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A B S T R A C T

The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-re-

newing CSC population that is also capable of differentiating into non-self-renewing cell

populations that constitute the bulk of the tumor. Although, the CSC hypothesis does

not directly address the cell of origin of cancer, it is postulated that tissue-resident stem

or progenitor cells are the most common targets of transformation. Clinically, CSCs are

predicted to mediate tumor recurrence after chemo- and radiation-therapy due to the rel-

ative inability of these modalities to effectively target CSCs. If this is the case, then CSC

must be efficiently targeted to achieve a true cure. Similarities between normal and malig-

nant stem cells, at the levels of cell-surface proteins, molecular pathways, cell cycle quies-

cence, and microRNA signaling present challenges in developing CSC-specific therapeutics.

Approaches to targeting CSCs include the development of agents targeting known stem cell

regulatory pathways as well as unbiased high-throughput siRNA or small molecule screen-

ing. Based on studies of pathways present in normal stem cells, recent work has identified

potential “Achilles heals” of CSC, whereas unbiased screening provides opportunities to

identify new pathways utilized by CSC as well as develop potential therapeutic agents.

Here, we review both approaches and their potential to effectively target breast CSC.

ª 2010 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. What is a cancer stem cell? capacity to differentiate into the non-self-renewing cells,
The term “cancer stem cell” has led to a degree of confusion

within the cancer research field; however, while the term is

“imperfect” it is here to stay (Clarke et al., 2006). The existence

of CSC does not imply that these cells are necessarily derived

from normal tissue stem cells. Rather, the definition of “can-

cer stem cells” is based on three functional characteristics of

these cells. These include the ability to initiate tumors in im-

munocompromised or syngeneic mice, self-renewal capacity

measured by tumor formation in secondary mice, and the
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which constitute the tumor bulk. Formal proof that a tumor

follows the CSC paradigm is based on the ability to prospec-

tively isolate fractions of cells with these properties as well

as fractions depleted of these properties. On the other hand,

the inability to fractionate cells with these properties suggests

the tumor may not be hierarchically organized and each cell

has equal tumor-initiation potential determined by intrinsic

and/or extrinsic factors (Dick, 2008). Given these properties,

especially the ability to initiate tumors in model organisms,

and confusion surrounding the term “cancer stem cell”, we
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suggest a more appropriate functional descriptor would be

“tumor-initiating cell”.

Stem cells can exhibit multiple fates: division, differentia-

tion, quiescence, or death (Dick, 2008). A hallmark of stem

cells is their ability to self renew whereby cell fate (i.e. tu-

mor-initiation) is segregated symmetrically or asymmetrically

to daughter cells, which can be functionally defined by sec-

ondary transplantation (Dick, 2003; McKenzie et al., 2006).

Asymmetric segregation of cell membranes, proteins, and

even DNA impact cell fate, especially in stem cells

(Neumuller and Knoblich, 2009). The existence of multiple

stem cell populations with varying self-renewal capacity has

been demonstrated in the hematopoietic system (Majeti

et al., 2007; McKenzie et al., 2006).

The third property of CSC is the ability to differentiate into

the bulk, non-tumorigenic cells. Work from the great patholo-

gists over the last 100years (Virchow,Maximov, etc) has shown

tumors aremorphologically heterogeneous, composed of rela-

tively undifferentiated and differentiated cells. Seminal work

byPierceandcolleaguesdemonstrated spontaneousdifferenti-

ation of malignant teratocarcinoma cells into mature benign

cells (Pierce et al., 1960). Similarities in the heterogeneity of tu-

morsandnormal tissue led to theproposalof cancerasacarica-

ture of normal development, albeit with altered differentiation

(Pierce and Speers, 1988). Cellular heterogeneity is typically

measured using differential expression of protein differentia-

tionmarkers (i.e. CD44, CD24, CD34, CD38, etc) and is generated

in xenograft models upon serial transplantation. The ability to

harness this differentiation process as a therapy has been suc-

cessfully demonstrated by the treatment of acute promyelo-

cytic leukemia with all-trans retinoic acid (Nowak et al., 2009).
2. Brief history of CSCs

While the formal description of cancer stemcells is a relatively

recent development, the concept is an old one related to tis-

sue-resident stem cells, especially in the hematopoietic sys-

tem (Dick, 2008). After the demonstration by Furth and Kahn

in 1937 that a single murine leukemia cell could initiate a tu-

mor inmice (Furth andKahn, 1937), work over the last 70 years

has shown a wide variation of tumor-initiation frequency.

Surprisingly, human studies where single cell suspensions

of cancers were autotransplanted back into the patient

showed tumor-initiation was rare and required more than

106 cells (Southam et al., 1962).

In the 1960s, amajor conceptual developmentwas thedem-

onstration that the three major lineages of the blood system

are derived from one common precursor stem cell

(McCullochandTill, 1960), tumors exhibited functional hetero-

geneity (Clarkson et al., 1970), and a small subset of acute my-

eloid leukemia (AML) cells proliferate slower than the mature

blast cells (Clarkson, 1969). These studies laid the groundwork

for the seminal discovery of AML stem cells by John Dick and

colleagues in 1994 (Lapidot et al., 1994). Technical advances, in-

cluding the development of NOD/SCID (non-obese diabetic/se-

vere combined immune deficiency) immunocompromised

mousemodels (Shultz et al., 2007, 1995), monoclonal antibody

production (Spangrude et al., 1988), and fluorescent activated

cell sorting (FACS) (Bonner et al., 1972) provided the tools
needed to demonstrate that engraftment of primary AML cells

in immunocompromised mice is mediated by a rare cell that

can be prospectively isolated. Further discoveries showed

AML is clonally derived, hierarchically organized, and can be

serially passaged in immunocompromised mice (Bonnet and

Dick, 1997; Hope et al., 2004).

Until the identification of CSCs in human breast cancer in

2003 (Al-Hajj et al., 2003), the applicability of these observa-

tions to solid cancers remained hotly debated. In the follow-

ing years, CSCs have been identified in most solid cancers,

including brain, colon, pancreatic, head and neck, and others

(Li et al., 2007; O’Brien et al., 2007; Prince et al., 2007; Singh

et al., 2004). However, xenotransplantation studies have in-

herent problems, including the foreign microenvironment,

incompatible growth factor and cytokine signals, and the

lack of immune cells in these models. This raises very impor-

tant points that must be addressed. Indeed, some human

cancers, such as melanoma, may not follow the CSC para-

digm with an inability to prospectively isolate tumor-initiat-

ing cells and a high frequency of tumor-initiation (Kelly

et al., 2007; Quintana et al., 2008). Recently, Roesch et al. sug-

gest that in melanoma a slow-cycling subpopulation may

play an important role in tumor “maintenance” rather than

initiation and that this may represent a “dynamic” rather

than static state (Roesch et al., 2010). However, it has been

shown in syngeneic studies in human (Southam et al., 1962)

and mice (Cho et al., 2008; Huntly et al., 2004; Yilmaz et al.,

2006; Zhang et al., 2008) that not all cancer cells can reinitiate

the tumor suggesting that all the work from xenotransplanta-

tion studies cannot be summarily disregarded. Importantly,

the CSC paradigm does not depend solely on the frequency

of tumor-initiating cells, but rather the evidence of functional

heterogeneity and hierarchal organization (Dick, 2008;

Kennedy et al., 2007).
3. Hierarchal organization of the human breast

Thehumanbreast is composedofabranchingnetworkofducts

terminating in small ductal structures termed terminal ductal

lobular units (TDLU). The ducts contain luminal epithelial and

myoepithelial cells while fibroblast, endothelial, adipocytes,

and hematopoietic cells constitute the remaining stromal

component. The luminal lineage is divided into ductal and al-

veolar cells that line theducts or thealveolar units presentdur-

ing pregnancy, whereas the myoepithelial cells are basal,

contractile cells surrounding the ducts that force secreted

milk proteins through the ductal network to the nipple during

lactation. The large expansion of breast epithelium during pu-

berty andmultiple pregnancies suggests the existence of cells

with extensive proliferative and regenerative properties typi-

cally associated with stem cells (Visvader, 2009).

Observational studies have provided additional lines of ev-

idence for breast stem cells. Women exposed to radiation as

teenagers, such as atomic bomb survivors, have an increased

risk of developing breast cancer later in life, suggesting the

presence of long-lived cells (Land and McGregor, 1979). Exam-

ination of X-linked inactivation and loss of heterozygosity in

normal and adjacent breast cancer tissue showed large tracts

of epithelial cells sharing similar chromosomal alterations

http://dx.doi.org/10.1016/j.molonc.2010.06.005
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suggesting they are derived from the same stem cell (Deng

et al., 1996; Tsai et al., 1996).

The seminal development of the in vivo mouse mammary

fat pad transplant system by DeOme et al. provided an assay

to study breast stem cell function and remains the “gold stan-

dard” (DeOme et al., 1959). In this assay, the epithelial portion

in the pre-pubertal mammary fat pad is surgically removed

leaving the stromal portion. Donor cells are transplanted

into this “cleared fat pad” and outgrowths are quantified. Us-

ing this assay, it was demonstrated that outgrowths could be

generated from different regions of the mouse mammary

gland, young and old virgin or pregnant mice, and the out-

growths could be serially transplanted for multiple genera-

tions (Daniel et al., 1968; Daniel and Young, 1971; Smith and

Medina, 1988; Young et al., 1971). Retroviral marking of mam-

mary cells conclusively proved mammary outgrowths could

be derived from a single cell (Kordon and Smith, 1998). Kuper-

wasser et al. further improved the transplant assay for human

breast epithelial cells by “humanizing” the fat pad via injec-

tion of irradiated human fibroblasts, which generated a stro-

mal environment that more closely simulates human breast

tissue (Kuperwasser et al., 2004). Recently, Eirew et al. devel-

oped an alternative in vivo method for quantifying human

breast stem cell activity based on transplantation of cells em-

bedded in collagen gels into the renal capsule of mice supple-

mented with estrogen and progesterone (Eirew et al., 2008).

The development of these in vivo transplant assays has fa-

cilitated the prospective isolation of mouse and human breast

stem and progenitor cells based on various cell-surface

markers. Mouse stem cells are enriched in the

CD49fhiCD29hiCD24þSca1� fraction (Shackleton et al., 2006;

Stingl et al., 2006). Human breast stem cells have been found

to be contained in the CD49fhiEpCAM� (Eirew et al., 2008;

Lim et al., 2009) and aldehyde dehydrogenase (ALDH)þ frac-

tions (Ginestier et al., 2007). Breast cancer stem cells are found

in the CD44þCD24� fractionwith as few as 200 cells able to ini-

tiate tumors (Al-Hajj et al., 2003). Luminal progenitor cells

within the human breast have been identified using in vitro

differentiation assays and exhibit a CD49fþEpCAMþ pheno-

type (Eirew et al., 2008; Lim et al., 2009). Myoepithelial progen-

itor cells were concentrated in the CD49fþEpCAM�/low fraction

alongwith bi-potent progenitors (Eirew et al., 2008). Basal cells

aremarked by CD49fþEpCAM� expression whereasmature lu-

minal cells are mainly CD49f�EpCAMþ (Lim et al., 2009). Addi-

tionally, recent studies have suggested that ductal and

alveolar structures may originate from different stem cells

in the mouse breast (Jeselsohn et al., 2010). Additionally, it

has been shown using in vitro suspension culture that mam-

mosphere formation is a property of breast progenitor cells

(Charafe-Jauffret et al., 2009; Dontu et al., 2003; Ginestier

et al., 2007; Liu et al., 2006).
4. What is the cell of origin for breast cancer?

The cell of origin represents an important question in cancer

research and has implications for prevention, early detection,

and treatment. The quiescent, hence relatively long-lived, na-

ture of stem cells has been suggested as important in allowing

these cells to acquire the multiple genetic lesions required for
tumorigenesis (Reya et al., 2001). The cell-of-origin hypothesis

postulates that cells within a tissue acquire some initial hit(s),

somatic or germ-line, but only the stem cell survives by virtue

of its quiescent program and eventually passes the mutation

(s) to progeny cells when it self-renews. On the other hand,

progenitor cells, with limited self-renewal capacity, may gen-

erate cancers through acquisition of self-renewal capacity. Ex-

perimental evidence for both possibilities has been

demonstrated by the generation of murine leukemias after in-

troduction of leukemogenic oncogenes into purified hemato-

poietic stem cells or progenitor cells (Cozzio et al., 2003;

Krivtsov et al., 2006; Somervaille and Cleary, 2006). Armstrong

and colleagues showed reactivation of self-renewal pathways

in normal progenitors led to transformation (Krivtsov et al.,

2006). However, in these studies, stem cells were more effi-

ciently transformed and, thus, the most common target may

be the stem cell.

Parallel studies comparing the transformation efficiency of

mouse mammary progenitor and stem cells with mammary

oncogenes, such asWnt-1, have not been possible until the re-

cent description and isolation of these subsets (Eirew et al.,

2008; Lim et al., 2009; Shackleton et al., 2006; Stingl et al.,

2006). Ectopic Wnt-1 expression has been shown to increase

mammary stem and progenitor cells in pre-neoplastic tissue

suggesting Wnt-1 may alter the epithelial hierarchy and

MMTV-Wnt-1 tumors contain cells capable of multi-lineage

differentiation whereas MMTV-Neu tumors are composed of

luminal committed cells suggesting these tumors originate

from different cells in the mammary hierarchy (Liu et al.,

2004; Vaillant et al., 2008). However, these descriptive studies

cannot distinguish if Wnt-1 more efficiently transforms stem

or progenitor cells. In the mouse, Bouras et al. demonstrated

constitutive Notch activation in the stem or luminal progeni-

tor cells induced similar pre-neoplastic lesions at comparable

frequency suggesting Notch signaling can transform either

population (Bouras et al., 2008).

Breast cancer is a histologically, molecularly and epidemi-

ologically heterogeneous disease. There are six molecular

subtypes based on gene expression analysis, which include

normal breast-like, luminal A and B, basal-like, claudin-low,

and HER2/ERBB2 over-expressing (Herschkowitz et al., 2008,

2007; Perou et al., 2000; Sorlie et al., 2001; Troester et al.,

2006). The molecular heterogeneity between breast cancers

has been suggested to result from different targets of transfor-

mation. Lim and colleagues examined the different epithelial

populations in normal and pre-neoplastic tissue from BRCA1

mutation carriers (Lim et al., 2009). In women heterozygous

for BRCA1 mutations, they reported an increase in luminal

progenitor cells and these tumors weremolecularlymore sim-

ilar to luminal progenitors than the stem cell enriched popu-

lation. These results seemingly contrast with an earlier

study showing an expansion of breast stem cells after

siRNA-mediated knockdown of BRCA1 in normal mammary

epithelial cells (Liu et al., 2008). However, these observations

suggest a critical role of BRCA1 dosage since BRCA1 expression

is lower in stem cells compared to luminal progenitors and

differentiated luminal cells. Taken together, these data sug-

gest expansion of the stem and/or luminal progenitor popula-

tion may be a target for transformation in BRCA1 mutation

carriers (Ginestier et al., 2009).

http://dx.doi.org/10.1016/j.molonc.2010.06.005
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5. Resistance to chemotherapy and radiotherapy

While the existence of CSC in multiple human tumors has

been firmly established, the functional and clinical signifi-

cance of these cells remains hotly debated (Shipitsin and

Polyak, 2008). The idea that CSC might be resistant to treat-

ment had foundations in seminal leukemia studies that pred-

icated relapse and ultimate failure of chemotherapy was due

to the inability to eradicate CSC (Clarkson and Fried, 1971). In-

deed, work from Craig Jordan’s lab showed AML LSC are resis-

tant to the chemotherapeutic cytarabine, which is part of

standard induction therapy (Guzman et al., 2001, 2005). Recent

studies have highlighted the chemo- and radio-resistance of

CSCs in solid tumors as a possible mechanism to explain

why current treatment modalities fail to cure most patients

(Bao et al., 2006; Creighton et al., 2009; Li et al., 2008; Phillips

et al., 2006; Yu et al., 2007). NOTCH and Wnt signaling, path-

ways utilized in normal stem cell self-renewal, were found

to mediate radio-resistance in glioblastoma and breast cancer

(Phillips et al., 2006; Wang et al., 2010; Woodward et al., 2007).

CSCs have been invoked as the seed for distantmetastases,

which typically are responsible for end-stage disease and ulti-

mately death. The epithelialemesenchymal transition (EMT)

process is critical for metastasis. Numerous reports suggest

a link between EMT and CSC (Mani et al., 2008), and recently

the concept of “migrating cancer stem cells” has been pro-

posed (Brabletz et al., 2005). Interestingly, the basal fraction

(CD49fhiEpCAM�) containing normal human stem cells and

myoepithelial progenitor cells express the common EMT

marker vimentin suggesting some cells may be undergoing

EMT (Eirew et al., 2008; Lim et al., 2009). However, since this

fraction is not purely stem cells, it remains to be determined

if most or all stem cells express EMT markers. Nonetheless,

given the congruence between EMT factors and stem cell

markers in invasive cancer cells, strategies to target CSC

must also focus these “migrating cancer stem cells.”
6. The realities of targeting CSC

The development of CSC-specific agents presents new chal-

lenges for evaluating clinical efficacy (Wang, 2007). The com-

monly accepted criteria for clinical efficacy is overall survival,

but this can only be demonstrated in phase III trials requiring

large patient numbers and long-term follow-up. Phase II trials

are designed to assess a drug’s activity using surrogate end-

points to determine whether a phase III trial is warranted.

The typical endpoint used in phase II trials is tumor shrinkage

using criteriadefinedbyRECIST (Eisenhauer et al., 2009),which

canbemeasuredoverweeksormonths.Thepremise is that tu-

mor regression equates with clinical benefit. Although tumor

shrinkagemay temporarily relieve symptoms related to tumor

burden, a correlation between tumor response and overall sur-

vival has rarely been shown for patients with hematological

and solid cancers (Huff et al., 2006). For example, there is only

a modest overall survival advantage for pancreatic, prostate

and metastatic breast cancer patients treated with combina-

tion chemotherapy even with tumor response (Abratt et al.,

2004; Chung et al., 2008; Rocha Lima et al., 2004). This paradox
between response and survival may be explained by an inabil-

ityof chemotherapy toeffectively target theCSC.Theproblems

associated with correlation between tumor response and sur-

vival in phase II/III clinical trials highlight a need for novel clin-

ical trial design to test anti-CSC efficacy. These trials may

utilize surrogate intermediate endpoints evaluating cells

expressing CSCs markers.

One such approach is the use of neoadjuvant trials where

CSC populations from tumor tissue obtained pre- and post-

therapy are assayed in vitro and in vivo (Creighton et al., 2009).

Additionally, there are inherent differences when testing po-

tential anti-CSC therapeutics in the adjuvant and advanced

settings. Agents causing tumor regression in the advanced set-

ting likely reflect effects on thebulk tumorpopulation, butmay

haveminimal effect on the CSC population. In contrast, a CSC-

specific therapeutic would show modest effects on tumor

growthwhen tested in theadvancedsetting, butmayhave sub-

stantial clinical benefit in the adjuvant setting.

An ideal CSC-specific therapeutic would target the CSC and

bulk tumor cells withminimal adverse effects. There aremore

than 500 kinds of adverse effects associated with cancer ther-

apy and range from minor to life threatening or death (Trotti

et al., 2003). Chemotherapy-induced myelosuppression is

a major dose-limiting toxicity (Daniel and Crawford, 2006;

Nirenberg, 2003) and is not limited to chemotherapy regimens;

treatment with the molecularly targeted BCR-ABL inhibitor

imatinib (Gleevec) led to myelosuppression in patients with

chronic myeloid leukemia (CML) or solid tumors (Agis et al.,

2006). Additionally, total body irradiation was shown to selec-

tively induce senescence in mouse hematopoietic stem cells,

as compared to progenitor cells (Wang et al., 2006b). The rela-

tionship between chemotherapy-induced toxicity in other tis-

sues, especially the gastrointestinal, andnormal stemcells has

been demonstrated for numerous regimens (Dekaney et al.,

2009; Ijiri and Potten, 1983, 1987). However, within human

skin, the CD49þCD71low stem cells were more radio-resistant

than the CD49þCD71þ progenitor cells (Rachidi et al., 2007).

Strategies to eradicate breast CSC do not necessarily need to

spare normal breast stem cells since most women diagnosed

with breast cancer are post-menopausal and do not need the

ability to lactate. However, these therapies should not target

other normal stem cells, such as hematopoietic, gastrointesti-

nal, skin, and neuronal, which are critical for patient survival.
7. Pathways utilized by solid CSCs

In order to effectively target CSC, a detailed understanding of

the pathways regulating the growth, survival, and self-re-

newal of CSC is needed. For example, seminal studies from

Craig Jordan’s lab first demonstrated a reliance on NF-kB sig-

naling in AML LSC (Guzman et al., 2001), which could be

exploited using parthenolide, a natural product sesquiterpene

lactone from the medicinal plant feverfew (Guzman et al.,

2005). Parthenolide induced apoptosis in the LSC in vitro and

was able to inhibit leukemia engraftment in NOD/SCID mice

after a brief (16 h) treatment in vitro. More importantly, parthe-

nolide had little effect on normal HSC suggesting parthenolide

treatment in AML patients may spare normal blood cell pro-

duction. An orally bioavailable parthenolide analog with

http://dx.doi.org/10.1016/j.molonc.2010.06.005
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similar anti-LSC activity is currently in phase I clinical trials

(Guzman et al., 2007). While NF-kB signaling and sensitivity

to parthenolide may not apply to all CSC, these studies pres-

ent a model for rational drug development for anti-CSC

therapeutics.
7.1. New role for an old tumor suppressor: p53

Since the discovery of the p53 tumor suppressor (Hollstein

et al., 1991), there have been thousands of articles detailing

numerous roles of p53 in cancer. A recent article highlights

a newly discovered role for p53 in normal and cancer stem

cell biology. The genetic pathways regulating stem cell self-re-

newal via symmetric or asymmetric cell divisions has been el-

egantly shown for Drosophila stem cells (Gonzalez, 2007;

Morrison and Kimble, 2006; Neumuller and Knoblich, 2009);

however, the machinery that controls asymmetric versus

symmetric divisions in mammalian stem cells is poorly char-

acterized. Cicalese and colleagues used the power of labeling

cells with a cell-surface dye, PKH26, to follow the fate of

mouse breast stem cells (Cicalese et al., 2009). After labeling

w99% of cells, they noticed only w1% of mammosphere cells

retained high levels of PKH26. These PKH26high cells retained

secondary mammosphere formation and outgrowth poten-

tial. By continuously imaging single PKH26high cells in vitro

they found w80% of the first cell divisions were asymmetric.

In contrast, the mammary cells of p53�/� mice contained

a higher proportion of mammary stem cells, and in vitro these

cells underwent a higher (w75%) proportion of symmetric cell

divisions. Over time, the number of stem cells increased at an

apparent geometric rate. Similar results were obtained with

ErbB2 over-expressing cells. Restoration of p53 function with

Nutlin3, a small molecule inhibitor of MDM2-dependent p53

degradation, in ErbB2 over-expressing cells switched cell divi-

sions back to asymmetric in the absence of anti-proliferative

effects. Finally, Nutlin3 treatment reduced mammosphere

and tumor formation in ErbB2 over-expressing cells indicating

increased self-renewal contributes to tumor growth. These

studies suggest that the balance between symmetric and

asymmetric CSC self-renewal may be a determinant of CSC

frequency. Therapeutic agents developed to modulate these

pathways may show efficacy in reducing CSC populations.
7.2. “Akt”ing as a central node in CSC signaling

Akt (protein kinase B) is a central regulator in the Wnt and

PI3K signaling pathways and is critical in energy homeostasis.

Upstream of Akt is the PTEN tumor suppressor, which en-

codes a lipid and protein phosphatase, and is frequently mu-

tated in human cancer (Keniry and Parsons, 2008). PTEN

dephosphorylates PIP3, a product of PI3K. Loss of PTEN results

in accumulation of PIP3, thereby activating a signaling cas-

cade, including AKT, S6 kinase, mTOR, Rac1, Cdc42, and phos-

phatidylinositol-dependent kinases (Hill and Wu, 2009). AKT

activation results in cell cycle progression via p27 down-regu-

lation and leads to down-regulation of pro-apoptotic factors,

including BAD and caspase-9. Various PTEN mouse models

have shown the PTEN/PI3K/AKT pathway controls stem cell

homeostasis and malignancies in numerous tissues (Guo
et al., 2008; Hill and Wu, 2009; Wang et al., 2006a; Yilmaz

et al., 2006; Zhang et al., 2006).

A role for PTEN in breast cancer and stem cells was shown

when it was observed that PTEN deletion inmammary epithe-

lial cells led to precocious mammary gland development and

breast cancer (Li et al., 2002). Germ-line mutation of the

PTEN gene is associated with Cowden’s disease, an autosomal

dominant multi-neoplasia syndrome, which predisposes men

andwomen to an increased risk of breast cancer (Eng, 2003). In

normal human breast tissue, knockdown of PTEN resulted in

increased mammosphere formation, Akt activity, and activa-

tion of the Wnt/b-catenin pathway via GSK3b (Korkaya et al.,

2009). It was observed that PTEN knockdown in humanmam-

mary cells generated disorganized hyperplastic lesions when

these cells were introduced into the humanized mammary

fat pads of NOD/SCID mice. Pharmacological inhibition of

AKT with perifosine, but not the mTOR inhibitor rapamycin,

resulted in fewer mammospheres and completely inhibited

formation of hyperplastic lesions. PTEN knockdown in breast

cancer cells lead to increased mammosphere formation in

vitro and tumor-initiation in NOD/SCID mice. Accordingly,

treatment with the AKT inhibitor perifosine reduced tumor

growth and secondary tumor formation. Previous studies

have shown oncogenic activation of Wnt/b-catenin signaling

increased mammary stem and progenitor cells (Li et al.,

2003; Liu et al., 2004). In agreement, activation of Wnt signal-

ing increased human mammosphere formation (Korkaya

et al., 2009). Taken together, these results suggest that the

PTEN/AKT/Wnt signaling axis regulates normal and malig-

nant breast stem cells.

7.3. Paracrine and autocrine Hedgehog signaling

Aberrant activation of the Hedgehog (Hh) pathway is common

in basal cell carcinoma, medulloblastoma, a tumor of cerebel-

lar granule neuron progenitor cells, and rhabdomyosarcoma,

a muscle tumor. The Hh pathway represents an attractive tar-

get for drug development and has shown promise in Phase I

clinical trials of advanced basal cell carcinoma and medullo-

blastoma with GDC-0449, an Hh pathway inhibitor (Rudin

et al., 2009; Von Hoff et al., 2009). Hh is known to signal

through autocrine, juxtacrine, and paracrine mechanisms

(Rubin and de Sauvage, 2006; Theunissen and de Sauvage,

2009). Secreted Hh (Sonic, Indian, or Dessert) signals through

the 12 trans-membrane Patched 1 (PTCH) receptor, which

de-represses the 7 trans-membrane Smoothened (SMOH) pro-

tein. Translocation of activated SMOH to cilia initiates a signal-

ing cascade resulting in nuclear translocation of active GLI

transcription family members and up-regulation of target

genes including GLI1 and PTCH1.

Given the limited evidence of activating mutations of the

Hh pathway, the role of activated Hh signaling in other solid

tumors had been poorly characterized. Watkins et al. reported

that w25% of small cell lung cancer (SCLC) samples displayed

high expression of Sonic Hh ligand and GLI1. Inhibition of Hh

signaling with cyclopamine, a natural product SMOH inhibitor

derived from corn lilies, or an anti-Hh antibody blocked

growth of SCLC cell lines in vitro. Furthermore, cyclopamine

prevented growth of SCLC in immunocompromised mice

(Watkins et al., 2003). Hh pathway activation has also been

http://dx.doi.org/10.1016/j.molonc.2010.06.005
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demonstrated in pancreatic cancer. Thayer et al. found altered

Sonic Hh, PTCH1, and SMOH expression in the epithelial and

stromal compartments of human tumors suggesting potential

autocrine and paracrine signaling (Thayer et al., 2003). Treat-

ment with cyclopamine prevented growth of pancreatic cell

lines in vitro and, more importantly, in vivo.

Given the role of Hh signaling in regulating cell prolifera-

tion and differentiation during development, it is not surpris-

ing Hh also regulates normal andmalignant stem cells in both

Drosophila and mammalian systems (Jiang and Hui, 2008). Hh

pathway activation in mouse primitive hematopoietic cells

induced cycling and expansion, but eventual exhaustion of

hematopoietic stem cells (Trowbridge et al., 2006). A role for

Hh signaling in CSC was demonstrated by specific deletion

of Smoothened in BCR-ABL positive chronicmyeloid leukemia

stem cells, which prevented tumor-initiation, and treatment

with cyclopamine increased survival of mice transplanted

with BCR-ABL leukemia cells (Dierks et al., 2008).

Hh signaling also has been shown to play an important role

in normal and malignant breast stem cells. Liu et al. showed

Indian Hh, PTHC1, SMOH, GLI1, and GLI2 are expressed in

stem and progenitor cells when cultured as mammospheres.

Expression of the Hh pathway components was substantially

reducedwhen these cells underwent differentiation (Liu et al.,

2006). Exogenous Hh ligand increased mammosphere forma-

tion whereas cyclopamine treatment inhibited mammo-

sphere formation. Hh signaling induced BMI1 expression

and reduction of BMI1 led to decreasedmammosphere forma-

tion. Furthermore, PTCH1, GLI1, GLI2, and BMI1 were

expressed at higher levels in CD44þCD24� breast CSC com-

pared to bulk cancer cells indicating Hh signaling has a role

in normal and malignant breast stem cells.

7.4. Another notch in CSC defenses?

Notch signaling is activated by binding of Notch receptors

(Notch 1e4) with ligands (Delta, Delta-like, and Jagged1 and

Jagged2) on adjacent cells. Binding initiates a cascade of pro-

teolytic cleavages mediated by members of the ADAM metal-

loprotease family as well as internal cleavage by g-secretase.

Therapeutic inhibition of the Notch pathway can be achieved

by g-secretase inhibitors (GSI), which are currently in clinical

trials for Alzheimer’s disease, T-cell acute lymphoblastic leu-

kemia (T-ALL), and breast cancer. Cleavage results in the

translocation of the Notch intracellular domain (NICD) to the

nucleus where it cooperates with the CSL DNA-binding pro-

tein CBF1/RBPkJ forming a trimeric complex with CBF1/RBPkJ

and the co-activator Mastermind. This induces expression of

Notch target genes including Hes, Hey, c-Myc, cyclin D1, and

p21/Waf1. NICD activity is regulated by CDK8-dependent

phosphorylation thereby resulting in ubiquitination of NICD.

In the absence of NICD, co-repressors, such as CtBP are

recruited. Additionally, Notch activity is inhibited by Numb

through an endocytotic mechanism. Interestingly, Numb is

asymmetrically segregated into one of two daughter cells in

numerous cell types, and is inhibited by Musashi at the level

of Numb mRNA translation (Bray, 2006).

A role for Notch signaling in cancer was demonstrated by

the identification of activating Notch1 mutations in more

than 50% of T-ALL (Weng et al., 2004) and retroviral insertions
into Notch4 inmousemammary cancers (Jhappan et al., 1992).

Analysis of normal human breast stem cells showed activa-

tion of Notch signaling using soluble Delta ligand promoted

stem cell self-renewal and differentiation of progenitor cells

with negligible effects onmature differentiated epithelial cells

(Dontu et al., 2004). Additionally, it was shown that Musashi1

and Notch1 regulate human breast stem cells (Clarke et al.,

2003, 2005). In the mouse mammary gland, Notch signaling

was shown to regulate the expansion of stem cells and

differentiation to luminal progenitor cells (Bouras et al.,

2008). Recently, Harrison and colleagues showedNotch4 activ-

ity was increased in breast CSC, and that inhibition of Notch4

signaling reduced breast CSCs and completely inhibited

tumor-initiation (Harrison et al., 2010). Interestingly, Notch1

activity was lower in breast CSC compared to more differenti-

ated progenitor cells. This suggests that there is specificity of

different Notch receptors in the regulation of breast stem and

progenitor cells. If this is the case, then selective inhibition of

Notch4 may be more efficacious and potentially less toxic

than Notch1 inhibitors or g-secretase inhibitors that inhibit

all Notch receptors. GSI are currently being evaluated in early

phase clinical trials for advanced breast cancer.

7.5. Cytokine signaling and the tumor
microenvironment

The view of solid tumors as a homogenous sheet of epithelial

cells, such as in vitro culture, is clearly too simplistic. Rather,

tumors are composed of epithelial cells, fibroblasts, endothe-

lial, hematopoietic, and other cells that communicate with

each in a complex network of growth factors and cytokines

and the cognate receptors. The ability to interfere with this

network represents a growing interest in drug discovery. In-

deed, utilization of monoclonal antibodies (i.e. CD44, CD47,

CD123) to inhibit signaling between leukemia stem cells

(LSC) and supporting cells has been very effective at eradicat-

ing AML LSC in NOD/SCID mice (Jin et al., 2006, 2009; Majeti

et al., 2009).

Several cytokines have been implicated in regulating

breast CSCs, including IL-6 (Sansone et al., 2007) and IL-8

and the cognate CXCR1 receptor. CXCR1 expression is higher

in ALDHþ cells from numerous breast cancer cells lines and

exogenous IL-8 increased the CSC population (Charafe-

Jauffret et al., 2009). This suggested that inhibition of IL-8/

CXCR1 signaling could target breast CSC. Ginestier and col-

leagues showed that <2% of breast cancer cells expressed

CXCR1, which overlapped with the ALDHþ fraction (Ginestier

et al., 2010). Interestingly, repertaxin, a small molecule inhib-

itor of CXCR1, was able to decrease viability of the whole pop-

ulation even though only a small fraction expressed CXCR1.

Repertaxin mediated cell killing in the bulk cell population

through a bystander effect via secretion of FAS ligand.

CXCR1 is known to signal through AKT thereby inhibiting

FOXO3A localization, and FAS ligand expression. Repertaxin

treatment inhibited AKT signaling resulting in nuclear

FOXO3A and FAS ligand expression, but, interestingly, was in-

effective in PTEN knockdown cells. Chemotherapy is known to

kill cells via a bystander effect through FAS ligand, but also in-

duces IL-8 and thereby protects CSC from FAS ligand. This

suggested that repertaxin might block this effect and target

http://dx.doi.org/10.1016/j.molonc.2010.06.005
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the CSC population. Repertaxin reduced the CSC population in

vitro and in tumor xenografts. As a single agent, repertaxin

had marginal effect on tumor growth, but significantly re-

duced tumor volume in combination with the chemotherapy

drug docetaxel. In addition, repertaxin reduced metastatic

burden and secondary tumor formation. Taken together,

these results suggest that repertaxin sensitizes CSC to the by-

stander effect via FAS ligand and that CXCR1 blockade may

represent a new approach to targeting and eliminating breast

CSCs.

7.6. Nothing “micro” about microRNA in CSC signaling

In the 10 years since RNA interference (RNAi) was first de-

scribed by Fire et al. (1998), the field of small RNAs has virtually

exploded. While small-interfering RNA (siRNA) has been ex-

tremely useful as a laboratory tool for silencing target gene ex-

pression (Jackson and Linsley, 2010), the class of microRNAs

(miRNAs) has garnered considerable interest based on the

wide range of possible targets (w300) for each miRNAs

(Bartel, 2009). As of December 2009, over 700 human miRNAs

have been confirmed or predicted within the mirBase data-

base (Griffiths-Jones et al., 2008). miRNAs are endogenous

non-coding w20e23 nt RNAs processed from larger hairpin

structures that bind to complementary sequences in the 30 un-
translated regions (UTR) of mRNAs. Processed miRNAs are

loaded into the Argonaute protein of the silencing complex

(RISC) and pair with mRNAs. Binding is mediated primarily

through a seed sequence of 7e8 nt at the 50 region of the

miRNA via WatsoneCrick pairing. Binding via the seed se-

quence leads to translational repression and/or mRNA desta-

bilization, whereas extensive complementarity, such as

through siRNA, can direct Argonaute-catalyzed mRNA cleav-

age (Bartel, 2009).

The wide range of possible targets for eachmiRNA provides

a simple mechanism for a stem cell to coordinately regulate

a set of “stemness” genes. Deletion of miRNA processing pro-

teins, such as DGCR8 or Dicer, has been shown to alter the G1-

S transition and proliferation of embryonic stem cells (ESC)

(Murchison et al., 2005; Wang et al., 2008). More than 100

miRNAs are differentially expressed between human ESC and

differentiated embryoid bodies (Morin et al., 2008). Indeed,

miR-145 isabsent inself-renewingESCsand targets thepluripo-

tency factorsSox2,Oct4, andKLf4 (Xuetal., 2009). These studies

highlight the importance of miRNAs in regulating “stemness”.

A role for miRNAs in CSC has recently been shown for the

let-7 andmiR-200 families (Shimono et al., 2009;Wellner et al.,

2009; Yu et al., 2007). Yu and colleagues compared miRNA ex-

pression in primary breast cancer cell lines, which were

enriched for mammosphere formation and tumor-initiation,

to more differentiated cancer cells. Let-7 family members

were consistently reduced in the mammosphere cells. Forced

expression of let-7a reduced mammosphere formation in pri-

mary breast cancer and cell lines whereas reduction of let-7a

expression in differentiated cells increased mammosphere

formation. Importantly, forced let-7a expression suppressed

tumor-initiation and growth in NOD/SCID mice and in subse-

quent passages indicating let-7a maintains breast CSCs.

Given the large number of miRNAs present in ESCs com-

pared to differentiated cells (Morin et al., 2008), it is not
surprising that additionalmiRNAs are differentially expressed

in breast CSC. Shimono and colleagues identified 37 miRNAs

up regulated or down regulated in CD44þCD24� breast CSC

compared to bulk, non-tumorigenic cells (Shimono et al.,

2009). Three clusters of miRNAs were down regulated in the

breast CSC, including miR-200c-141, miR-200b-200a-429, and

miRNA-183-96-182. Similar seed sequences are shared be-

tween the miR-200c-141 and miR-200b-200a-429 clusters indi-

cating similar genes are targeted by these miRNAs. These

miRNA clusters were also decreased in normal breast stem

cells suggesting a link between normal and malignant breast

stem cells. Among the numerous targets, Shimono et al. con-

centrated on BMI1 since it is known to regulate normal and

CSCs (Lessard and Sauvageau, 2003; Molofsky et al., 2003;

Park et al., 2003). Exogenous miR-200c reduced BMI1 protein

levels and suppressed growth of embryonal carcinoma cells.

Expression of miR-200c in normal mouse breast stem cells

suppressed outgrowth formation in the mammary fat pad as-

say. Moreover, miR-200c expression in human CD44þCD24�

breast CSC also suppressed tumor-initiation in NOD/SCID

mice suggesting similar to let-7 that miR-200c also regulates

breast CSC.

7.7. “Transitioning” from epithelialemesenchymal cells

The epithelialemesenchymal transition (EMT) is a develop-

mental program typically activated in metastatic cancer. Dur-

ing themetastasis process, it is postulated cancer cells acquire

some self-renewal capability to give rise to macroscopic me-

tastases. Mani and colleagues showed forced expression of

Snail or Twist transcription factors, which induce EMT, in-

creased the CD44þCD24� fraction in immortalized human

breast epithelial cells suggesting a relationship between EMT

and the CSC phenotype (Mani et al., 2008). Cells that had un-

dergone EMT had increased mammosphere-forming capacity

and tumor-initiation potential in NOD/SCID mice. The miR-

200 family is known to prevent EMT by suppressing ZEB1

and ZEB2 expression, which are transcriptional repressors of

E-cadherin (Gregory et al., 2008; Park et al., 2008; Wellner

et al., 2009). ZEB1 is also known to inhibit expression of miR-

200 family members creating a double-negative feedback

loop (Bracken et al., 2008; Peter, 2010). Recently, Greene et al.

showed miR-205 is highly expressed in mouse mammary ep-

ithelial progenitors and targets PTEN as well as ZEB1 and

ZEB2 (Greene et al., 2010).

This raises interesting questions about what preventsmiR-

200 expression in stem cells. Wellner and colleagues demon-

strated ZEB1 is expressed in the invasive front of pancreatic

cancer samples (Wellner et al., 2009). Down-regulation of

ZEB1 reduced invasion and metastasis in NOD/SCID mice and

inhibited tumor-initiation and secondary tumor formation.

Furthermore, knockdown of ZEB1 increased expression of

miR-203 and miR-183, members of the miR-200 family, and

forced expression of miR-203 andmiR-183 reduced pancreatic

sphere formation. Examination of the BMI1 30 UTR revealed

binding sites for miR-200, miR-203, and miR-183. It was also

demonstrated that miR-200 also repressed the pluripotency

factors Sox2 and Klf4. Therefore, ZEB1 and the miR-200 family

are at the center of a complexnetwork ofmiRNAsand stemcell

regulators in multiple cancers, including breast cancer.
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Figure 1 e High-throughput approaches to target breast CSC. A) Breast CSC can be isolated by sorting using the Aldefluor assay or

CD44DCD24L populations (red box) or via culturing as mammospheres. Within these populations, the CSC frequency is enriched with some

percentage of non-tumorigenic bulk cells remaining. B) To screen the CSC population, cells are plated in 384-well plates in conditions that

maintain tumor-initiation capacity, such as in serum-free suspension (mammosphere) or in EGF- and FGF-containing media on laminin-coated

plates (Pollard et al., 2009). Small molecule compound collections are added to plates at one compound/well, typically at high nanomolar or low

micromolar concentrations. Additionally, the whole genome or selected gene sets (kinases, phosphatases, ‘druggable’) can be targeted using either

siRNA or retroviral or lentiviral shRNA libraries with usually 4e5 constructs per gene. shRNA libraries can provide long-term knockdown

whereas siRNA knockdown is more transient. Cellular endpoints can include growth inhibition (Gupta et al., 2009), flow cytometry (Krutzik and

Nolan, 2006), sphere formation (Diamandis et al., 2007), or cell migration (Wurdak et al., 2010) (For interpretation of the references to colour in

this figure legend, the reader is referred to the web version of this article).
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Figure 2 e Validation of potential “hits” as anti-CSC agents. A) Traditionally, “hits” are identified using a Z- or B-score for each compound/RNA

and at least 3 standard deviations (green line) from the mean (blue line). Hits (red dots) are “cherry-picked” for validation studies (right) at

additional doses to show specificity for CSC (blue circles) and not normal stem cells (red triangles). B) To confirm validated “hits” target CSCs,

activity must be validated using primary tumor xenografts in immunocompromised mice. In the advanced setting (top), cells enriched for breast

CSC are injected into mice, allowed to grow to a palpable size and then mice are treated with candidate drugs or siRNA/shRNA. A CSC-specific

agent (blue triangles) would have minimal effect in this assay since tumor growth is driven primarily by progenitors and not CSC. However, an

agent that targets CSC and the bulk tumor cells (red squares) would show dramatic tumor reduction. This effect could be achieved using a CSC-

specific agent and a chemotherapeutic agent targeting the bulk population. In an early (i.e. adjuvant) setting (bottom), treatment is initiated soon

after injection of CSC-enriched cells. A selective anti-CSC agent (blue triangles) would be predicted to have a much greater effect when

administered in this setting (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article).
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7.8. High-throughput screening to identify novel targets
and compounds

Until recently, most drug development targeting CSC was

based on a priori understanding of pathways utilized by these

cells. From a drug discovery standpoint, this strategy is attrac-

tive given the high costs (estimates range from $800million to

$2 billion), high attrition rate, and difficulties associated with

moving a compound from target discovery to FDA approval

(Booth and Zemmel, 2004; Munos, 2009).

Identification of themolecular target(s) for lead compounds

has been extremely time consuming and difficult, but recent

advances point to a future where target identificationmay be-

come more routine. Chemical proteomics, a spectrometry-

based affinity chromatography approach, holds promise for

directly identifying the target protein(s) bound by small mole-

cules, further advancing drug development via new target pro-

teins for subsequent discovery efforts (Rix and Superti-Furga,
2009). Computational approachesprovideamechanism topre-

dict molecular targets and potential side-effects (Campillos

et al., 2008; Keiser et al., 2009). Furthermore, development of

databasesofdrugs (MDLDrugDataReport), knowndrug targets

(DrugBank, Matador, SuperTarget), and small molecule gene

expression signature profiles (i.e. Connectivity Map) can pro-

vide new insights into possible mechanisms of action for un-

known compounds (Gunther et al., 2008; Lamb et al., 2006;

Wei et al., 2006; Wishart et al., 2008). The promise of these ap-

proacheswasdemonstratedby in silicodatamining thepublicly

availablemicroarraydatasetswithaquery signature fromAML

cells treated with parthenolide that identified new potential

anti-LSC agents, which were then validated in pre-clinical

models (Hassane et al., 2008).

The combination of high-throughput RNAi screens with

small molecule screens is another avenue to identify the mo-

lecular target(s) of lead compounds (Iorns et al., 2007;

Perrimon et al., 2007; Whitehurst et al., 2007). Identification
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of new proteins and pathways in CSCs from RNAi screens also

presents new opportunities for drug development, both in

terms of using RNAi as a therapeutic and developing new tar-

gets for small molecule or antibody-based screening. This ap-

proach was recently demonstrated by the screening of the

human kinome in primary glioblastoma cells enriched for tu-

mor-initiation. Schultz and colleagues identified TRRAP, an

adaptor protein with homology to phosphoinositide-3-OH-ki-

nase-related (PIKK) proteins, as critical to self-renewal and

proliferation of brain CSC through effects on cell cycle pro-

gression and histone marks of cyclin A2. Importantly, silenc-

ing of TRRAP suppressed tumorigenicity of primary

xenografts (Wurdak et al., 2010).

The applicability of these screens is not limited to RNAi,

but has also been applied to small molecule libraries (Pollard

et al., 2009). Dirks and colleagues utilized in vitro conditions

that are able to sustain brain tumor-initiating cells. A screen

of 450 compounds that have passed phase IeIII trials identi-

fied the serotonin and monoamine signaling pathways as po-

tential targets for modulation in brain CSCs. These results

mirror previous results showing sensitivity of mouse neuro-

spheres, enriched for stem cell activity, to neurotransmitter

pathway perturbation (Diamandis et al., 2007).

Application of these high-throughput approaches and con-

cepts to breast cancer was recently demonstrated and identi-

fied a previously unrecognized class of compounds with

efficacy against breast CSCs (Gupta et al., 2009). Gupta and col-

leagues harnessed the interesting observation that cells un-

dergoing EMT were enriched for and had characteristics of

CSC (Mani et al., 2008). They used a growth inhibition screen

with breast cells engineered to maintain an EMT state and

the immortalized normal, parental cells. From a collection of

w16,000 small molecules, only 32 targeted the EMT cells and

not the parental cells, and 4 (salinomycin, etoposide, abamec-

tin, and nigericin) were confirmed in follow-up studies. Sali-

nomycin, a potassium ionophore, showed the greatest effect

in vitro by reducing mammosphere formation as well as the

CD44þCD24- fraction, shown previously to include breast

CSC (Al-Hajj et al., 2003). Pre-treatment of breast cancer cells

in vitro with salinomycin dramatically reduced tumor-initia-

tion and lungmetastases in NOD/SCIDmice indicating salino-

mycin was able to target breast CSC. While the mechanism of

action for salinomycin in CSC has not been established, it was

shown recently this compound induced apoptosis in cancer

cells regardless of p53, Bcl2, or multi-drug resistance protein

status and independent of cell cycle arrest, caspase activation,

FAS/FAS ligand, and the proteasome (Fuchs et al., 2009). The

success of these screens highlight the promise of identifying

novel compounds with anti-CSC activity as well as novel pro-

teins and pathways functioning in CSC.
8. The future of targeting breast CSC

Currently, there are multiple potential anti-CSC agents in pre-

clinical and clinical trials, including Hh, NOTCH, AKT, and

CXCR1 inhibitors. While these are promising agents, the

likelihood of clinical success will depend onmany aspects, in-

cluding safety, trial design, and rational endpoints. High-

throughput screens represent new avenues for drug discovery
and identification of novel pathways regulating CSCs. Breast

CSCs screens may be based on methods to enrich for CSCs,

such as CD44þCD24�, ALDHþ, or sphere formation from cell

lines, primary breast cancer xenografts, or primary samples

(Figure. 1A). These CSC-enriched populations can be used to

screen siRNA, lentiviral shRNA, or small molecule libraries us-

ing various cellular endpoints including growth inhibition

(Gupta et al., 2009), flow cytometry (Krutzik and Nolan,

2006), sphere formation (Diamandis et al., 2007), or cell migra-

tion (Wurdak et al., 2010) (Figure. 1B).

High-throughput screens provide a larger pool of com-

pounds for testing in pre-clinical and clinical models given

the high attrition rate and decreasing productivity within the

pharmaceutical industry (Booth and Zemmel, 2004; Munos,

2009). While some side-effects from chemotherapy agents

are poorly understood, it is increasing clear that others are

due to toxic effects on normal stem cells in various tissues,

suchashematopoietic, skinandgastrointestinal (see ‘The real-

ities of targeting CSCs’ above). Thus, agents identified in pri-

mary high-throughput screens need to be tested on normal

stem cells to remove potentially cytotoxic agents with adverse

side-effects (Figure. 2A). These “confirmed” agents can then be

tested in primary tumor xenograft mouse models, However,

currentmodels, based primarily on tumor growth from rapidly

dividing progenitor cells, are poorly adept to identify anti-CSC

agents, which may have modest growth inhibition effects as

a sole agent (Figure. 2B). Rather, testing agents in an early (i.e.

adjuvant) settingwould identify thoseagentswithanti-CSCac-

tivity since early tumor formation is stem cell dependent.

New therapies might come from traditional or existing

medicines that were not tested for anti-cancer efficacy and

can be rapidly “repurposed” (Chen et al., 2008; Chong and

Sullivan, 2007; Eberhard et al., 2009; Ginestier et al., 2010).

The CXRC1 inhibitor repertaxin was developed to block organ

transplant rejection, the gamma-secretase inhibitors initially

developed to treat Alzheimer’s disease, and anti-fungal ciclo-

pirox olamine recently shown to target AML LSCs are exam-

ples of “repurposing” existing medicines.

Many proteins are considered “undruggable” based on cel-

lular location, binding, and function (i.e. transcription factors)

(Overington et al., 2006). The promise of RNAi is great consid-

ering the ability to target these “undruggable” proteins. How-

ever, RNAi has limitations, including off-target effects,

immune system modulation, and issues related to in vivo de-

livery (Jackson and Linsley, 2010; Whitehead et al., 2009). Sys-

temic delivery, via intravenous injection, is likely required for

treatment of disseminated disease and requires the ability to

avoid non-target tissues and efficient delivery to CSCs. The

ability to bypass kidney filtration, phagocytosis, aggregation

in serum, and enzymatic degradation is a key to successful

RNAi therapy with numerous groups and companies actively

trying to solve these issues. Indeed, RNAi therapeutics are cur-

rently in clinical trials for various diseases, such as age-related

macular degeneration, but most current trials rely on local-

ized delivery instead of using delivery agents (Whitehead

et al., 2009).

Much progress has been made in targeting CSC since the

“original” discovery in AML (Lapidot et al., 1994) and the iden-

tification of parthenolide as an anti-LSC agent (Guzman et al.,

2005). Recent advances in understanding the pathways
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utilized by CSC, such as Hh, NOTCH, and Wnt, have led to ex-

citing pre-clinical and phase I clinical trials to test the clinical

relevance of CSC. In addition, improved in vitro culture

methods to maintain CSC activity from primary tumor sam-

ples open the arena of high-throughput screening of small

molecule and siRNA libraries. Initial results from these

screens have provided new clues and leads in the fight against

cancer. Taken together, these studies provide novel agents to

target this critical cell population. It is hoped that successful

targeting of CSCwill significantly improve the outcome for pa-

tients with cancer.
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