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Abstract
New lumped-element models of red blood cell mechanics can be constructed using fractional
order generalizations of springs and dashpots. Such ‘spring-pots’ exhibit a fractional order
viscoelastic behavior that captures a wide spectrum of experimental results through power-law
expressions in both the time and frequency domains. The system dynamics is fully described by
linear fractional order differential equations derived from first order stress–strain relationships
using the tools of fractional calculus. Changes in the composition or structure of the membrane are
conveniently expressed in the fractional order of the model system. This approach provides a
concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.

Video microscopy reveals that a RBC must fold almost double to traverse the length of a
typical capillary. Such deformation stresses the membrane nearly to its elastic limit and
leads to microstructural damage that shortens the circulation lifetime of the human RBC to
less than 90 days. Characterization of this damage requires an accurate viscoelastic model of
membrane flexibility. In recent research, new experimental tools (e.g. magnetic twisting
cytometry [1] and optical tweezers [2]) have been developed to study the membrane
dynamics of single cells. These tools provide a direct means to test models of membrane
viscoelasticity. Magnetic twisting cytometry, for example, can measure the complex elastic
moduli, g(iω) = g′ (ω) + ig″(ω) (where g′ is the elastic modulus, g″ is the frictional loss
modulus, ω = 2π f is the angular frequency in radians s−1 and f is the frequency in hertz) of
the RBC membrane over a wide frequency range (0.01–100 Hz). Such studies [1] found a
fractional power-law dependence for g″ (g″ proportional to ωα, with α = 0.64) in the
frequency domain, and a fractional order creep response to a step input in stress in the time
domain. In both cases the time and frequency data did not conform to conventional spring
and dashpot viscoelastic models (e.g. Maxwell and Voigt arrangements). Subsequent studies
[2] of RBC membranes using optical tweezers observed a power-law relaxation of
membrane stiffness (t−α, with α = 0.75 for fresh RBC) and of strain rate dependence that
could not be explained within the framework of linear viscoelasticity. We would like to
suggest, however, that linear fractional order models, as developed by Koeller [3], Bagley
and Torvik [4], Suki et al [5] and Djordjević et al [6] using the so-called fractional calculus
can be used to characterize many aspects of such power-law viscoelastic behavior.

It is not widely recognized that the derivative is not restricted to the integer orders (e.g. first,
second, third, etc) usually encountered in college calculus. In fact, intermediate orders such
as 1/2, 3/2 or even π are possible. A simple introduction to the field of fractional calculus for
biomedical engineers was recently published [7], and a more advanced description
emphasizing how to solve fractional order differential equations is also available [8].
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Briefly, the fractional derivative of order α, 0 ≤ α < 1, for a function f (t) can be expressed
most simply in the Laplace domain when the initial condition is set equal to zero as

which converges to the classical result in the limit as α goes to 1. The only restrictions on
the function f (t) are those needed to ensure the existence of the Laplace transform
(piecewise continuity and exponential order), and these properties are commonly satisfied
by most functions of interest to bioengineers and cell biologists. Thus, manipulation of
fractional order derivatives in the Laplace domain involves simply replacing sF(s), s2F(s)
and s3F(s) with s1/2F(s), s3/2F(s) and sπF(s). The corresponding expressions in the time
domain are linear, involve the convolution integral (e.g. f (t) ∗ t−α/Γ (1 − α), where Γ is the
gamma function [8]), and are most easily obtained by using tables of Laplace transforms [9]
or more rarely by evaluating the inverse Laplace transform directly [10].

Fractional calculus is useful in the field of biorheology, in part, because many tissue-like
materials (polymers, gels, emulsions, composites and suspensions) exhibit power-law
responses to an applied stress or strain [11,12]. An example of such power-law behavior in
elastic tissue was observed recently for viscoelastic measurements of the aorta, both in vivo
and in vitro [13,14], and the analysis of these data was most conveniently performed using
fractional order viscoelastic models. For this one-dimensional model, the stress (σ) and the
strain (ε) in a material (or shear stress and strain) can be related with a fractional derivative

 where 0 ≤ α ≤ 1 and Kα = Eτα. Here E is an elastic constant with the units of (N
m−2) and τ is a time constant with units of (seconds); thus Kα had units of (Pascal)
(seconds)α. The bounding values of α represent the discrete elements employed in
conventional viscoelastic models (spring, Kα = E when α = 0 and dashpot, Kα = Eτα = η, the
coefficient of viscosity, when α = 1, see figure 1).

What happens for intermediate order values of α? When the fractional derivative model
above is adopted, a new element is created that exhibits linear viscoelastic behavior
intermediate between pure elastic and viscous responses. This fractional order viscoelastic
element is usually called a ‘spring-pot’. The spring-pot has composite elastic and viscous
behavior, which carries important biophysical consequences for time and frequency
responses to applied stress or strain. For example, the stress relaxation G(t) following a unit
step in strain for a single spring-pot is not an exponential decay, but assuming quiescent
initial conditions, it is a power law:

In the frequency domain where s = iω, the same power law also appears:

The frequency responses for a spring and a dashpot can be recovered by replacing the
fractional order parameter α with its boundary values of zero or 1. A simple example of this
behavior is presented in figure 2, where the traditional standard linear solid was modified by
replacing the dashpot with a spring-pot [3]. In this figure the time and frequency power-law
behaviors are modulated by changing the fractional order parameter α (α = 0.25, 0.50, 0.75
or 1).
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Since the spring-pot exhibits intrinsic power-law responses in time and frequency, it can be
easily combined with traditional spring and dashpots elements to model the dynamics of a
particular complex viscoelastic process. As an example, Djordjević and co-workers [6]
found that a parallel combination of a spring-pot and a dashpot properly predict the
measured values for a rheological model of cultured smooth muscle cells. In another study
by Puig-de-Morales-Marinkovic and colleagues [1], the relaxation modulus (equation (8) in
[1]) is most simply described in the Laplace domain in terms of a spring in parallel with a
spring-pot (a fractional order Voigt model [3]). The resulting creep compliance (equation
(10) in [1]) can also be directly expressed in the time domain in terms of the single-
parameter Mittag–Leffler function, Eα(zα) [7,8], as

In this equation, A corresponds to the spring constant and B to the fractional spring-pot
coefficient, Kα. Furthermore, the short and long time limits derived from series expansions
(equations (11) and (12) in [1]) follow directly from the asymptotic expansions of the
Mittag–Leffler function [8], and finally, when α is set equal to 1, the Mittag–Leffler function
becomes a single exponential and we recover the classic viscoelastsic response of the Voigt
model. The inclusion of a spring-pot in this model of the RBC membrane is needed to fit the
observed behavior of the dynamic modulus at high frequencies. A very similar approach
could be used to model the stress relaxation data of Yoon et al [2].

These examples illustrate how adding spring-pots to traditional viscoelastic models (e.g.
spring, dashpot combinations) can help resolve a number of difficulties currently present in
discrete element modeling of biological tissues. Recently, for example, the stress relaxation
in arteries was analyzed using fractional order dynamic models in vitro [13] and in vivo [14].
In these studies, discrete time constants were not expected due to the multiscale and
multicomponent structure of the arterial wall. The fractional order model, in addition to
fitting the control data, successfully described drug-induced smooth muscle activation
through changes in the fractional order (α). Since, it is known that a single spring-pot can be
decomposed in an infinite spring-dashpot ladder [7], such behavior might be a clue to relate
fractional order dynamic models with the multi-scale, complex physical structure of
biological tissues. Alternatively, the fractional order rheology observed in tissues, cells,
extra-cellular matrix and membranes might reflect the dynamics of soft glassy materials,
which successfully model the behavior of many complex materials (foams, emulsions and
slurries) [15,16]. In addition, a recent finding by Stamenović et al [17] suggests that the
rheological behavior of living cells might be described by two power-law curves, depending
on the time or frequency range.

The fractional order stress–strain element (the spring-pot) provides an alternative
mathematical model that appears to describe concisely the reported viscoelastic properties of
the red blood cell membrane, other cell membranes, and multilayered tissue such as cartilage
or arterial wall. The connection between observed fractional order viscoelastic behavior,
replicated across the cellular to bulk tissue scales and the order of the fractional element
remains as a motivation for future work.
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Figure 1.
Schematic diagram for the traditional spring and dashpot elements and the fractional order
‘spring-pot’. Also shown are the one-dimensional stress (σ) versus strain (ε) equations for
the spring, the dashpot and the spring-pot. Here,  where 0 ≤ α ≤ 1 and Kα = Eτα.
In this representation E is an elastic constant with the units of (N m−2) and τ is a time
constant with units of (seconds); thus, Kα had units of (Pascal) (seconds)α. The bounding
values of α represent the discrete elements employed in conventional viscoelastic theory
(spring, Kα = E when α = 0; dashpot, Kα = Eτα = η, the coefficient of viscosity, when α = 1).
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Figure 2.
Modified standard linear solid model in which the dashpot is replaced with a spring-pot.
Normalized stress relaxation curves (top) and frequency response curves (bottom) for
different fractional orders α (α = 0.25, 0.50, 0.75 or 1).
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