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SUMMARY
T cells can reject established tumors when adoptively transferred into patients, thereby
demonstrating the power of the immune system for cancer therapy. However, it has proven
difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to
induce tumor-specific effector and memory T cells. However, clinical efficacy of current vaccines
is limited, possibly because tumors skew the immune system by means of myeloid-derived
suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent
the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with
metastatic disease, we need to design novel and improved strategies that can boost adaptive
immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive
tumor microenvironment. This can be achieved by exploiting the fast increasing knowledge about
the dendritic cell (DC) system, including the existence of distinct DC subsets which respond
differentially to distinct activation signals, (functional plasticity), both contributing to the
generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will
be used as monotherapy in patients with resected disease, and in combination with drugs targeting
regulatory/suppressor pathways in patients with metastatic disease.
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INTRODUCTION
The immune system is able to control cancer both in mice (1,2) and humans (reviewed in
(3)). Perhaps the most compelling evidence of tumor immunosurveillance is provided by the
studies in breast cancer and paraneoplastic diseases. Onconeural antigens, which are
normally expressed on neurons, immune privileged sites, are also expressed in some cases of
breast cancer (4). In these patients, a strong antigen-specific CD8+ T cell response is
generated, which provides effective tumor control but also an autoreactive neurologic
disease, paraneoplastic cerebellar degeneration (5). In another example of tumor
immunosurveillance, patients with pre-malignant monoclonal gammopathy of undetermined
significance (MGUS) frequently display immune response against SOX2 (a gene critical for

Corresponding author: Karolina Palucka, MD, PhD, karolinp@baylorhealth.edu, BIIR, 3434 Live Oak, Dallas, TX 75204, USA;
Phone: 1-214 820 7450; Fax: 1-214 820 4813.
Conflict of interest statement
Jacques Banchereauis employed by Roche.

NIH Public Access
Author Manuscript
J Intern Med. Author manuscript; available in PMC 2012 January 1.

Published in final edited form as:
J Intern Med. 2011 January ; 269(1): 64–73. doi:10.1111/j.1365-2796.2010.02317.x.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



self-renewal in embryonal stem cells) (6). On the contrary, patients with malignancy such as
multiple myeloma (MM) lack anti-SOX2 immunity (6).

Nevertheless, in the majority of cases, natural immunity to cancer is not protective,
highlighting the need to develop strategies to boost patient resistance to cancer. This has
been facilitated by the molecular identification of human cancer antigens, which in turn
allowed the development of antigen specific immunotherapy (7–9). One strategy is adoptive
T cell therapy (reviewed in (10,11)). There, autologous antigen specific T cells are expanded
ex vivo and reinfused to patients. Adoptive T cell therapy has been shown to be an effective
treatment for EBV-associated lymphomas (12) and has induced tumor regression in patients
with solid tumors (13,14). Another strategy is to expand T cells in vivo by means of
vaccination.

CANCER VACCINES: LESSONS FROM THE PAST AND KEY RECENT
PROGRESS

Active immunization has been a successful strategy for the prevention of infectious diseases
(15). One example showing great promise with regards to cancer is the prevention of HPV-
positive cervical cancer by vaccinating with a recombinant viral capsid protein (16).
Therapeutic vaccination is more difficult possibly because most cancer antigens are non-
mutated self-proteins and thus the repertoire is depleted of high avidity clones through
negative selection (17,18). Numerous approaches for the therapeutic vaccination of humans
with cancer have been developed including: autologous and allogeneic tumor cells (which
are often modified to express various cytokines), peptides, proteins and DNA vaccines
(reviewed in (19)). The observed results have been variable, yet in many cases, a tumor-
specific immune response could be measured. The clinical efficacy of therapeutic
vaccination in cancer has been questioned (20) because of the limited rate of objective tumor
regressions observed in clinical trials. At least two issues need to be considered: 1) the
quality of immune responses that these early cancer vaccines were capable of eliciting; this
will be discussed later; and 2) definitions of clinical endpoints allowing assessment of the
clinical efficacy of immunotherapy. The latter ones have been challenged by recent clinical
trials testing anti-CTLA4 (ipilumimab) in patients with stage IV melanoma. There, in a
randomized phase III clinical trial an improved overall survival in patients who received
anti-CTLA4 was observed (21). In another indication an active immunotherapy product,
sipuleucel-T (APC8015), based on the PBMCs activated with a fusion protein of prostate
cancer antigen such as prostatic acid phosphatase PAP with GM-CSF, resulted in
approximately 4 month-prolonged median survival in phase III trials in patients with
prostate cancer (22). In both studies, the analysis of survival curves shows the separation
only after 4–6 months suggesting a certain delay in the treatment effect. These clinical trials,
therefore, bring forward basic principles of active immunotherapy which set this treatment
modality apart from chemotherapy, radiotherapy, targeted therapies and even adoptive T cell
transfer. Thus, during the time in which it takes to build tumor immunity tumors might
progress before they actually regress; and tumors might appear clinically enlarged due to
inflammation associated with active immune responses and lymphocyte infiltration. Thus,
one of the lessons is that overall survival might be the only true parameter of clinical
efficacy.

Nevertheless, cancer vaccines are entering a renaissance era prompted by a series of recent
clinical trials showing promising clinical outcomes. Thus, sipuleucel-T discussed above has
been approved by the FDA for treatment of metastatic prostate cancer thereby paving the
clinical development and regulatory path for the next generation of active immunotherapy
products. A randomized phase II trial of a poxviral-based vaccine targeting PSA
(PROSTVAC) in men with metastatic castration-resistant prostate cancer showed improved
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overall survival in patients who received PROSTVAC compared to patients receiving
control vectors (23). The list also includes positive reports from phase III trials in 1)
follicular lymphoma testing idiotype vaccine therapy (BiovaxID); and 2) melanoma testing
peptide vaccine in combination with IL-2 (24,25). While these first generation positive
randomized phase II/III clinical trials need further analysis and mechanistic studies, they
underline the therapeutic potential of cancer vaccines.

Vaccines act through DCs which induce, regulate and maintain T cell immunity (15,26).
Therefore, understanding the DC system is essential for the design of novel cancer vaccines
with improved clinical efficacy. Ex vivo-generated DCs have been used as therapeutic
vaccines in patients with metastatic cancer for over a decade and early studies have been
reviewed elsewhere (27,28). Importantly, a number of studies have shown that DCs can
expand in patients T cells specific for non-mutated self proteins that are over-expressed in
cancer. As we will discuss below, the past five years have brought key findings relevant to
DC biology and increased our understanding of how DCs regulate immune responses. This
together with key progresses in tumor immunology and unraveling molecular pathways
regulating T cell immunity (for example, CTLA-4 (29) and PD1 (30)), will allow us to
refine and improve the immunogenicity and clinical efficacy of DC vaccination.

BUILDING ON DENDRITIC CELL SUBSETS FOR IMPROVED CANCER
VACCINES

T cell priming is under the control of DCs (Figure 1). In the steady state, non-activated
(immature) DCs present self-antigens to T cells, which leads to tolerance (31,32). DCs
induce immune tolerance in a number of ways including i) T cell deletion (33–35); ii) the
induction of T cell unresponsiveness (36); and iii) the activation of regulatory T cells
(Tregs) (37–40). Once activated (mature), antigen-loaded DCs are geared towards the
launching of antigen-specific immunity (41,42) leading to T cell proliferation and
differentiation into helper and effector cells (Figure 1). DCs are also important in launching
humoral immunity partly due to their capacity to directly interact with B cells (43,44) and to
present unprocessed antigens (45–48).

DCs are endowed with two critical features: subsets and functional plasticity (15). This
diversity permits the adaptive immune system to mount functionally distinct types of
responses (Figure 2). The two major DC subsets are the myeloid DCs (mDCs) and the
plasmacytoid DCs (pDCs). pDCs are considered the front line in anti-viral immunity owing
to their capacity to rapidly produce high amounts of type I interferon in response to viruses
(49,50). Human pDCs, in fact, are composed of two subsets with different functional
properties, distinguished by the expression of CD2 (51). CD2high pDCs and CD2low pDCs
display distinct transcription profiles, differential secretion of IL12 p40 and differential
expression of co-stimulatory molecule CD80 on activation. The role of pDCs in active
immunotherapy of cancer is largely undefined. mDCs are also composed of subsets
displaying different phenotype and functions. For example, in human skin, epidermis hosts
only Langerhans Cells (LCs) while the dermis contains two mDC subsets, CD1a+ DCs and
CD14+ DCs, as well as macrophages (52–55). CD14+ dermal DCs specialize in the
generation of humoral immunity with IL-12 being the major cytokine involved (53,56–58),
whereas LCs specialize in the priming of high avidity antigen-specific CD8+ T cells (53).
Another mDC subset, BDCA-3+ DCs, present in blood and secondary lymphoid organs, was
recently proposed to be the equivalent of mouse CD8+ DC subset (59–62). Accordingly,
BDCA-3+ DCs can secrete IL-12, and cross-present exogenous antigens to CD8+ T cells. In
line with this, the combination of cytokines used to differentiate monocytes into DCs, for the
purpose of vaccination, play a critical role in determining the quality of the elicited T cell
responses. For example, DCs generated with GM-CSF and IL-15 display the phenotype and
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characteristics of LCs. In particular, they are more efficient in priming melanoma-antigen
specific CD8+ T cells in vitro than DCs derived with GM-CSF and IL-4 (63,64). Thus,
vaccination with IL15-DCs might elicit stronger CD8+ T cell responses that may lead to
improved clinical responses. The selection of methods for activating DCs also represents a
critical parameter in the design of DC vaccines. For example, IL-4 DCs activated with a
cocktail of IFN-α, poly:IC, IL-1β, TNF, and IFN-γ induce up to 40 times more melanoma-
specific CTLs in vitro than DCs matured with the “standard” cocktail of IL-1β/TNF/IL-6/
prostaglandinE2 (PGE2)(65–67). Studies with the new generation of ex vivo DC vaccines
will permit us to assess the type of immune responses elicited by human DCs generated in
different cytokine environments in vivo.

Characterization of distinct DC subsets is in turn essential for building a novel in vivo
approach to vaccination where antigens are directly delivered to DCs using chimeric
proteins made of an anti-DC receptor antibody fused to a selected antigen (DC targeting).
Pioneering studies in mice demonstrated that the specific targeting of model antigens to DCs
in vivo results in considerable potentiation of antigen-specific CD4+ and CD8+ T cell
immunity. The induction of immunity is observed only when the DC maturation signal is
provided (31,68,69), and otherwise, tolerance ensues (31). These studies have already been
extended to demonstrate the generation of therapeutic anti-tumor immunity (70,71) in
animal models through the targeting of tumor antigens to mDCs including LCs (72) (73).
Furthermore, targeting both tumor and control antigens to human DCs ex vivo can lead to
efficient antigen presentation and generation of CD4+ T cell (74,75) and CD8+ T cell
(76,77) responses.

DENDRITIC CELLS IN TUMOR ENVIRONMENT
Essential to the success of next generation cancer vaccines based on fusion proteins
targeting DCs in vivo is the understanding of the biology of DCs in the tumor environment.
Numerous studies in humans have concluded that DCs can infiltrate tumors. We found that
breast cancer tumor beds are infiltrated with immature DCs. In contrast, mature DCs are
found in the peri-tumoral areas in ~60% of cases (78). A number of studies have suggested
that DCs can contribute to tumor development. Our studies in breast cancer indicate that
tumor cells polarize mDCs into a state that drives the differentiation of naïve CD4+ T cells
into IL-13-secreting T cells (79). These Type 2 T cells in turn facilitate breast tumor
development in xenograft model as it can be partly inhibited by administration of IL-13
antagonists (Figure 3). The role of Th2 cells was further established in a spontaneous mouse
breast cancer model, where Th2 cells facilitate the development of lung metastasis through
macrophage activation (80). In several other mouse tumor models, IL-13 produced by NKT
cells induces myeloid cells to make TGF-β that inhibits CTL functions (81). Thus, type 2
cytokines are involved in tumorigenesis through various mechanisms. mDCs can also have
direct interactions with tumor cells as shown in multiple myeloma where they directly
promote the survival and clonogenicity of tumor cells (82,83).

pDCs have been found in approximately 10% of breast carcinomas and are associated with
poor prognosis (84). The infiltrating pDCs produce little type I IFN upon TLR ligation (85).
This inhibition appears to depend on the ligation of ILT7 on pDCs binding by BST2
expressed on tumor cells (86). Likewise, in ovarian carcinoma, tumor-infiltrating pDCs do
not induce effector CD8+ T cell responses, but rather promote the differentiation of IL10+

CCR7+ CD8+ Tregs (87). Finally, pDCs may promote tumor angiogenesis by the secretion
of proangiogenic cytokines (88,89).

DC can fight back tumors at least through two pathways: an indirect one with the induction
of potent CTL responses, and a direct one through DC-dependent tumor cytotoxicity. For
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example, pDCs appear to directly contribute to the anti-tumor activity of in vivo-
administered Imiquimod (TLR7 ligand), which is used for the treatment of basal cell
carcinoma (90–92).

Clearly, understanding the functions of DCs in the tumor bed represents an important area of
future investigations and exploitation for therapy. An interesting strategy would be to rewire
their molecular pathways from “pro-tumor” DCs into “anti-tumor” DCs.

THE QUALITY OF IMMUNE RESPONSES
Four components of the immune response emerge as critical to whether the induced
response will be therapeutic: 1) the quality of elicited CTLs; 2) the quality of induced CD4+

helper T cells; 3) the elimination and/or non-activation of Tregs; and 4) the breakdown of
the immunosuppressive tumor microenvironment. Indeed, the immune responses elicited by
the first generation DC vaccines might not be of the quality required to allow the rejection of
bulky tumors. For example, the induced CD8+ T cells might not migrate into the tumor
lesions (18,93). Furthermore, low avidity CD8+ T cells might not be able to recognize
peptide-MHC class I complexes on tumor cells and/or to kill them (18). Finally, the tumor
micro-environment might inhibit effector CD8+ T cell functions, for example, by action of
myeloid-derived suppressor cells and Tregs as summarized in recent reviews, respectively
(94,95). Besides the quality of CD8+ T cells, the quality of CD4+ T cells is one of the key
parameters of immune efficacy. CD4+ T cells have long been known to be involved in anti-
tumor immunity (96) and can act through different mechanisms including i) provision of
help in the expansion of tumor antigen-specific CTLs (97), ii) activation of macrophages at
tumor sites (98,99), and iii) active killing of tumor cells (100,101). Furthermore, it is now
well established that antigen-specific CD4+ T cells are fundamental for the induction of
long-term memory CD8+ T cells (102). However, CD4+ T cells can also be detrimental, be it
in the form of regulatory/suppressor T cells that might dampen elicited CD8+ T cell
responses (103) (104), or pro-tumor type 2 cytokine secreting CD4+ T cells that counteract
anti-tumor immunity by promoting tumor development (79) and/or by polarizing tumor
associated macrophages (80), as discussed above.

Furthermore, there is a need for the development and validation of tools to identify patients
who can benefit from a particular form of immunotherapy including vaccination. Indeed,
only a fraction of patients eligible for treatment responds to adoptive transfer of tumor-
infiltrating lymphocyte (TIL) cells (105). Along the same lines, only a fraction of patients
achieves durable regressions in response to vaccination (106).

COMBINING CANCER VACCINES WITH OTHER THERAPIES
In view of the remarkable diversity of regulatory/suppressive pathways present in patients
with metastatic cancer, any durable clinical response elicited by vaccination is already an
achievement. However, to improve the outcomes, DC vaccines need to be combined, in
particular for patients at advanced stages, with other therapies that offset the suppressive
tumor environment (19). Such combination regimens will involve several intervention
strategies that target different pathways (Figure 4).

In particular, blocking antibodies or soluble receptors can be exploited for the blockade of
suppressive cytokines in the tumor microenvironment such as IL-10 (107), IL-13 (108),
TGF-β (109,110) and VEGF (111,112). Such strategies can be used to block immune-
inhibitory signals in lymphocytes as illustrated by anti-CTLA-4 (29,113) and/or anti-PD1
(30,114,115), or to block their ligands expressed on tumors or DCs (for example anti-PD-
L1). In contrast, agonistic antibodies (111,112) might further potentiate the function of
effector T cells, for example, with anti-CD137 (116), a ligand for 4-1BB (117). Just as
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different tumors are currently treated with different combinations of cytostatic drugs and
targeted therapies, we foresee the development of clinical protocols combining DC vaccines
with individualized adjunct therapies.

CONCLUSIONS
There has never been a better and more exciting time to work on developing cancer
vaccines. The considerable progress made in the understanding of DC biology as well as
effector/regulatory T cell biology clearly has opened avenues for the development of vastly
improved clinical protocols. These optimized DC vaccines eliciting strong and long-lived
antigen-specific CD8+ and CD4+ T cell immunity will be offered to patients with early stage
disease. For patients with late stage disease, strategies that combine novel highly
immunogenic DC-based vaccines and immunomodulatory antibodies will have high impact
on enhancing therapeutic immunity in cancer by simultaneously enhancing the potency of
beneficial immune arms and offsetting immunoregulatory pathways.
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Figure 1. Dendritic cells
DCs reside in the tissue where they are poised to capture antigens (118), be it microbes or
vaccines. DCs recognize microbes/vaccines, and secrete cytokines (e.g. IFN-α), directly
through pattern recognition receptors, or indirectly through stromal cells that sense
microbes/vaccines. Cytokines secreted by DCs in turn activate effector cells of innate
immunity such as eosinophils, macrophages and NK cells. Activation triggers DCs
migration towards secondary lymphoid organs and simultaneous activation (maturation).
These migratory DCs display antigens in the context of classical MHC class I and class II or
non-classical CD1 molecules, which allow selection of rare antigen-specific T lymphocytes.
Activated T cells drive DCs towards their terminal maturation, which induces further
expansion and differentiation of lymphocytes. Activated T lymphocytes traverse inflamed
epithelia and reach the injured tissue, where they eliminate microbes and/or microbe-
infected cells. B cells, activated by DCs and T cells, differentiate into plasma cells that
produce antibodies against the initial pathogen. Antigen can also drain into lymph nodes
without involvement of peripheral tissue DCs and be captured and presented by lymph node
resident DCs (119). Antigen capture by interstitial DCs (intDCs; orange) will preferentially
lead to generation of humoral immunity whereas antigen capture by Langerhans cells (LCs;
green) will preferentially lead to generation of cellular immunity (53).
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Figure 2. Distinct DC subsets generate distinct types of T cell immunity
DC system has two cardinal features: 1) subsets; and 2) plasticity. This yields distinct types
of immunity thereby allowing DCs to cope with protection against a variety of microbes and
maintenance of tolerance to self. Understanding these two features is fundamental to
develop vaccines that elicit the desired type of immune responses. Novel vaccines rely on
rational immunological approaches and aim at activating both the cellular and the humoral
arm. We envision that targeting antigens and activation of distinct mDC subsets, with
different specializations, will result in the generation of a broad and long lived immune
protection. Thus, the most efficient vaccines might be those that will target both LCs and
dermal CD14+ DCs thereby allowing the maximal stimulation of cellular and humoral
immune responses and the generation of long-term memory protection.
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Figure 3. DCs in tumor environment
Cancer cells attract immature DC possibly through chemokines such as MIP3 alpha and/or
SDF-1. The DC can then be either blocked or skewed in their maturation, for example by
VEGF, leading to induction of polarized CD4+T cells that promote the expansion of cancer
cells (pro-cancer) at the expense of CD8+T cells that can cause tumor regression (anti-
cancer). An interesting strategy would be to rewire their molecular pathways from “pro-
cancer” DCs into “anti-cancer” DCs for example with antibodies or DC activators.
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Figure 4. DC vaccines in combination therapies
Current active immunotherapy trials have shown durable tumor regressions in a fraction of
patients. However, clinical efficacy of current approaches is limited, possibly because
tumors invade the immune system by means of myeloid-derived suppressor cells,
inflammatory type 2 T cells and regulatory T cells (Tregs). To improve the clinical efficacy
of immunotherapies, we need to design novel and improved strategies that can boost
adaptive immunity to cancer, help overcome Tregs and allow the breakdown of an
immunosuppressive tumor microenvironment. This can be achieved by developing
combination therapies targeting these three major components.
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