attract pollen tubes
in vitro. Here, we report a method enabling the direct visu-
alization of a LURE peptide without inhibiting its attraction
activity by conjugating it with the Alexa Fluor 488 fluores-
cent dye. After purifying and refolding the recombinant
LURE2 with a polyhistidine tag, its amino groups were
targeted for conjugation with the Alexa Fluor dye. Labeling
of LURE2 was confirmed by its fluorescence and mass spec-
trometry. In our in vitro assay using gelatin beads, Alexa
Fluor 488-labeled LURE2 appeared to have the same activity
as unlabeled LURE2. Using the labeled LURE2, the relation-
ship between the spatiotemporal change of distribution and
activity of LURE2 was examined. LURE2 attracted pollen
tubes when embedded in gelatin beads, but hardly at all
when in agarose beads. Direct visualization suggested that
the significant difference between these conditions was the
retention of LURE2 in the gelatin bead, which might delay
diffusion of LURE2 from the bead. Direct visualization of
LURE peptide may open the way to studying the spatiotem-
poral dynamics of LURE in pollen tube attraction.
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Abbreviations: ANOVA, analysis of variance; CBB,
Coomassie Brilliant Blue; CRP, cysteine-rich peptide; EGF, epi-
dermal growth factor; EGFR, epidermal growth factor recep-
tor; EM-CCD, electron-multiplying charge-coupled device;
MALDI-TOF MS, matrix-assisted laser-desorption/ionization
time-of-flight mass spectrometry; MS, mass spectrometry;
PBS, phosphate-buffered saline; TIRF, total internal reflection
fluorescence; TFA, trifluoroacetic acid; TFP, tetrafluorophenyl.

Introduction

Plant sexual reproduction involves a complex pollen–pistil
interaction between male and female cells. A pollen–pistil

interaction is involved to ensure self-incompatibility, pollen
tube guidance and direct gametophytic interaction after the
arrival of the pollen tube at the embryo sac. Various molecules
are thought to be involved in related intercellular communi-
cation. Among them, peptides (small proteins or polypep-
tides with <150 amino acids or <15 kDa in molecular weight;
Silverstein et al. 2007) govern many processes in the pollen–
pistil interaction (reviewed by Suzuki 2009, Higashiyama 2010).
For example, SCR/SP11 is a peptide in the pollen coat of
Brassica sp. that works as a male determinant of self-
incompatibility (Schopfer et al. 1999, Takayama et al. 2000).
SCR/SP11 is the ligand of the receptor kinase SRK expressed
in the papilla of the female tissue (Stein et al. 1991, Takayama
et al. 2001). LAT52 and LeSTIG1 of Solanum lycopersicum
(tomato) pollen and stigma are peptides involved in pollen
tube germination and growth (Muschietti et al. 1994, Tang
et al. 2004). Chemocyanin and SCA are produced in the
Lilium longiflorum stigma and style and are involved in pollen
tube guidance, growth and adhesion (Jauh et al. 1997, Park
et al. 2000, Kim et al. 2003, Dong et al. 2005). In the ovary,
the LURE peptides of Torenia fournieri are secreted from the
synergid cell and attract pollen tubes (Okuda et al. 2009).
Zea mays EGG APPARATUS 4 (ZmES4) exclusively expressed
in the embryo sac is thought to be involved in pollen tube
discharge (Amien et al. 2010). Except for chemocyanin, most
of these compounds are cysteine-rich peptides (CRPs;
Higashiyama 2010). Knowledge of the dynamics of these pep-
tides during cell–cell communication may provide helpful in-
formation regarding their function. However, the actual
dynamics of these peptides during cell–cell communication
remain largely unknown. The visualization of peptides would
facilitate the study of intercellular signaling involving these
peptides.

The spatiotemporal dynamics of attractant peptides, includ-
ing diffusion, the concentration gradient and reception by
target cells, are important for their function. Pollen tube guid-
ance to the embryo sac is thought to be based on a concen-
tration gradient of pollen tube attractants (Higashiyama and
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Hamamura 2008). In T. fournieri, the embryo sac protrudes
from the ovule and the pollen tubes are attracted precisely
to the micropylar end of the embryo sac directly, without
the need to contact the surrounding female sporophytic cells
(Higashiyama et al. 1998, Higashiyama et al. 2001). Defensin-
like peptide LUREs have been identified as attractant peptides
in the Torenia system (Okuda et al. 2009). Pollen tube attrac-
tion by LUREs can be performed in vitro using recombinant
peptides expressed in Escherichia coli. If one could visualize
LURE peptides, the relationship between their spatiotemporal
dynamics and function might be investigated, including the role
of a concentration gradient. The relationship between the at-
tractant molecules and their concentration gradient in pollen
tube guidance is controversial (Higashiyama and Inatsugi 2006).
In axon guidance during neural network development, netrin
proteins serve as attractant molecules (Dickson 2002).
However, it remains to be elucidated whether a netrin concen-
tration gradient actually provides spatial information during
axon guidance (Dickson 2002, Kennedy et al. 2006, Mai et al.
2009). Visualization of LURE peptides may provide insights into
the relationship between chemotropism and concentration
gradients.

Various methods for visualizing peptides exist, including
chemical labeling with fluorescent dyes and the introduction
of peptide/protein tags or fluorescent proteins (Alcor et al.
2009). In this study, we examined the chemical labeling
of LURE with low molecular mass florescent dyes, which
would be expected to have less effect on the behavior and
activity of LUREs.

Results

Labeling LURE2 with Alexa Fluor 488

Fig. 1A–C shows a schematic of the method used for the fluor-
escent labeling of LURE peptide. Because the refolding step is
key for the attraction activity of recombinant LURE peptides,
the intramolecular disulfide bonds between six cysteine resi-
dues are thought to be important for this activity (Fig. 1B;
Okuda et al. 2009). Thus, we used amine-reactive Alexa Fluor
488 dye [hydrolysis-resistant tetrafluorophenyl (TFP) ester;
680.52 Da, without triethylamine], although thiol group (cyst-
eine)-reactive dyes can also be used for chemical labeling of
proteins. Alexa Fluor 488 is a sulfonated, photostable green
fluorescent dye (Panchuk-Voloshina et al. 1999). For conjuga-
tion with Alexa Fluor 488 TFP ester, we used LURE2 as a model
for the chemical visualization of LURE peptides.

Our polyhistidine-tagged LURE2 has five primary amines
that are potentially targeted by Alexa Fluor 488: an amino
group at the N-terminus and the four amino groups of lysine
residues in the LURE2 sequence following the predicted cleav-
age site (Fig. 1B). This polyhistidine-tagged LURE2 expressed in
E. coli can attract pollen tubes in vitro (Okuda et al. 2009).
Before labeling with Alexa Fluor 488, we investigated the mo-
lecular structure of the N-terminus of LURE2 expressed in E. coli

by the Edman degradation method. The amino acid sequence
of the N-terminus was GSSHH for a major population of LURE2,
indicating that the methionine at the N-terminus was lacking,
as frequently observed when the second amino acid of proteins
in E. coli is glycine (Hirel et al. 1989). Another minor population
of LURE2 contained the methionine at the N-terminus.

As shown in Fig. 1A, we purified and refolded LURE2. Then it
was labeled with Alexa Fluor 488, and dialyzed to remove un-
bound Alexa dye. Fig. 1D shows SDS–PAGE analysis of LURE2
before and after labeling with Alexa Fluor 488. Unlabeled
His-tagged LURE2 is estimated to be 11.8 kDa, but the apparent
molecular mass was 14.2 kDa with Coomassie Brilliant Blue
(CBB) staining (right lanes). Labeling LURE2 with Alexa Fluor
488 did not cause an apparent shift in LURE2 using 15% poly-
acrylamide gels. When examined using a fluorescence scanner,
we detected Alexa Fluor 488 fluorescence only in the labeled
LURE2 fraction (fluorescence observation, left lanes). To calcu-
late the efficiency of LURE2 labeling by Alexa Fluor 488 dye,
absorption at 280 nm for the LURE2 concentration and at
494 nm for the Alexa Fluor 488 concentration was measured
using an absorption spectrometer. By applying each value to a
formula (see Materials and Methods), each LURE2 molecule
was estimated to be covalently bound to 1.08 ± 0.02
(mean ± SD) molecules of Alexa Fluor 488 (n = 3).

Next, the Alexa-labeled LURE2 fraction was examined using
mass spectrometry (MS; Fig. 2). With matrix-assisted laser
desorption/ionization time-of-flight mass spectrometry
(MALDI-TOF MS), unlabeled LURE2 gave a major peak with
an m/z of 11,660 and a minor peak with an m/z of 11,791,
which corresponded to LURE2 without and with the first me-
thionine, respectively (Fig. 2A). In contrast, Alexa-labeled
LURE2 showed another four peaks (Fig. 2B). These appeared
to be LURE2 molecules without and with the first methionine
conjugated with a single (m/z = 12,190 and 12,339) or two Alexa
Fluor 488 molecules (m/z = 12,717 and 12,874). Thus we could
label the LURE2 peptide with at least one and two Alexa Fluor
488 molecules. We could not detect apparent peaks for LURE2
conjugated with more than three Alexa Fluor molecules, al-
though conjugation of a sulfonated molecule such as Alexa
Fluor might decrease the signal intensity of MS (Keough et al.
1999).

When Alexa Fluor 488-labeled LURE2 was digested by tryp-
sin, the N-terminal fragment conjugated with Alexa Fluor 488
was found (Fig. 2C). Tandem MS (MS/MS) analysis showed that
the amino acid sequence of both labeled and unlabeled frag-
ments was GSSHHHHHHSSGLVPR. As shown in the MS/MS
data in Fig. 2C, b-ions containing the N-terminal amino acids
were scarcely detected in the fragment conjugated with Alexa
Fluor 488. This indicated that conjugation of the Alexa Fluor
dye decreased the signal intensities of b-ions as discussed above.
In contrast, y-ions lacking N-terminal amino acids were de-
tected in both peptide fragments similarly. Thus we estimated
the ratio of Alexa Fluor labeling of the N-terminal amino group
by comparing signal intensities of the y8-ion (HSSGLVPR),
which gave the highest signal intensity and signal/noise ratio.
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The signal intensity of the y8-ion from the labeled N-terminal
fragment contained in the peak fraction was 20,471, while that
from the unlabeled N-terminal fragment was 14,557. The label-
ing ratio of the N-teminus of LURE2 was estimated to be 60%.
At least 60% of the LURE2 was estimated to be labeled with
Alexa Fluor 488. Hereafter, we call the fraction of Alexa Fluor
488-labeled LURE2 after dialysis ‘Alexa–LURE2’. Extending the
labeling time from 1 to 2 h did not increase the labeling

efficiency, but caused aggregation of the LURE2 peptides
(data not shown).

Evaluation of the attraction activity of
Alexa–LURE2

We examined whether Alexa–LURE2 could attract pollen tubes.
Alexa–LURE2 was embedded in gelatin microbeads approximately
40mm in diameter, as described by Okuda et al. (2009),

Fig. 1 Labeling LURE2 peptide with Alexa Fluor 488. (A) Flow chart for Alexa 488 labeling of LURE2 peptide; see Materials and Methods.
(B) Amino acid sequence of His-tagged LURE2. The LURE2 sequence following the predicted cleavage site is underlined. Lysine residues which
have an amine group are labeled in magenta and cysteine residues are labeled in blue. (C) Schematic representation showing the labeling reaction
of Alexa Fluor 488 TFP ester with LURE2 peptide. The molecular weights of LURE2 without the first methionine and Alexa Fluor 488 ester were
calculated using the program Vector NTI (Invitrogen). (D) Purified LURE2 and Alexa–LURE2 were analyzed by SDS–PAGE. The fluorescence of
peptides was visualized with a Typhoon 9400 scanner, followed by CBB staining for total peptides.
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at final concentrations of 4 and 400 nM. When a bead was put
in front of pollen tubes using a micromanipulator, the tubes
were observed to grow towards the bead (Fig. 3). We could not
find any difference in the behavior of the pollen tubes between

unlabeled LURE2 and Alexa–LURE2. Using fluorescence micros-
copy, Alexa–LURE2 molecules were visualized in the bead and
diffusing from the bead (Fig. 3). Moreover, Alexa488–LURE2
showed the same activity as unlabeled LURE2 (Fig. 4).

Fig. 2 MALDI-TOF MS analysis of Alexa–LURE2. Purified LURE2 before labeling (A) and the dialyzed reaction mixture after labeling for 1 h
(B) were analyzed by MS. The peaks at m/z 11,660, 11,791 (A) and 11,663, 11,795 (B) corresponded to unlabeled LURE2 without or with the first
mehionine, that at m/z 12,190, 12,339 (B) to LURE2 labeled with one molecule of Alexa Fluor 488 without or with the first mehionine, and that at
m/z 12,719, 12,894 (B) to LURE2 labeled with two molecules of Alexa Fluor 488 without or with the first mehionine. (C) The trypsin-digested
Alexa Fluor 488 labeling reaction mixture was analyzed by MALDI-TOF MS (upper spectrum). The peptides (GSSHHHHHHSSGLVPR)
corresponding to the N-terminus of unlabeled LURE2 (m/z 1,768.82) or LURE2 labeled with one molecule of Alexa Fluor 488 (m/z 2,286.63)
were further subjected to MS/MS analysis (lower spectra).
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The activity of Alexa–LURE2 was highest at the same concen-
tration as unlabeled LURE2 (4 nM); the frequency of pollen tube
attraction was also the same (55.5 ± 9.6%, n = 4, for unlabeled
LURE2; 55.2 ± 8.4%, n = 3, for Alexa–LURE2). Dilution of Alexa–
LURE2 also resulted in no difference between labeled and un-
labeled LURE2. Both Alexa–LURE2 and unlabeled LURE2 had
activity above 40 pM (�1,000 molecules in a 40 mm bead), but
not below 12 pM (�300 molecules in a 40mm bead). Alexa–
LURE2 appeared to contain at least 60% of labeled molecules,
as estimated above. These results suggest that the labeling
procedure did not impair the activity of LURE2.

Dynamics of LURE2 in the bead assay

We next tried to examine the relationship between the spatio-
temporal change of distribution and activity of LURE2 using
Alexa–LURE2. When we originally developed the bead assay
method (Okuda et al. 2009), we observed attraction using gel-
atin as the gellant, while attraction was unlikely to occur when

we used agarose as the gellant. In this study, we confirmed this
observation (Fig. 5A): agarose beads containing Alexa–LURE2
scarcely attracted pollen tubes under two different conditions
(4 and 400 nM). Comparison of the spatiotemporal dynamics
of Alexa–LURE2 in these two types of bead might identify
the conditions necessary for pollen tube attraction in vitro
by LURE.

To analyze the spatiotemporal dynamics of Alexa–LURE2,
we evaluated the quantitative capabilities of our microscope
system (Fig. 5B). We measured the fluorescence intensities of
various concentration of Alexa Fluor 488 using a microscopic
counting chamber. In the high-sensitivity condition of our
system using an electron-multiplying charge coupled device
(EM-CCD) camera, linearity between the concentration of
Alexa–LURE2 and the fluorescence intensity was confirmed
for relative fluorescence intensities from 40 to 230. We also
confirmed that Alexa Fluor 488 dye was not bleached much
under our observation conditions.

We then studied the spatiotemporal change in Alexa–
LURE2 in our bead assay (Fig. 5C). Alexa–LURE2 was observed
to diffuse rapidly from both 5% gelatin and 1.5% agarose beads
(diameter, 40 mm; Alexa–LURE2 concentration, 40 nM). A gra-
dient of fluorescence intensity was observed over 200 mm under
both conditions immediately after putting the beads on the
medium (time 0 min). At 5 min after adding the beads, the
apparent gradient of fluorescence intensity disappeared for
both gelatin and agarose beads. However, a significant differ-
ence was observed within the beads; some Alexa–LURE2 mol-
ecules remained in the gelatin beads without diffusing (�20mm
from the center of beads), while no such remaining fluores-
cence signal in the beads was observed with agarose beads.
When we used 5% gelatin (Fig. 5C), the rate of decrease of
Alexa–LURE2 from the bead was estimated to be 97.2% from
0 to 5 min, 63.5% from 5 to 10 min, and 29.4% from 10 to 15 min
(calculated from Fig. 5B), suggesting that Alexa–LURE2
continued to diffuse from the beads at these rates.

Next, the spatiotemporal change in Alexa–LURE2 was exam-
ined in the presence of pollen tubes. Fig. 6 shows a typical
example of pollen tube attraction with Alexa–LURE2. The
bead was made of 5% gelatin and contained 400 nM Alexa–
LURE2. As seen in Fig. 5C, the Alexa–LURE2 diffused rapidly

Fig. 4 Pollen tube attraction activity of LURE2 and Alexa–LURE2. The
purified LURE2 (filled box) and Alexa–LURE2 (open box) peptides
were used at different concentrations for the in vitro attraction
assays. Data are the means and SD (n = 3 with >9 pollen tubes per
replicate). Statistically significant differences were determined by
one-way ANOVA with Bonferroni post-hoc test [n = 3, ***P< 0.0001
compared with 0 M condition (a buffer containing no LURE2
peptide)].

Fig. 3 Attraction of pollen tubes by Alexa–LURE2. A pollen tube growing through a cut style (competent pollen tube) was attracted by the
Alexa–LURE2 in a gelatin bead (A, 4 nM; B, 400 nM). Numbers indicate time (minutes:seconds). Green fluorescence shows the Alexa–LURE2
remaining 12 min after positioning the gelatin bead (B). Arrowheads indicate tips of pollen tubes growing towards the beads. Scale bars: 30 mm.
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immediately after placing the bead and produced a fluores-
cence gradient across the tip of the pollen tube (Fig. 6,
0 min). The apparent gradient of fluorescence from the bead
disappeared by 10 min. At 12 min after placing the bead, the
pollen tube began to grow towards the bead. The growth rate of
the pollen tube, 1.67 mm min�1, did not change during the
in vitro assay, indicating that only the growth direction chan-
ged. As shown in Fig. 6, pollen tubes grew towards the bead
even when no fluorescence gradient spreading from the bead
was obvious. However, Alexa–LURE2 was still observed within
the bead, although the amount decreased gradually, indicating
that Alexa–LURE2 continued to diffuse from the gelatin bead
while the pollen tube changed its direction of growth and grew
towards the bead.

Discussion

Visualization of active LURE2 by chemical labeling
with Alexa Fluor 488

In this study, we fluorescently labeled the attractant peptide
LURE2, which showed the same activity as unlabeled LURE2.
The attraction activity was confirmed in an in vitro attraction

assay. For the chemical labeling of peptides, the thiol groups of
cysteines, amino groups and non-natural amino acids are gen-
erally used to target a complementary reactive group appended
to the dye (Ferreon et al. 2010). We used the amine-reactive
TFP ester of Alexa Fluor, which involved a simple procedure
and was unlikely to affect the intramolecular disulfide bonds
between the six cysteines of LURE2; the activity of LURE2
depends on the refolding of the recombinant peptide (Okuda
et al. 2009). We used the Alexa Fluor dye because it is photo-
stable and emits bright fluorescence. Dyes such as Cy and
TAMRA could be used similarly. Alternatively, the fusion of
peptide/protein tags is possible (Chen and Ting 2005), includ-
ing Halo tag, SNAP tag, Lumio tag and ACP tag. Compared with
the fusion of these tags, direct chemical labeling causes less
change in the molecular mass and consequently does not
alter the behavior or molecular structure of the peptides,
which are critical for their activity. With these tags, it is possible
to label peptides in a strict one-to-one ratio. Thus, fusion tags
can also be considered for labeling LURE, depending on
the purpose of the experiments. Fluorescent proteins, including
green fluorescent protein (GFP), are much bigger than pep-
tides, which might affect the behavior and activity of the
peptides.

Fig. 5 Spatiotemporal change of distribution of Alexa-LURE2 in different conditions using gelatin and agarose beads. (A) Alexa–LURE2 peptides
in gelatin beads (open box) and agarose beads (filled box) were used for the in vitro attraction assays. Data are the means and SD (n = 3 with >8
pollen tubes per replicate). (B) The fluorescence intensities of Alexa Fluor 488 hydrazide were measured in a hemocytometer for different
concentrations of Alexa Fluor 488 hydrazide. The mean fluorescence intensity per pixel was plotted against the concentration of Alexa Fluor 488
hydrazide. (C) The fluorescence intensities of Alexa–LURE2 in a 5% gelatin bead (left graph) and a 1.5% agarose bead (right graph) were measured
at different time points. A 40 nM concentration of Alexa–LURE2 was used. The fluorescence intensity of the lines from the center of a bead was
plotted.
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While at least 60% of the LURE2 was estimated to be labeled
with Alexa Fluor 488 and the labeled molecules appeared to
have the ability to attract pollen tubes, the Alexa–LURE2 frac-
tion still contains various molecules, as shown by MS (Fig. 2),
including unlabeled LURE2, LURE2 with different numbers of
Alexa Fluor molecules and possibly LURE2 in which different
amino groups are labeled. Because LUREs tend to be absorbed
by the column, the fractionation of the molecules using gel
filtration, ion exchange or reverse phase chromatography is
still being studied. Alternatively, the substitution of the four
lysine residues by silent mutations may be a way to target the
N-terminal amino group specifically. We showed that the
N-terminal amino group of the recombinant LURE2 could be
labeled by Alexa Fluor 488 (Fig. 2). Labeling of the N-terminal
amino group is less likely to inhibit the activity of LUREs than
that of lysine residues of LUREs because fusion of the polyhis-
tidine tag of 34 amino acids did not impair the activity of pollen
tube attraction (Okuda et al. 2009).

The visualization of various ligand peptides has been
reported in animals. Studies include the chemical labeling of
insulin with fluorescent dyes (Schlessinger et al. 1978).
Epidermal growth factor (EGF) was visualized by labeling it
with amine-reactive Cy3 or Cy5 dyes to investigate EGF recep-
tor (EGFR) signaling at the surface of living cells by single-
molecule imaging (Sako et al. 2000). Conversely, there are
few reports on the visualization of peptides/ligands in plants,
despite the increasing number of studies of plant peptide hor-
mones (Matsubayashi 2011). An elicitor, 22 kDa fungal protein
ethylene-inducing xylanase, has been visualized to examine its
binding to its receptor (Ron and Avni 2004). LURE peptides can
induce a quick response by pollen tube cells in vitro, and a
small number of LURE molecules can attract pollen tubes.
As shown in Fig. 4 and previously (Okuda et al. 2009), as few
as 1,000 molecules in a bead can attract pollen tubes. Based on
the fluorescent visualization in this study, direct imaging ana-
lyses of LURE peptides might serve as a model for plant studies.

Fig. 6 Behavior of pollen tubes and spatiotemporal change of distribution of Alexa-LURE2 during in vitro assay using a gelatin bead (A) and an
agarose bead (B). The in vitro attraction assay was performed using 400 nM Alexa–LURE2. Pseudo-colored 8-bit images correspond to the
fluorescence intensities of Alexa–LURE2. Red represents the highest level, corresponding to the fluorescence intensity of 78 (arbitary unit, see
color scale). Numbers indicate time (minutes:seconds). Scale bars: 50 mm.
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Dynamics of LURE2 peptide during in vitro pollen
tube attraction

This is the first reported study to visualize the spatiotemporal
dynamics of LURE2 during an in vitro pollen tube attraction
assay. Comparison of spatiotemporal change in the distribution
of Alexa–LURE2 between gelatin and agarose bead assays pro-
vided insight into the factors responsible for pollen tube attrac-
tion. The former resulted in high pollen tube attraction, while
the latter did not (Fig. 5A). A gradient of fluorescence intensity
was observed immediately after adding both types of bead.
We found that most of the LURE2 peptide molecules diffused
rapidly from both types of bead (Figs. 5, 6). When we used
gelatin beads, >95% of the LURE2 peptide diffused from the
beads within 5 min. After 5 min, a small amount of Alexa–
LURE2 was retained in the gelatin beads, but not in the agarose
beads. In the gelatin beads, Alexa–LURE2 was suggested to dif-
fuse from the bead with a longer duration, even after 5 min. This
sustained flux of a small amount of LURE2 might resemble the
secretion from the synergid cell and might be critical for pollen
tube attraction.

The timing of the directional change of pollen tube growth
ranged from a few minutes to >10 min. As shown in Fig. 6,
pollen tube attraction still occurred after the gradient of fluor-
escence intensity disappeared. Pollen tubes might sense a
very low LURE2 concentration gradient below the range of
sensitivity of our imaging system, although we cannot deter-
mine exactly when the pollen tube senses the LURE2.
Single-molecule imaging of the LURE peptide on the surface
of pollen tubes would be useful for further study of the dynam-
ics of LURE.

Single-molecule imaging is a powerful technique for study-
ing the interaction between ligands and receptors. For example,
chemotaxis of the slime mold Dictyostelium toward Cy3-labeled
cAMP has been used to show gradient sensing by receptors
(Ueda et al. 2001). Dimerization of EGFR during the binding
of EGF peptide has also been demonstrated (Sako et al. 2000).
These single-molecule analyses have been performed on cell
surfaces using total internal reflection fluorescence (TIRF) mi-
croscopy. Recently, a highly inclined thin illumination method
has been developed by modifying TIRF microscopy (Tokunaga
et al. 2008, Konopka and Bednarek 2008), enabling us to per-
form single-molecule analysis in cells several microns thick.
Single-molecule imaging analysis of LURE peptides might
be possible for examining the relationship between the
number and position of LURE molecules bound on the pollen
tube surface and the directional change of the pollen tube.
The development of an in vitro attraction method without
agarose medium, as well as the search for LURE receptors,
is now in progress for single-molecule imaging of LURE
peptides.

Pollen tubes can follow the synergid cells of ovules moved by
a micromanipulator (Higashiyama and Hamamura 2008). This
indicates that the pollen tube can sense dynamic changes in the
distribution of attractant molecules around it and respond

precisely to the attraction signal. LURE1 and LURE2 are involved
in the attraction signal and there are other possible attractant
CRPs expressed in the synergid cells of T. fournieri (Okuda et al.
2009). Visualization of each LURE may provide insight into how
a precise attraction signal is generated by mixture of different
attractant peptides.

Materials and Methods

Plant materials

Torenia fournieri L. cv ‘Blue and White’ was grown on soil in a
growth chamber at 25�C under long-day conditions (16 h light/
8 h dark), as described by Higashiyama et al. (2006).

Purification and refolding of recombinant LURE2

The expression vector was cloned and LURE2 lacking the pu-
tative N-terminal peptide (70 amino acids) was purified as
described previously (Okuda et al. 2009). A His-tagged recom-
binant LURE2 fusion peptide was expressed in E. coli strain BL21
CodonPlus (DE3)-RIL (Stratagene). Cells were grown to an
OD600 of 0.6 at 37�C in 1.5 liters of LB medium containing 2%
glucose and incubated for an additional 20 h at 37�C with 1 mM
isopropyl-b-D-thiogalactopyranoside (IPTG). The cells were har-
vested by centrifugation, resuspended in 20 mM Tris–HCl
buffer (pH 8.0) containing 0.5 M NaCl, Complete Protease
Inhibitor Cocktail (Roche), 1 mg ml�1 lysozyme (Wako) and
2.5mg ml�1 DNase I (Sigma), and disrupted by incubation for
1 h at 4�C, followed by sonication on ice. After centrifuga-
tion (14,400� g, 30 min, 4�C), the pellet was washed three
times with 0.5% (v/v) Triton X-100, containing 1 mM EDTA,
and Complete Protease Inhibitor Cocktail by sonication,
as described above. Inclusion bodies were resuspended in
50 mM Tris–HCl (pH 8.0) containing 6 M guanidine-HCl,
0.5 M NaCl, 5 mM imidazole, 1 mM 2-mercaptoethanol,
and Complete Protease Inhibitor Cocktail for 1 h at room tem-
perature. After centrifugation (14,400� g, 30 min, 4�C), the
supernatant was filtered through a 0.22 mm filter (Millipore).

The supernatant was applied to a 1 ml HisTrap HP column
(GE Healthcare) and washed with 10 ml of buffer. The bound
protein was refolded by washing with a linear 6!0 M urea
gradient of refolding buffer (50 mM Tris–HCl, pH 8.0, 5 mM
imidazole, 1 mM 2-mercaptoethanol and Complete Protease
Inhibitor Cocktail) at a flow rate of 0.5 ml min�1 for 13 h
using the ÄKTA purifier system (GE Healthcare). His-tagged
LURE2 was eluted with 50 mM Tris–HCl (pH 8.0) containing
0.5 M NaCl, 0.5 M imidazole, 1 mM 2-mercaptoethanol and
Complete Protease Inhibitor Cocktail. After 2-fold concentra-
tion using an Amicon Ultra 3 K (Millipore), the peptide was
dialyzed (Spectra/Por3 MWCO:3,500; Spectrum Laboratories)
and refolded for 3 d at 4�C in 50 mM Tris–HCl (pH 8.0) con-
taining 1 mM oxidized glutathione, 10 mM reduced glutathione
(Wako), 10 mM L-arginine ethyl ester dihydrochloride (Sigma)
and Complete Protease Inhibitor Cocktail.
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Protein sequencing

The N-terminal amino acid sequence of purified recombinant
LURE2 peptide was determined by Edman degradation using an
ABI Procise 491 HT protein sequencer (Applied Biosystems).

Alexa Fluor 488 labeling and biochemical
evaluation

LURE2 was labeled with Alexa Fluor 488 using an Alexa Fluor
488 protein labeling kit (Invitrogen), according to the manu-
facturer’s instructions. After dialysis with phosphate-buffered
saline (PBS; pH 7.4) for 6 h at 4�C, purified LURE2 peptide was
diluted to 1 mg ml�1 in PBS. After adding 1 M sodium bicar-
bonate to 0.2 ml of LURE2 solution, the sample was allowed to
react with one vial of reactive dye. The reaction mixture was
stirred for 1 h at room temperature in the dark, and then ultra-
filtered using a Microcon Ultracel YM-3 (Millipore) to remove
unincorporated dye from the labeled peptide. Finally, the
Alexa–LURE2 was dialyzed twice with 1 M Tris–HCl (pH 8.0)
for 3 h at 4�C.

The labeling efficiency of Alexa–LURE2 was estimated using
an absorption spectrometer according to the manufacturer’s
instructions as follows.

concentration ðMÞ ¼
A280 � A494 � 0:11ð Þ½ � � dilution

24350
ð1Þ

efficiency ¼
A494 � dilution

71000� concentration Mð Þ
ð2Þ

where 24,350 cm�1 M�1 is a calculated molar extinction coef-
ficient of LURE2 at 280 nm, 0.11 is a correction factor for
absorption of the dye at 280 nm, and 71,000 cm�1 M�1 is the
approximate molar extinction coefficient of the Alexa Fluor
488 dye at 494 nm.

The purified LURE2 and Alexa–LURE2 were subjected to
15% SDS–PAGE, and visualized with a Typhoon 9400 scanner
(GE Healthcare). Total proteins were stained with CBB.

Mass spectrometry

To desalt the peptides, 5 mg of purified LURE2 and Alexa LURE2
were absorbed to ZipTip C4 pipet tips (Millipore), and then
washed with 0.1% trifluoroacetic acid (TFA) and eluted with
5 ml of 70% acetonitrile containing 0.1% TFA. The samples
(0.5 ml) were deposited on a MALDI target plate, followed
by the deposition of 0.5 ml of matrix (4 mg ml�1 a-cyano-
4-hydroxycinnamic acid in 70% acetonitrile containing 0.1%
TFA). MALDI-TOF MS was performed on a 4700 Proteomics
Analyzer with version 3.6 software (ABSciex). MS spectra were
acquired in linear negative ion mode. Bovine insulin (average
molecular mass 5,733.51), equine cytochorme c (average mo-
lecular mass 12,360.96) and equine apomyoglobin (average
molecular mass 16,951.27) were used as standard proteins
(ProteoMass

TM

Protein MALDI-MS Calibration Kit, Sigma).
Alexa Fluor 488 labeling reaction mixture containing un-

labeled and Alexa Fluor 488-labeled LURE2 was digested by

trypsin in the presence of 0.01% Protease MAX surfactant
(Promega). Resultant peptides were fractionated by a Dina
nanoHPLC system with reverse phase chromatography (KYA
Technologies) and each fraction was directly spotted on a
MALDI plate with a-cyano-4-hydroxycinnamic acid by the
DiNa Map system (KYA Technologies). MALDI-TOF MS and
MS/MS were performed on a 4700 Proteomics Analyzer. MS
spectra were acquired in reflector-positive ion mode and MS/
MS spectra were acquired in positive ion mode with CID off.
MS/MS data were analyzed by MASCOT.

In vitro attraction assays and observation

For in vitro assays using gelatin and agarose beads, 2 ml of pep-
tide were mixed with 2 ml of 10% (w/v) gelatin (Nacalai) or 1.5%
(w/v) agarose (Sigma) pre-melted at 50�C. After adding 150 ml
of hydrated silicone oil, they were mixed by vortexing
and cooled on ice to allow the formation of gelatin beads.
Single beads (approximately 40mm in diameter) were picked
up using a glass needle and placed in front of the pollen tubes.
We used the criteria described by Okuda et al. (2009) for jud-
ging ‘attracted’ and ‘non-attracted’ pollen tubes. The behavior
of pollen tubes was recorded on the inverted platform of a
fluorescence microscope (IX-71; Olympus) equipped with a
time-lapse digital video system (Sigma Koki) and an EM-CCD
camera (KP-DE500; Hitachi). Images were acquired with a �10
objective lens (UPlanSApo, NA 0.40) or a �20 objective lens
(LUCPlanFLN, NA 0.45).

One-way analysis of variance (ANOVA) with a Bonferroni
post-hoc test was performed using GraphPad Prism version
5.01 for Windows (GraphPad Software).

To examine the relationship between the amount of Alexa–
LURE2 and the signal intensity in our camera system, 2ml of
Alexa Fluor 488 hydrazide (Invitrogen) at different concentra-
tions were applied to a Thoma-type counting chamber (depth
0.10 mm; Hirschmann). The fluorescence intensities were mea-
sured and analyzed with the MBF ImageJ software.
Pseudo-colored 8-bit images of the fluorescence intensities
were obtained using the rainbow spectrum of Look-up Tables
(LUT) of ImageJ.
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