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Abstract
TUB is the first identified member of the TULP family of four proteins with unknown function. A
spontaneous mutation in murine tub causes retinal degeneration, obesity, and deafness. Mutations
in another member of the TULP family, TULP1, are a cause of autosomal recessive retinitis
pigmentosa (RP). These findings prompted us to investigate TUB as a candidate gene for RP and
Leber congenital amaurosis (LCA). A mutation screen of the entire coding region of the TUB gene
in 159 unrelated patients with autosomal recessive RP, 114 unrelated patients with simplex RP,
and 21 unrelated patients with LCA uncovered 18 sequence variations. Of these, seven were
missense mutations, six were isocoding changes, and five were intronic polymorphisms. All seven
missense mutations were identified as heterozygous changes and no defect could be found in the
other allele. None of the isocoding variants or intronic polymorphisms are predicted to create or
destroy splice donor or acceptor sites based on splice-site prediction software. Although variant
alleles of the TUB gene were found, none could be definitively associated with a specific retinal
disease.
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1. Introduction
The TULP family of proteins consists of four members named TUB and TULPs 1–3
(Tubby-Like Proteins) (North et al., 1997). TULP proteins are localized primarily to nervous
tissues with TUB and TULP3 widely distributed throughout the central nervous system and
TULP1 and TULP2 restricted largely to the retina and testis, respectively (He et al., 2000;
Ikeda et al., 1999a,b; Kleyn et al., 1996; Nishina et al., 1998; North et al., 1997; Sahly et al.,
1998). An analysis of TULP proteins does not reveal significant homology with known
proteins or functional motifs but are structurally characterized by strong C-terminal
homology (60–90% amino acid identity) implying an important functional domain. Cell
culture studies and the determination of the crystal structure of the conserved C-terminal
domain of TUB have resulted in the proposal that TUB may respond to signals from G
proteins to activate translocation from the plasma membrane to the nucleus where it might
function as a novel transcription factor (Boggon et al., 1999; Santagata et al., 2001). Other
proposed functions for TULP proteins include involvement in intracellular insulin signaling
and vesicular trafficking (Hagstrom et al., 1999; Hagstrom et al., 2001; Kapeller et al.,
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1999). Although the precise function of TULP proteins is unknown, two of the proteins have
been linked to photoreceptor degeneration, namely TUB and TULP1.

Tubby is the name for a strain of mice with a naturally arising loss of function mutation
affecting the C-terminus in the tub gene (Kleyn et al., 1996; Noben-Trauth et al., 1996).
Tubby mice develop obesity associated with insulin resistance that is likely attributable to
defects in hypothalamic signaling. They also suffer progressive retinal degeneration and
hearing loss as a result of photoreceptor and cochlear degeneration due to apoptosis of these
sensory neurons (Ohlemiller et al., 1995). Electroretinograms of tubby mice are
progressively reduced and are eventually extinguished by age 6 months (Heckenlively et al.,
1995). The hearing loss is also progressive so that by age 5–6 months tubby mice appear to
be deaf, although this feature can be modified by the genetic background (Ikeda et al.,
1999a,b).

Mutations in the human TULP1 gene are associated with retinitis pigmentosa (RP), an
inherited form of progressive photoreceptor degeneration (Banerjee et al., 1998; Gu et al.,
1998; Hagstrom et al., 1998; Paloma et al., 2000). RP patients with TULP1 mutations have a
severe visual handicap in comparison with patients with RP due to defects in other genes.
This disease is an early-onset, pan-retinal degeneration and the clinical findings document
that TULP1 mutations cause a severe photoreceptor degeneration involving both rods and
cones (Hagstrom et al., 1998; Lewis et al., 1999). Genetic ablation of tulp1 in mice also
results in retinal degeneration but not the obesity phenotype or hearing deficits observed in
tubby mice (Hagstrom et al., 1999; Ikeda et al., 2000). Tulp1 −/− mice develop early-onset,
progressive photoreceptor degeneration with involvement of both rods and cones.

For these reasons, we considered TUB a candidate gene for inherited retinal degeneration in
humans. Here we report our mutation analysis of 294 unrelated patients with either RP or
LCA.

2. Materials and methods
2.1. Ascertainment of patients

This study conformed to the tenets of the Declaration of Helsinki and was approved by the
Internal Review Board of the Cleveland Clinic Foundation. All blood samples were obtained
after informed consent was secured. All 294 index cases had retinal disease diagnosed
through ophthalmologic examination. Among the patients, 159 were diagnosed with
autosomal recessive retintis pigmentosa (ARRP), 114 were diagnosed with simplex RP
(SRP), and 21 were diagnosed with Leber congenital amaurosis (LCA). The diagnosis of
ARRP was given to patients with clinical findings compatible with RP that includes night
blindness, constricted visual fields and a pigmentary retinopathy involving optic pallor,
attenuated blood vessels and pigmentary changes. Patients with ARRP were from families
with one or more affected siblings with parents who do not have RP or were the affected
offspring of a consanguineous mating of parents without a history of RP. Patients with SRP
had no affected relatives and had parents who had no known blood relationship. The
diagnosis of LCA was given to patients with poor vision from birth accompanied by either
clear-cut pigmentary retinopathy or with an electroretinogram that shows severely
attenuated or extinguished photopic and scotopic responses. No patients were diagnosed
with juvenile onset RP. Of the 294 patients, seven LCA families and no RP families were
reported to be consanguineous. Unrelated individuals without symptoms or a family history
of retinal disease were used as normal control subjects. Leukocyte nuclei were prepared
from the blood samples followed by DNA purification using standard protocols. The
majority of patients have been screened for mutations in 10 other known disease-causing
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genes, RHO, CRX, RPGRIP1, GUCY2D, CRB1, RPE65, AIPL1, MFRP, PROML1, and
ELOVL4. No mutations were identified in these genes in this patient cohort.

2.2. Mutation screening
For mutation detection, PCR products corresponding to the complete known TUB coding
sequence (BC075031) were amplified from genomic DNA and analyzed by the single-strand
conformation polymorphism (SSCP) technique. Fifteen primer pairs were designed to cover
the 13 exons as well as the immediately flanking intron sequences and are listed in Table 1
along with the PCR conditions. The buffer pH, Mg++ concentration, annealing temperature,
and presence or absence of 10% dimethyl sulfoxide were tailored to each primer pair to
yield optimal amplification. The amplified DNA fragment encompassing exon 1 was
digested with the restriction endonuclease HindIII and exons 4 and 6 were digested with
DraII to yield smaller fragments for SSCP analysis (Table 1). PCR-amplified DNA was heat
denatured and single-stranded fragments were separated by electrophoresis through two 6%
polyacrylamide gels (one with 10% glycerol and one without). Gels were run at 10–20 W
for 6–20 h at room temperature before drying and autoradiography. Variant bands detected
by SSCP were analyzed by sequencing the corresponding PCR-amplified DNA segments
using the Quick Start sequencing kit (Beckman-Coulter) following the manufacturer’s
protocol. A CEQ-2000 automated sequencer (Beckman-Coulter) was used to resolve
sequences.

3. Results
3.1. Sequence variations affecting the amino acid sequence

In the set of 273 recessive and sporadic RP and 21 LCA patients evaluated, seven missense
changes (Arg49Gln, Lys96Gln, Ile318Val, Lys363Arg, Arg419Gly, Val431Ile, and
Lys439Glu) were discovered (Table 2). Four of the missense changes (Lys96Gln, Ile318Val,
Arg419Gly, and Lys439Glu) were found heterozygously in one index patient each. Lys439-
Glu was found in one patient with LCA, Lys96Gln and Arg419Gly were found each in one
patient with SRP, and Ile318Val was found in one patient with ARRP. Two patients, one
with ARRP and the other with LCA, were heterozygotes for the fifth missense change,
Arg49Gln; and two patients, one with ARRP and the other with SRP, were heterozygotes for
the sixth missense change, Val431Ile. The seventh missense change, Lys363Arg, was
identified heterozygously in 15 patients of all three diagnoses. None of these changes were
found in the normal control individuals who were evaluated and the minor allele frequencies
in patients for each sequence variant analyzed are listed in Table 2. In addition, the DNA
from each patient that carried a missense change was directly sequenced in every exon and
no second mutation was uncovered. Finally, none of the families of either the ARRP or LCA
index patients with a missense change were available for segregation analysis.

3.2. Sequence variations not affecting the amino acid sequence
During our evaluation, 11 DNA sequence changes that did not obviously affect the sequence
of the encoded protein were encountered (Table 2). Six of these were isocoding changes
(Glu65, Lys81, Gly175, Ser441, Pro458, and Thr475) and five were intronic polymorphisms
(c.203 + 29G → A, c.562 + 26G → C, c.730 + 16G → A, c.1380 + 18C → G, and c.
1552-18insGTCT). Four of the isocoding changes (Glu65, Lys81, Gly175, and Ser441) were
identified in all three diagnoses screened. The rare variant Pro458 was found in one
heterozygous patient with ARRP and the rare variant Thr475 was found in one heterozygous
patient with SRP. Two of the intronic changes (c.562 + 26G → C and c.1552-18insGTCT)
were found in all three diagnoses screened. One intronic change (c.1380 + 18C → G) was
found in one patient with ARRP, c.730 + 16G → A was found in one patient with SRP, and
c.203 + 29G → A was found in two patients, one with ARRP and one with SRP. The minor
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allele frequencies in patients and in normal controls for each sequence variant analyzed are
listed in Table 2. None of the isocoding or intronic changes is predicted to create or destroy
splice donor or acceptor sites based on splice-site prediction software available at the neural
network website (http://www.fruitfly.org/seq_tools/splice.html).

4. Discussion
In this study, 18 novel sequence changes were identified in TUB (Table 2). Of these, seven
were missense mutations, six were isocoding changes, and five were intronic
polymorphisms. Since family members were unavailable for segregation analysis, it is
unclear whether any of the seven missense sequence abnormalities expected to alter the
wild-type amino acid sequence are pathogenic. Five of these mutations (Ile318Val,
Lys363Arg, Arg419Gly, Val431Ile and Lys439-Glu) affect the highly conserved C-terminal
region of the TUB protein. Of these, three amino acid positions, Lys363, Arg419, and
Val431, are invariant across the four human TULP proteins. However, the Lys363Arg
sequence change is unlikely to cause retinal disease for several reasons. It was found in
patients with both ARRP and SRP, it has an allele frequency of 2.5%, and the mutation
changes one positively charged residue for another, both with similar basic side chains.
Therefore, we consider this variant to be a polymorphism. The rare variants Arg419Gly and
Val431Ile were each identified in a patient with sporadic RP and Val431Ile in a patient with
ARRP. Although these residues are conserved in TULP proteins, we were unable to further
analyze their pathogenicity since they either occurred in a simplex case or family members
were not available for segregation analysis. Ile318 is one of the few amino acids in the C-
terminal half of TULP proteins that is not conserved across the family members. It is
unlikely that the missense change Ile318Val is pathogenic since the residue corresponding to
position 318 in TULP3 is Val and both amino acids have similar nonpolar side chains. The
heterozygous Lys439Glu mutation identified in a patient with LCA deserves consideration.
Interestingly, amino acid position 439 in TUB corresponds to amino acid position 420 in
TULP1. The heterozygous mutation Arg420Pro in TULP1, in conjunction with the
heterozygous mutation Phe491Leu, causes ARRP (Hagstrom et al., 1998). In addition, the
corresponding residue is conserved in TUB, TULP2 and TULP3 and codes for Lys. The
Lys439Glu mutation changes a positively charged residue to a negatively charged residue.
Unfortunately, the family members of this Egyptian patient with LCA were unavailable for
segregation analysis and no second mutation was identified following sequence analysis of
the entire coding region of the gene. Therefore there is no proof of Lys439Glu
pathogenicity.

Although TUB cannot be definitively ruled out as a cause for the retinal diseases we studied,
our results suggest that disease-causing mutations in the regions of the gene screened are
extremely rare. However, it is possible that pathogenic mutations might exist outside of the
coding exons and the flanking intron splice sites evaluated. It is also possible that mutations
in this gene may be so rare that not enough patients were screened to detect them, or that
mutations in TUB may be present only in diseases not evaluated in this study. Nevertheless,
our results suggest that TUB is not a major cause of the inherited retinal degenerative
diseases evaluated in this study.
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