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We report new results on blood flow modeling over large volumes of cortical gray matter of primate
brain. We propose a network method for computing the blood flow, which handles realistic
boundary conditions, complex vessel shapes, and complex nonlinear blood rheology. From a
detailed comparison of the available models for the blood flow rheology and the phase separation
effect, we are able to derive important new results on the impact of network structure on blood
pressure, hematocrit, and flow distributions. Our findings show that the network geometry (vessel
shapes and diameters), the boundary conditions associated with the arterial inputs and venous
outputs, and the effective viscosity of the blood are essential components in the flow distribution. In
contrast, we show that the phase separation effect has a minor function in the global microvascular
hemodynamic behavior. The behavior of the pressure, hematocrit, and blood flow distributions
within the network are described through the depth of the primate cerebral cortex and are
discussed.
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Introduction

A microscale understanding of cerebral blood flow
(CBF) is of importance for many physiological,
medical, and neuroimaging issues. The amazing
topological and geometrical complexity of microvas-
cular networks in the brain, and in other organs, has
challenged many researchers for decades. Although
accessible through experimental measurements at
the local level, the blood flow results from nonlocal
regulatory mechanisms associated with the complex
microvascular architecture. Local analysis hardly
provides a comprehensive understanding of the
coupling at arteriolar, capillary, and veinular scales
that ensures efficient and homogeneous cerebral
perfusion. The aim of this contribution is to establish
an extensive reconstruction of the cortical blood
flow distribution using numerical modeling.
This approach not only permits the extensive

reconstruction of the blood flow from the arteriolar
to the veinular level through the capillary network
but also allows the evaluation of the relative
contribution of each particular ingredient of the
entangled hemodynamic mechanisms to be speci-
fied, which is very difficult to achieve when
analyzing experimental observations in vivo (Secomb
et al, 2008).

The direct computation of blood flow considering
a complete mechanical description of the inter-
actions of its components (red blood cells, plasma,
vessel shape, and endothelial surface layer) over
several cubic millimeters of tissue is a more than
challenging task for any computer at present
(McWhirter et al, 2009). It is easy to understand that
such assignments require the analysis of different
scales, from the interactions arising among blood
cells, plasma, and endothelial surface layer to the
estimation of flow within several thousand vessels
such as those illustrated in Figures 1A and 1B, which
represent the microvascular network inside 18 mm3

of cortical gray matter.
In this paper, we present an improved network

approach, which approximates the pressure, hema-
tocrit, and flow fields at any point of the network inside
a complete vascular bed of gray matter at moderate
computational cost. It nevertheless needs some appro-
priate adaptations to deal with the geometrical and
topological complexity of the vascular network.
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The influence of red blood cells’ behavior inside
vessels, leading to an effective viscosity of confined
blood flows, as well as their behavior at vessel
branching points (the so-called phase separation
effect), need to be taken into consideration (Cokelet
and Goldsmith, 1991). This is an important improve-
ment over other recent works (Reichold et al, 2009)
where rectilinear, single diameter tubes with homo-
geneous plasma flows were used to model CBF in
rat cortex. Our method is applied to primate cortical
brain microvascular networks whose structure
has been exhaustively analyzed (Risser et al, 2007,
2009). Moreover, the present work aims at deter-
mining how the network topology and geometry
influence the pressure, hematocrit, and flow dis-
tributions in the cerebral microvascular circulation,
as what has been shown in mesentery (Pries et al,
1995, 1996).

Materials and methods

We first briefly summarize the main methodological
techniques that we have developed for the preparation
of marmoset monkey (Callithrix jacchus) tissue, image
acquisition (Plouraboué et al, 2004), image segmentation
(Risser et al, 2007), vessel skeletonization and vectori-
zation (Risser et al, 2008), and postprocessing (Risser et al,
2009). Next, we emphasize the important new steps needed
for the computation of blood flow in microvascular beds
associated with the topological postprocessing of the
networks, implementation of boundary conditions, and
blood flow modeling.

Image Acquisition and Segmentation

Intracardiac perfusion of heparinized NaCl 9% was per-
formed first, followed by a suspension of barium sulfate

Figure 1 Cortical sample visualization (A) volume rendering of the whole sample created from original gray-scale images, (B) volume
rendering of the pial vascular structure (top view), (C) whole sample after postprocessing, color coded in accordance with vessel
diameters, (D) pial structure after suitable image processing where pial arteries are easily detected (in red). (E) Differentiation of
penetrating vessels from arterioles (square frame) and veinules (circle frame). (scale bar = 500 mm).
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(600 mg/mL, Micropaque, Villepinte, France, Guerbet)
(Plouraboué et al, 2004). Brains were dissected and fixed
in a 10% formol solution. Cortical samples of the cortex
were removed with biopsy punches, dehydrated and cast
in EPON (EPONt epoxy resin) resin after a procedure
similar to electronic microscopy preparation. The imaging
of microvascular networks was performed using 3D
synchrotron microtomography with a 1.43 mm3/voxel the
volume rendering of which is shown in Figure 1A. These
highly contrasted images were treated by a traditional
image processing method without loss of information. A
hysteresis thresholding method was used for the binariza-
tion step. Some morphological mathematical opening/
closure procedures were then used to finalize this step,
so as to remove black islands inside white vessels (Risser
et al, 2007). The vessel’s density, volume, and length,
which is obtained after this procedure, has been recently
found consistent with other reported measures in primate
and rodents (Risser et al, 2009; Tsai et al, 2009).

Building Network Vessel Vectorization

To obtain a topological description of the vessel connec-
tions, together with the best representation of the vessel
shapes, we use various, previously described, types of
image postprocessing (Risser et al, 2009). Each vessel
segment (vessel length between two successive branching
points) was then discretized into a succession of points
along its skeleton. Two points, with their spatial coordi-
nates and the associated vessel diameter, separated by
about a pixel size, form an element of segment. This
description provided a homotopic and thin version of the
shape. Thinning skeletonization produced some residual
artifactual and isolated segment edges, which were then
pruned using a critical value of one half for the ratio
between the segment length and the diameter of the root
segment. Moreover, as the injection of microcapillary
vessels may not have been perfectly continuous, some
small discontinuities of the vessel topology were observed.
They were automatically detected and corrected by a gap
closure procedure (Risser et al, 2008). Figure 1C illustrates
a vectorized reconstruction of the network where the vessel
diameters are color coded from yellow for the largest to
blue for the smallest. The vessel number obtained after this
procedure was close to 8100/mm3, which is consistent
with earlier estimations in humans (Cassot et al, 2009) or in
primates (Risser et al, 2009).

Topological Postprocessing of the Networks

As the topology of the vascular network is one key
ingredient of the blood flow distribution, it is necessary
to specify the network description best suited for the
purpose of the modeling. First, we need to identify the
connected components of the network. Those components
are decoupled units where the flow has to be evaluated
independently. Nevertheless, on the very complex network
resulting from the vectorization and postprocessing of
Figure 1C, it can be clearly seen that there is one major
connected component. A careful numerical estimation of

the network topology shows that this major component
represents 99.9% of the total number of vessel segments.

Second, for flow computation, it is necessary to provide
the segment connections, which can only be bifurcations.
In fact, trifurcations associated with four different seg-
ments are extremely rare in the resulting network (0.5% of
connections). Such events are also very seldom described
in anatomical studies (Duvernoy et al, 1981). Here, they
were mainly artifactual results of the vectorization proce-
dure, which were removed by introducing a supplemen-
tary segment in the middle of each trifurcation to obtain
two bifurcations. The length of this supplementary
segment was < 1mm and its diameter was taken as the
average of the four diameters of the connected segments.

Third, on each connected component, dead-end vessels
were removed as they do not contribute to the flow. For this
purpose, an automatic procedure spanning the entire
vessel graph tracked and deleted dead-ends. The initial
network was then decomposed into a backbone and its
complementary components. The total number of back-
bone segments resulting from this postprocessing in an
18 mm3 volume of tissue was close to 16,000, as repre-
sented in Figure 1C. The final number of vascular segments
per unit volume in the backbone was thus 882/mm3, which
is almost a factor 10 smaller than the number obtained
in the earlier step. This might seem to be a drastic
simplification of the network, but this extracted backbone
is the only relevant segments set of the network as far as its
flow computation is concerned. Some important remarks
need to be made here to explain the relevance of this
extracted backbone. In fact, the pruning of one dead-end
vessel that is useless for the flow evaluation does not
simply diminish the total number of considered segments
by one unit; it impacts the segment numbering by a much
larger amount by merging together segments previously
considered as distinct. It is then important to mention that
the total number of segments gives a poor representation of
the spatial extension of the network under consideration.
For example, the vascular volume of the extracted back-
bone represents 60% of the initial volume even though its
number of segments is 10 times smaller than in the initial
set. Finally, it should be noted that the computation could
also be performed by considering the entire network,
including dead-end vessels, but it is much more compu-
tationally intensive. However, as the blood flow is zero
in dead-end vessels, similar results will be obtained inside
the backbone. Thus, in the following, we represent the
various hydrodynamic quantities of interest inside the
backbone only.

Boundary Condition Implementation

The boundary conditions are a key element for flow
evaluation. The particularity of CBF is that input and
output vessels are mainly located at the brain surface, in
the pial matter (Figure 1B). Earlier studies in humans
(Duvernoy et al, 1981) have indicated that the arteries
make up approximately two thirds of the total penetrating
vessels connected to the pial surface, the remaining one
third being venous vessels. Hence, it is important to
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provide a good identification of arterial inputs and venous
outputs by applying the same methodological image
treatments as those previously described for intracortical
vessels but using an adapted parameterization (see Figures
1D and 1E). The observation that all the arterioles were
found within a single connected component testifies to the
very good quality of the injection in the arterial compart-
ment. We also observed that all penetrating arterioles fit the
pial arteries perfectly, so perfect injection was achieved on
this side. On the venous side, although a good venous
backflow was obtained during contrast agent perfusion,
imperfect vessel filling is observed, associated with a
granular texture on the gray-scale images. This result in
poorly contrasted and heterogeneous venous pial struc-
tures on the gray-scale images that could not easily be
segmented with the tool described in the earlier section.
Thus, venous structures do not clearly appear in the
segmented pial network described in Figure 1D. Far from
being a drawback, this incomplete injection helped with
the identification of the venous network, as it was
then possible to identify penetrating veinules as seen in
Figure 1E. The two thirds–one third ratio of penetrating
arteries—veinules is also visible on this figure in which 24
penetrating veins have been identified among a total of 62
penetrating vessels (proportion of arteries equal to 0.61).
Comparing this proportion of arteries to the 0.61 found in
Weber et al (2008) on 249 measurements did not show any
statistically significant difference (P = 0.999), so our find-
ing in the marmoset is perfectly consistent with parallel
estimates in the macaque. A similar conclusion (unless less
significant (P = 0.2) data are considered) is reached when
our results are compared with human data (142 arteries for
200 identified penetrating vessels, i.e., a proportion 0.71 of
arteries (Lauwers, 2007)). These considerations were also
complemented with anatomical observations that venous
vascular segments are generally situated below or parallel
to the arteries in the pial matter. All these features made it
possible to unambiguously distinguish between the arter-
iolar inputs and veinular outputs. This process could not
be fully automated and necessitated some visual identifi-
cations. It is important to mention that boundary condi-
tions are thus imposed at the level of penetrating vessels,
so that the imposed pressure and the resulting blood flow
are not influenced by the imperfect reconstruction of the
pial venous vessels.

However, a possible difficulty arises in prescribing
realistic blood pressure in these input and output vessels.
This aspect is not well documented in the literature, but
realistic narrow ranges of values have been proposed for
the pial surface arterial (65–90 mm Hg) and venous (15–
25 mm Hg) pressures (Stromberg and Fox, 1972; Tamaki
and Heistad, 1986). Different measurements of arteriolar
and venular pressure are available (Zweifach and Lipows-
ky, 1977; Pries et al, 1990; Lipowsky, 2005) but they were
mainly obtained in a rat mesentery experimental model.
There are very few quantitative measurements of in vivo
pial pressure available in the literature, even in animals.
The proposed modeling can provide results that are
independent of the prescribed boundary conditions when
a dimensionless formulation of the flow problem is
considered. Therefore, as a first step, we prescribed

1 (arterial)/0 (venous) pressure boundary conditions to
compute the blood flow. Then, the real blood pressure
predicted by the simulation could be found by adapting the
computed dimensionless pressure to the real pressure
difference Dp. This means that, although the reported
results are dimensional when associated with a definite
arterial/venous pressure difference, they can be easily
transposed for other pressure differences by using simple
linear scaling.

We have discussed the boundary conditions associated
with the upper face of the parallelepipedic surfaces that
envelop the studied brain volume, but a second difficulty
concerns the boundary conditions to be applied on the five
other faces. To our knowledge, this issue has not been
clearly discussed in earlier studies (Reichold et al, 2009).
In the case of brain vessels, earlier investigations have
shown that a representative elementary volume can be
identified in primate cortex (Risser et al, 2007). The length
scale associated with statistical decorrelation of the spatial
distribution of the brain’s microvascular networks has been
found to be within 50 to 80 mm. The characteristic size of
the volume investigated here is thus much larger than the
representative elementary volume scale, as this length is
of the order of 2 mm. Hence, it is valid to consider that
the cortical volume analyzed in this study represents a
statistically homogeneous entity. Similar volumes are then
posited to surround this volume with similar vascular
structures. Hence, mirror boundary conditions are taken to
mimic the presence of statistically equivalent cortical
vessels in the surroundings of the finite sample. Such
boundary conditions, also called periodic boundary con-
ditions, are widely used to study transport properties of
heterogeneous media (Torquato, 2001).

Blood Effective Apparent Viscosity

Without its cellular components, blood shows simple
rheological behavior that can be described with a single
constant parameter, its plasmatic viscosity mp. Under
normal physiological conditions, the blood cells (the
majority being red blood cells) have an essential function
in the flow of blood in small vessels. This subtle
rheological behavior can be lumped into an apparent
viscosity ma, which is a function that depends on the tube
diameter as well as on the input hematocrit (Cokelet and
Goldsmith, 1991). Using this apparent viscosity leads to
correct prediction of the observed relationship between the
imposed flux and the observed pressure drop. When red
blood cells concentrate at the vessel center, the plasma
lubricates the flow and the apparent viscosity of the blood
decreases. This behavior saturates when red blood cells
can no longer deform, and a sudden increase in the
viscosity is then observed for tube diameters smaller than
4 mm. From the different models that have been put forward
in the literature, we chose two proposals for this study. The
in vitro viscosity model proposed by Kiani and Hudetz
(1991) is illustrated in Figure 2A. It provides an explicit
nonlinear dependence for the relative apparent viscosity
ma/mp. Pries and Secomb (2005) have proposed a model
describing in vivo viscosity behavior (Figure 2B) obtained
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by minimizing the difference between experimental
observations and direct simulations. The viscosity is
higher than that predicted by the in vitro law because of
the presence of endothelial surface layer, especially for
diameters around 10 mm, where it shows a local maximum.

Blood Phase Separation Models

Phase separation names nonuniform distribution of red
blood cells in the downstream branches of a bifurcation.
Different nonlinear empirical models have been proposed
(Dellimore et al, 1983; Pries and Secomb, 2005) to describe
experimental observations. The first of the chosen splitting
rules (Dellimore et al, 1983; Figure 2C) only considers the
mother branch hematocrit and the influence of blood flow
on the hematocrit distribution into daughter branches of a
junction. However, a more complex splitting rule (Pries
and Secomb, 2005; Figure 2D) also takes into account
the influence of the diameters of the three branches. It is
important to note that some models can lead to a
hematocrit ratio higher than one for a particular range of
flow ratios between daughter and mother branches. There-
fore, in certain circumstances arising in complex networks,
these models can predict a problematic daughter hemato-
crit larger than one. The latest version of the model (Pries
and Secomb, 2005) has been adjusted to prevent this effect

and contains the resulting hematocrit rate. Mathematical
details of the different models mentioned above can be
found in the provided references.

Evaluation of the Network Transport Properties

Brain vessel segments are characterized by a diameter/
length ratio of about 1/10 (Risser et al, 2009). The
lubrication approximation can be profitably used to assess
the induced pressure drop in a tube having a complex
shape. From the asymptotic analysis of the Stokes
equation, it is possible to find a Poiseuille’s law that
characterizes the flow in a tube. The flow rate q is
proportional to the pressure gradient qp/qs along the
curvilinear central shape coordinate s describing each
vessel skeleton, i.e.,

q ¼ � p
128

D4ðsÞ
maðsÞ

qp

qs
: ð1Þ

The coefficient of proportionality that connects q and
qp/qs, known as the local hydraulic conductance, has
a strong fourth power dependence on the local diameter D
evaluated along the curvilinear coordinate s. It also shows
a less drastic dependence on the rheological properties
of the fluid, as it is only inversely proportional to the

Figure 2 Modeling of Fåhræus–Lindqvist and phase separation effects: (A) in vitro blood viscosity modeling (Kiani and Hudetz,
1991), (B) in vivo blood viscosity modeling (Pries and Secomb, 2005), (C) phase separation splitting rule (Dellimore et al, 1983),
and (D) phase separation splitting rule (Pries and Secomb, 2005) for two different configurations.
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apparent viscosity ma. By integrating equation (1) between
two successive bifurcations, we obtain a pressure drop
relation that connects local pressures at junctions and
takes the apparent viscosity of the fluid into account as
well as the local vessel diameter variations:

q ¼ � p
128

Z
maðsÞ
D4ðsÞ ds

� ��1

Dp ¼ cDp ð2Þ

where c defines the segment’s hydraulic conductance. The
hydraulic conductance of a vascular segment resulting
from the evaluation of the right-hand-side integral is then
of great importance for a precise evaluation of the flow rate
and pressure distribution inside the network. The numer-
ical evaluation of this integral, using a composite Simpson
rule, allows to take into account the vessel tortuosity as
well as the local diameter variations. In the following, we
evaluate the impact of such a detailed estimation of the
hydraulic conductance compared with a simplified ap-
proach neglecting both vessel tortuosity and diameter
variations (Reichold et al, 2009).

The apparent viscosity in the right-hand-side integral of
relation (2) is evaluated from the above-mentioned viscos-
ity models. When the hydraulic conductance has been
computed, relation (2) provides the pressure drop between
two successive bifurcations. It nevertheless neglects the
influence of the possibly complex flow arising in the
vicinity of each bifurcation. The correction to the pressure/
flux relationship (2) coming from both finite ends of each
vascular segment is expected to be localized within a few
tube diameters D in the neighborhood of the two ends. As
the segment length L is much larger than its diameter, the
contribution of this supplementary hydrodynamic effect
on the total flux/pressure drop relationship is expected to
be of the order O(D/L). Such an effect could then safely be
discarded, as it would lead to rather small corrections to
the pressure drop defined in the left-hand-side of relation
(2). It is then possible to use relation (2) to determine the
steady-state pressure distribution using flow conservation
at each bifurcation J of the network, such thatX

i2J

qi ¼ 0 ð3Þ

where the index i refers to any vascular segment that
crosses at bifurcation J. Equation (3) leads to a linear
system applied to pressure nodes associated with each
bifurcation J. We imposed the applied boundary conditions
previously discussed at the border pressure nodes. The
linear system obtained was then solved using a direct
method (exact, robust and without parameterization)
suitable for sparse matrices. We used the nonsymmetric
multifrontal method with the UMFPACK set of routines
(Davis, 2004a, b). Solving the pressure problem is, in fact,
the first step of an iterative process (Pries et al, 1990). The
second step is the resolution of the hematocrit distribution
within the network.

Computing the Hematocrit Distribution

In converging bifurcations, the two input hematocrits are
known and a single missing hematocrit in the daughter

branch has to be found. In diverging bifurcations, the
mother hematocrit is known but the daughter ones are to be
found from the known fluxes in each branch. Thus, two
relationships are required to solve the problem, whereas a
single relation is needed in converging bifurcations. Mass
conservation associated with each hematocrit Hi could
provide the necessary relation for the latter:

X
i2J

HiQi ¼ 0: ð4Þ

In a diverging bifurcation, an additional plasma skimming
splitting rule that implicitly respects mass conservation (4)
is applied and determines the two unkown hematocrits
(see, for example, Guibert et al, 2010 for more details on the
model implementation). In practice, hematocrit evaluation
is performed by following the flow from the arterial input
and applying the appropriate form of equation (4). The
hematocrit distribution obtained is then used to solve the
pressure field at the next iteration. The convergence of this
iterative procedure may be difficult, so overrelaxation,
which consists in composing two successive evaluated
fields, is used to facilitate the convergence (Pries et al,
1990).

Statistical Comparisons

To evaluate the comparison between two quantities
defined throughout the vascular network, we defined a
quantitative index, the average relative difference between
two fields Y1 and Y2 associated with two distinct configu-
rations such that

Dr ¼
1

N

XN
i¼1

Y1i � Y2ij j
maxðY1i; Y2iÞ

; ð5Þ

where Y1i, Y2i are the field values (pressure, hematocrit,
flux) at each segment i of the network. We also defined the
absolute difference as

Da ¼
1

N

XN
i¼1

Y1i � Y2ij j: ð6Þ

Furthermore, for the comparison of the pressures between
different generations reported in Figure 5E, we used a
Student’s t-test as well as a Mann–Whitney nonparametric
method.

Results

Extensive numerical computation of microvascular
blood flow was performed in an 18 mm3 cortical
reconstructed volume of primate cortex.

We first investigated the impact of the vessel
geometry, the topology, and the blood rheology on
pressure, hematocrit, and flow distributions to
compare the various models of viscosity and phase
separation used. One important side issue of these
comparisons is to quantify the possible impact of the
phase separation. This phenomenon complicates the
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blood flow computation remarkably because it
requires a long iterative procedure (Pries et al,
1990) to be solved numerically. Hence, it is interest-
ing to address its quantitative impact on the pressure
distribution and the reliability of the different
models previously proposed in the literature. We
calculated the distributions of blood pressure and
flow, and of hematocrit through the cortical depth.

Impact of Vessel Shape and Blood Rheology
on the Flow

Using the apparent in vivo blood viscosity model
proposed (Pries and Secomb, 2005), we first inves-
tigated the influence of diameter variations along a
vessel length and compared a detailed evaluation
of the conductance defined in relation (2) with
a straight tube approximation associated with an
arithmetically averaged diameter.

The impact of vessel shape on the hydraulic
conductance, the pressure, and the blood flow are
sketched in Figures 3A and 3B, which illustrates that
the flow can be significantly affected if the length
and diameter variations are not carefully taken into
account. Figures 3A and 3B show that, even if the
average pressure in each vessel is only moderately
affected (close to 10%) by a refined description of the
vessel shape and a good approximation of its true
length, the vessel geometry can have a very sig-
nificant impact on the flow conductance (close to
100%) as well as on the evaluated flux (700%). The
very important relative differences shown in Figures
3A and 3B are nevertheless mainly due to extreme
events where the conductance and flux are locally
very different to the reference network.

Another important point addressed in this inves-
tigation is associated with the impact of the blood
rheology on the flow distribution. Different effective
viscosity models have been proposed for either in
vitro or in vivo blood flows. In an earlier investiga-
tion, we found that different in vitro viscosity models
gave very similar results for the pressure distribution
(Guibert et al, 2009). Here, we complement this
investigation by a systematic analysis of the relative
difference between the in vivo and in vitro effective
viscosity models illustrated in Figures 2A and 2B
on the pressure distribution (Table 1a and c, the
different blood effective viscosity and phase separa-
tion models that we have investigated are labeled by
letters A, B, C, O, see Table 1 caption). It can be seen
that the blood effective viscosity has a nonnegligible

impact on the pressure distribution (up to 10%,
Table 1a, compare A/0 and B/O versus 0/0). One can
also observe that taking account of some in vivo
features of the blood can have a significant impact on
the pressure, up to 18% (Table 1a, A/0 versus B/0).
Table 1c, e, and f provides a systematic comparison
of the different pairs of effective viscosity and phase
separation effects on the pressure, conductance,
and flux distributions. It can be observed that the
comparison between in vitro (Kiani and Hudetz,
1991) and in vivo (Pries and Secomb, 2005) effective
viscosity models leads to the most striking differ-
ences. Furthermore, as noted earlier, although
the impact on the pressure is relatively moderate
(variations of 18%), this is not the case for either the
conductances or the fluxes, for which the relative
difference can reach > 250 and 400%, respectively.
Hence, it is an important conclusion that in vivo and
in vitro blood models do not lead to similar results
for the blood flow computation.

We then analyzed the impact of phase separation.
Table 1b shows a very convincing demonstration
that, for any effective viscosity, phase separation
models have little influence on the pressure
distribution. Figure 3C also illustrates the very small
impact of phase separation models (comparing the
dotted lines with the color-corresponding continu-
ous lines), which do not display any visible effect on
the pressure distribution. This observation is also
confirmed by considering the effect of the phase
separation on conductance and flux distributions
given in Table 1e and f. In the last two lines, it can
be observed that phase separation does not affect
conductances by > 13% or fluxes by > 20% when a
given effective viscosity model is considered.

Nevertheless, it should be borne in mind that,
although phase separation models may not have
a strong influence on the hemodynamics, they
obviously affect the hematocrit distribution inside
the network as illustrated in Figures 3D and 4C and
Table 1d. The last two lines of Table 1d show that
relative differences of > 100% are observed on the
hematocrit when two different phase separation
models are considered for a given effective viscosity
model. This observation should nevertheless be
tempered by the fact that this large relative difference
mainly occurs for small hematocrit values as illus-
trated in Figure 3D. Such a discrepancy between
different phase separation models at small hemato-
crit values below 0.05% explains the large relative
error Dr obtained (Table 1d). Hence, only small

Figure 3 (A, B) Impact of the vessel’s geometry on the flow computation. Here, we compare tortuous constant diameter tubes (left)
and straight tubes (right) with real vessels. The pressure p, hydraulic conductance, c, and flux q are compared in (A) with
plasma rheology and in (B) with the in vivo viscosity model of Pries and Secomb (2005) neglecting phase separation effect.
(C, D) Comparison between different phase separation models Two different viscosity laws in blue (model B: Pries and Secomb,
2005) or red (model A: Kiani and Hudetz, 1991), and two phase separation splitting rules in continuous lines (model B: Pries and
Secomb, 2005) or dashed lines (model C: Dellimore et al, 1983). (C) The histogram of pressure distribution and (D) the hematocrit
distribution. (E) The cerebral blood flow versus the applied pressure difference using one pair of model (B/B Pries and Secomb,
2005).
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values of the hematocrit distribution are sensitive to
the phase separation splitting rule, in agreement
with earlier observations (Pries et al, 1990).

The main conclusion of this section is that
a detailed description of vessel shape is needed
for reliable computation of its contribution to blood
transportation. Furthermore, an in vivo effective
viscosity model that takes the interaction between
red blood cells and endothelial cells into account
leads to different results compared with in vitro ones.
Therefore, in the following, we use the in vivo
effective viscosity model (Pries and Secomb, 2005) as

a reference to analyze the pressure, hematocrit, and
flow distributions.

Blood Pressure Distribution Inside the Brain

Figures 4A and 4B show the blood pressure in each
vascular segment of an 18-mm3 volume of cortex
for the more recent viscosity and phase separation
models (Pries and Secomb, 2005). Differences be-
tween arterioles and veinules in penetrating vessels
can be observed from their distinct red and blue
colors. These figures show that the pressure rapidly

Table 1 Comparison between different couples of models used for modeling blood rheology and phase separation effects

Viscosity models:
A = Kiani and Hudetz (1991)
B = Pries and Secomb (2005)

O = Plasma viscosity

Phase separation models:
B = Pries and Secomb (2005)

C = Dellimore et al (1983)
O = No phase separation

Pair 1 Pair 2
Viscosity model/phase separation model Viscosity model/phase separation model Dr (%) Da

(a) Impact of viscosity model on pressure distribution
A/O B/O 17.63
O/O B/O 10.27
O/O A/O 5.13

(b) Impact of phase separation on pressure distribution
B/O B/C 0.46
B/O B/B 0.34
A/O A/C 0.31
A/O A/B 0.24

(c) Pressure distributions comparison
A/B A/C 17.97
A/C B/C 17.85
A/B B/B 17.77
A/C B/B 17.66
B/C B/B 0.25
A/C A/B 0.18

(d) Hematocrit distributions comparison
A/B B/C 1302.18 0.0807
A/C B/C 7.29 0.0214
A/B B/B 126.79 0.0388
A/C B/B 168.23 0.0655
B/C B/B 156.42 0.0626
A/C A/B 1294.05 0.0720

(e) Conductance distributions comparison
A/B B/C 270.34
A/C B/C 259.53
A/B B/B 246.04
A/C B/B/ 238.80
B/C B/B 13.14
A/C A/B 5.39

(f) Flow rate distributions comparison
A/B B/C 463.62
A/C B/C 410.86
A/B B/B/ 300.61
A/C B/B/ 293.93
B/C B/B/ 19.81
A/C A/B 10.54

The different models used are represented by letters: A is used for the in vitro viscosity model (Kiani and Hudetz, 1991), B for the in vivo and phase separation
one (Pries and Secomb, 2005), C for the nongeometrical phase separation model (Dellimore et al, 1983), and D for the recent one (Pries and Secomb, 2005).
The letter O is used for plasma rheology and absence of phase separation effect.

Cerebral blood flow modeling in primate cortex
R Guibert et al

1868

Journal of Cerebral Blood Flow & Metabolism (2010) 30, 1860–1873



becomes uniform inside the cortical tissue without
any noticeable difference through the cortical depth.
The average pressure variations with cortical depth
are further investigated in Figures 5A and 5B, where
it is found almost constant within the first 1.5 mm
and then slightly increases when further plunging
down inside the cortical depth. This observation
might seem surprising at first sight, as the pressure
should decay from the pial surface down to the
cortex. To understand this result, it should be born in
mind that the output venous pressure is also imposed
at the brain surface. Furthermore, even though the
penetrating arteries show some diameter reduction
when plunging down inside the cortical depth, the
resulting diameter is still large compared with
the smallest capillaries. As most of the pressure
drop results from diameter changes of the vessels
(as already discussed just after relation (1), in the
Materials and methods section), the pressure varia-
tions in the penetrating arterioles along their cortical
pathway are quite modest. Furthermore, earlier find-
ings (Risser et al, 2009) have shown that the relative
contribution of the penetrating arterioles to the total
vessel density slightly increases through the cortical
depth also explains the observed slight increase of the
average pressure in Figures 5A and 5B.

Figures 4A and 4B also illustrate that there is a
rapid change in pressure after a few bifurcations
inside the capillary bed. We further studied the
impact of the topological organization of the micro-
vascular network by measuring the variations of
the pressure versus the generation number along
the vascular tree, starting from each penetrating
arteriole. The variations of the pressure, which is
averaged over all the vascular segments of a given
generation, are presented in Figure 5E. It can be seen
that the pressure difference between penetrating
arterioles and their first branches is lower than
5%, confirming that the pressure drop does not arise
at the level of penetrating arterioles but much further
away inside the capillary bed. The average pressure
decreases significantly (see the inserted statistical
test in Figure 5B) in the first three generations
then reaches a plateau at the fourth generation,
which persists through further branches inside the
capillary bed.

Hematocrit Distribution

The hematocrit variations within the cortex are
illustrated in Figure 4C using a physiological input
hematocrit of 45%, with the in vivo effective

Figure 4 Color-coded representations of evaluated fields within the network using (Pries and Secomb, 2005) models B on the
same sample as Figure 1C with an input hematocrit of 45%. (A, B) The pressure distribution from red (arteries) to blue (veins),
(C) the hematocrit distribution (from dark to light), and (D) the flux distribution from red to white (scale bar = 500 mm).
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viscosity model (Pries and Secomb, 2005). We also
investigated the impact of the rheological model on
the hematocrit distributions by comparing different
pairs of effective viscosity/phase separation models
(Figure 3D). All the computed distributions share
very similar qualitative features: they peak at the
input reference hematocrit Ho = 0.45 and display
a nonsymmetrical distribution with preferred low
values. It is interesting to note that 80% of the local
hematocrit values remain between macroscopic
physiological values, that is in the range 0.3 to 0.6.
Thus, although different, the phase separation

models proposed in the literature do not lead to
drastically different hematocrit distributions when
the same effective viscosity model is considered,
except for small hematocrit values.

In contrast to its low impact on pressure distri-
bution (Figure 3C; Table 1e), the phase separation
model is mainly responsible for the hematocrit field
variations (Table 1d). This observation is not surpris-
ing, as phase separation induces hematocrit hetero-
geneities in the network.

The apparent relative difference Dr between the
two models can be large (Table 1d), but this is only a

Figure 5 In-depth variation of hemodynamic quantities. (A) Normalized pressure, (B) real pressure (mm Hg), (C) hematocrit, and
(D) flux (nL/min) evolution with the cortical depth. The cortical depth is subdivided in 25 successive, 80mm thick, slices for which
the mean is represented with symbol + and s.d. with an horizontal gray bar. (E) Mean pressure and s.d. for the 10 first network
generations of bifurcation starting from arterial inputs. For any couple of generations, significant differences are indicated with
asterisks: ***P < 10�10, **P < 10�4.
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localized effect due to extreme contributions of tiny
hematocrit values, so the absolute difference Da is
always small. Again, this is a rather surprising
observation, which consequently gives us confidence
in the reliability of the hematocrit field prediction
because the results are quite similar whichever
model is considered. A plausible explanation for
this result is related to the weak dependence of the
effective viscosity on the hematocrit as compared
with the local vessel diameter. The second (more
methodological) consequence of the slight influence
of the hematocrit field on the blood flow is the
robustness of numerical prediction of the blood
perfusion whichever phase separation model is
considered (cf Table 1b). This is an important result
as the major difficulty in these extensive computa-
tions concerns the presence of nonlinear coupling
associated with the phase separation effects. We
found that neglecting this effect still led to very
sensible predictions for the blood pressures and
fluxes, the implication of which could drastically
simplify further numerical investigations. Obviously,
such approximation is meaningless for addressing
the issues of transport and/or exchanges between
the vascular compartment and the brain tissue. It is
nevertheless interesting for understanding the
structure/function relationship between the very
complex vascular networks and blood perfusion.
Finally, it is interesting to observe in Figure 5C
that the hematocrit variations inside the cortical
thickness are quite modest ( < 15%), which confirms
that, as the average pressure, the average oxygen
supply is homogeneously distributed within the
gray matter.

Blood Flow Distribution

The blood flux variations within the cortical depth is
also represented in Figure 5D and shows a slight
continuous decrease. This variation is nevertheless
modest, and concomitant with a weak rarefaction of
penetrating vessels, a constant capillary density, and,
thus a total volume density decrease in the cortical
depth (not shown here (Risser et al, 2009)). One
interesting consequence of the rarefaction of pene-
trating vessels within the cortical depth is that high
fluxes are less present so that the flux variability
represented in gray bars in Figure 5D is clearly
reduced within the cortical depth.

Cerebral blood flow is one important quantity of
interest, as it is directly related to tissue perfusion.
At the millimeter scale, our predictions can be
compared with earlier experimental observations
on humans or animals. As mentioned earlier, the
prediction for the CBF depends linearly on the
values chosen for the arteriolar/venous pressure
difference. Figure 3E provides mean values of the
CBF through the cortex from the pial surface, shown
in Figure 5D, versus the applied pressure difference.
When considering a pressure difference of 60 mm Hg

and a cortical composition of 65% of gray matter
(dashed line), our prediction for the CBF is 70 mL
per minute per 100 mL. This prediction is in good
agreement with earlier measurements in animal
brain (Gobbel et al, 1999; Cenic et al, 1999). Finally,
as the total flux is conserved, the total input
arteriolar/output veinular fluxes are the same. This
prediction is not contradictory with the observation
of lower blood velocity in the veins at the cortical
surface (Schaffer et al, 2006), as the diameter of pial
veins is much larger than that of penetrating veins
and of pial arteries.

Discussion

The present work analyzes the influence of various
blood properties and the impact of the vessel shape
on the pressure, hematocrit, and flow distribution
inside the cortical gray matter. We have first shown
that it is important to consider vessel tortuosity and
real length.

Then, we have shown that reliable modeling
necessitates taking the blood effective viscosity into
account, which can differ drastically from that of
plasma, to obtain a meaningful estimate of the blood
flux. This is especially true when considering the
effect of specific in vivo behavior of blood rheology.
By considering the effect of endothelial surface
layers on cerebral perfusion, we realize that the
impact of small capillary diameter variations can
be large. A first quantitative evaluation leads to the
conclusion that a 10% variation homogeneously
applied for all capillary diameters (smaller than
11.2 mm) could lead to 20% change in the CBF. This
result challenges the concept of neurogenic/meta-
bolic brain perfusion regulation (Rossier, 2009), as it
indicates that diffuse and global diameter variations
at the local scale can also regulate the blood flux. It
motivates future systematic investigations of vessel
regulation impacts.

Moreover, we also established that phase separa-
tion has very little influence on the pressure
distribution, and a small effect on the blood flux.
This conclusion could seem surprising at first sight,
as it is known that the brain autoregulation mecha-
nism is based on the influence of the local hematocrit
value on the local blood flux. A plausible explana-
tion could be the weak reliance of the effective
viscosity on the hematocrit, as compared with the
local vessel diameter. Although the detailed mecha-
nism of the coupling between hematocrit and blood
flux is still an open issue, there is now an established
set of analyses demonstrating a local autoregulation
of the brain’s hemodynamics (Zonta et al, 2003;
Mulligan and MacVicar, 2004; Gordon et al, 2008).
In fact, our conclusion does not violate the auto-
regulation principle as no feedback mechanism was
taken into account in our analysis. We only consider
passive blood (i.e., no rheological modification of
the blood occurs inside the network) flowing into
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passive vessels (i.e., no structural modification of the
vessel diameters coming from some tissue signal).
Our results strongly suggest that the blood perfusion
is quite robust to any change in the hematocrit
distribution. This is an important statement as the
CBF value prediction is not much affected by the
chosen phase separation splitting rule.

Let us now comment on the organization of the
blood perfusion within the microvascular network.
We investigated both the spatial and the topological
distribution of the blood pressure inside the
cortex, as these considerations have been previously
found to be of importance in mesentery networks
(Pries et al, 1995, 1996). First, we found that the
blood perfusion very rapidly became uniform
inside the gray matter depth, where various cellular
layers are present. In this motor cortex, we found
weak hematocrit variations around an average
value of 0.33 within the cortical depth consistent
with literature data (Oldendorf et al, 1965). It
should be interesting, in future studies, to correlate
possible flux in-depth variations with known
anatomical layers (e.g., in sensory cortex (Gerrits
et al, 2000)).

The mean blood perfusion was already homoge-
neous from a few hundred microns from pial arteries,
and did not show much variation through the
cortical depth in the cortex investigated.

Second, we also found that topological organi-
zation strongly determined the blood pressure dis-
tribution as found previously in the rat mesentery
(Pries et al, 1995). The pressure drops by 40%
between its pial value and the capillary one. The
presence of a plateau in the pressure value distribu-
tion associated with the bifurcation generation
number down each penetrating arteriole shows that
homogeneous perfusion is reached inside the micro-
vascular network within three to four bifurcations.
This indicates that the capillary bed starts after
three to four bifurcations from the penetrating
arterioles, which is an interesting structural property.
The fact that the pressure plateau persists for > 10
further bifurcations also confirms that the capillary
bed is associated with a homogeneous average
pressure of about 50 mm Hg. This average pressure
value in the capillary bed, where most of the
exchanges (especially for oxygen) occur, is interest-
ing to compare with an earlier estimate of 40 mm Hg
(Zagzoule and Marc-Vergnes, 1986). Hence, the
function of perforating arterioles is to provide some
nominally pressurized blood through the entire
cortical depth to permit homogeneous perfusion
pressure inside the capillary bed. Finding a constant
average pressure at the capillary level is probably
related to the physiological function of capillaries in
the oxygen exchange as the hemoglobin saturation
depends on the oxygen partial pressure, which is
directly proportional to the total pressure. Hence,
providing a homogeneous capillary pressure permits
the exchange to occur similarly within the whole
cortex depth.
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