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Theory suggests that the risk of extinction by mutation accumulation
can be comparable to that by environmental stochasticity for an
isolated population smaller than a few thousand individuals. Here we
show that metapopulation structure, habitat loss or fragmentation,
and environmental stochasticity can be expected to greatly accelerate
the accumulation of mildly deleterious mutations, lowering the ge-
netic effective size to such a degree that even large metapopulations
may be at risk of extinction. Because of mutation accumulation, viable
metapopulations may need to be far larger and better connected than
would be required under just stochastic demography.

Kimura, Maruyama, and Crow (1) first noted that mildly dele-
terious mutations may create a considerably larger mutational
load in small populations than more deleterious mutations. Dele-
terious mutations impose a load on populations through a reduction
in the mean survivorship and/or reproductive rates of individuals
(2-5). In very large, effectively infinite populations, an equilibrium
mutation load exists that is independent of the mutational effect (2,
3,5, 6). However, in sufficiently small isolated populations, mildly
deleterious mutations may be a potent extinction force, because
individually they are nearly invisible to natural selection, although
causing an appreciable cumulative reduction in population viability
(1, 5, 7-11). Theory suggests that the accumulation of mildly
deleterious mutations can be comparable to environmental sto-
chasticity in causing extinction of populations smaller than a few
thousand individuals (8, 12, 13).

All previous theoretical work on extinction caused by mutation
accumulation has focused on a single panmictic population, but
most populations have some degree of subdivision, which may
greatly magnify the stochastic development of mutation load (14,
15). Moreover, most theoretical work on extinction has focused on
only one or two extinction mechanisms at a time, for reasons of
mathematical tractability. But demographic (16, 17), environmen-
tal (16, 17), and genetic stochasticity (8, 10, 11) operate simulta-
neously in natural populations, and their synergy may have a strong
impact on the probability of extinction (12, 13, 18-22).

Genetic and Demographic Model

We simulate the dynamics of metapopulation extinction using a
biologically realistic model that includes stochastic demographic
(17, 23), environmental (17, 23), and genetic (24) mechanisms. Our
individual-based model (25) includes population dynamics within
each patch, explicit spatial structure, and an explicit representation
of each diploid genome (10, 11, 17, 23, 24).

We parameterize the genetic mechanisms in our model using
values from a broad array of empirical studies. Independent data on
a diversity of organisms suggest that the genomic deleterious
mutation rate, U, is frequently on the order of 0.1 to 1 per individual
per generation in multicellular eukaryotes, and that the average
homozygous and heterozygous effects of such mutations are typi-
cally less than 5% (26). In flies, data suggest U ~ 1, with the average
mutation decreasing fitness by about 2% in the heterozygous state
(26), although some suggest that U is much smaller, and that the
average mutational effect is much larger (27). U may commonly be
on the order of 1 in vertebrates and flowering plants (26, 28).
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Within-Patch Life Cycle. Generations are nonoverlapping, and the
within-patch life cycle is seen in Fig. 1. For randomly mating
monoecious populations,” each generation RN zygotes are created,
where R is individual fecundity, and N is the number of adults. A
zygote is formed by randomly drawing, with replacement, two
gametes from N parents. For dioecious populations with separate
sexes, each generation, polygynous mating between a randomly
drawn male (with replacement) and a randomly drawn female
(without replacement) produces a Poisson-distributed number of
zygotes with expectation 2R. Thus, mating continues until the pool
of unmated females (approximately N/2 individuals) is exhausted.
We note that the average overall population fecundity is the same
for monoecious and dioecious mating. The genome consists of
10,000 loci placed on 8 chromosomes. The number of crossover
events per chromosome per generation is Poisson distributed
with expectation 1, and the number of new mutations per diploid
genome per generation is Poisson distributed with expectation U =
1. Selection culls zygotes, with the probability of genetic survival
of each individual determined by the viability function w(i,j) =
(1 — hs)(1 — s), where s is the fractional reduction in viability
caused by a homozygous mutation, i and j are the numbers of loci
in the individual that are heterozygous and homozygous for dele-
terious mutations, and / is the dominance coefficient. We let i(s) =
1/(2 + 20s), so that mutations of large effect are almost recessive
(ass — 1, h — 0.045), whereas those of small effect are almost
additive (as s — 0,1 — 1/2), consistent with observed data (26, 29,
30). The number of zygotes surviving selection varies stochastically
both because the genetic survival of each individual is probabilistic
and because the probability, w(i, ), itself is a random variable that
differs among individuals because of mutation load. For simplicity,
we denote the number of zygotes surviving selection by wRN, but
it should be kept in mind that each of the RN zygotes has its own
genetic viability, wy, (1 = k = RN).

After selection, the density-dependent survival probability, 6,
is determined by the number of zygotes, wRN, that survived
selection and the carrying capacity, K, of a local population,
& = min(K/wRN,1) (Eq. 1). We note that our choice for pop-
ulation regulation is conservative, because the deterministic
version does not generate fluctuations. By contrast, some com-
monly used forms for density dependence have the potential for
highly variable cyclic and chaotic dynamics (cf. ref. 31), which,
because of population bottlenecks, would decrease the genetic
effective population size (32, 33).

Metapopulation Structure. Metapopulation structure is modeled as
a linear array of patches connected by either nearest-neighbor
(stepping stone), global (island), or intermediate dispersal. For ease
of exposition, we present the deterministic equations for dispersal
but, because individuals are discrete, their movement between
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*Because individuals are both male and female, mating can occur between any pair of
individuals, including self-mating. The amount of self fertilization is the random
amount—two uniting gametes are as likely to come from the same individual as from any
other two.
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Fig. 1. The metapopulation life cycle begins with dispersal between patches by
Egs. 2, 3, or 4. Reproduction follows with the creation of RN zygotes that receive
U new mutations per zygote. Genetic survival is determined by the absolute
viability w, and density-dependent survival is determined by & (Eq. 1). Although
we present a deterministic population-level life cycle for ease of exposition, our
probabilistic model actually tracks each individual through the entire life cycle
(17, 25).

patches is, in fact, probabilistic.* For nearest-neighbor dispersal at
generation ¢ + 1, in patch i, the total number of individuals is

N+ 1) = (L= mN0) + 2N, (0 + Ny, 121

where m is the fraction of a local population that emigrates every
generation. Because we assume uniform dispersal over the source
patch and its two nearest neighbors, m = 2/3. Dispersal is non-
uniform for other values of m; for m < 2/3, individuals tend to
remain in the source patch; for m > 2/3, individuals tend to avoid
returning to the source patch. Because there is a balance between
emigration and immigration, m is also the fraction of a local
population that is replaced by immigrants every generation.
For global dispersal,

m <
Nt +1) = (1 =mN() + 5= 2 N0, 13
P

where m = (P — 1)/P, and P is the total number of patches in the
metapopulation. The value for m reflects our assumption that
dispersal is uniform over all of the patches in the metapopulation.
For intermediate dispersal (i.e., the dispersal neighborhood is

larger than nearest-neighbor yet smaller than global),

m i+r
Nt +1) = (1= mN() + 5 > N, [4]
J=tr—-r

J#Fi

where r is the maximum dispersal distance (measured in patch
numbers along the array) from a source patch, and m = 2r/(2r +
1). The value for m reflects uniform dispersal over all 2r + 1 patches
in a dispersal neighborhood. We assume reflecting boundary
conditions for both nearest-neighbor and intermediate dispersal.
We emphasize that for all three dispersal formulations, mixing

*Inthe simulation, we dispersed each of the individuals from a patch by drawing, with equal
probability, a random destination patch from within the originating patch’s dispersal
neighborhood. For a dispersal neighborhood of size n, on average, the proportion of
dispersed individuals in each of the n patches is 1/n.
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Fig. 2. The extinction time behavior of a simple population with monoecious
random mating and demographic stochasticity. K is the carrying capacity, the
fecundity, R = 5, and the homozygous mutational effect is s. Simulations start
without a mutational load—starting with the mutational load of an infinite
population at mutation-selection balance would shorten the time to extinction
but would not change the overall form of the figure. The «, 8, and y regions are
explained in the text.

among the local populations is unrestricted within the dispersal
neighborhood.

Results

Extinction Genetic Effective Size—the Benchmark Population. We
begin by examining the extinction behavior of a simple monoecious
population with random mating and demographic stochasticity.®
This model provides a benchmark for explaining the extinction time
behavior of the more realistic models we examine later. Our
approach is inspired by the genetic effective population size con-
cept, where the magnitude of random genetic drift in more realistic
models is compared to a theoretically ideal population (32-34).
We find that extinction time-scaling” behavior falls roughly into
three categories that are determined by the population carrying
capacity and the magnitude of the mutational effect (see «, 8, and
v in Fig. 2). Extinction of small populations that are subject to very
mild mutational effects (a-region) is because of demographic

Table 1. Mutational effect that minimizes the median extinction
time at various carrying capacities

S K tmin
0.2 8 49
0.1 16 103
0.05 32 200
0.025 64 382
0.0125 128 785

Data are from Fig. 2.

SDemographic stochasticity is the fluctuation of population size because of the random
survival and birth of discrete individuals. Demographic stochasticity is an inherent feature
of our model because it is individual based (17).

Twe define “extinction time-scaling”” as the overall graphical trend displayed by the median
time to extinction over some range of a key parameter. Median extinction times were
estimated by repeatedly simulating the model dynamics for each specified set of param-
eters. Ninety-five percent confidence intervals were obtained by the bootstrap (35). In
most cases, the confidence intervals are smaller than the symbols used to plot the median.
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tational load, the initial average genetic viability is 0.37 (= e V), in accordance with Haldane’s theory (2). The homozygous mutational effect is s. Populations without
mutation accumulation are denoted (®, s = 0). To equalize the initial growth rates of populations with and without mutation accumulation, we fix the genetic viability
(w; see Fig. 1) of individuals in populations without mutation accumulation at 0.37. Because such individuals are genetically inert, individual genetic viability remains

at 0.37 for all succeeding generations.

stochasticity and is extremely rapid. Within the a-region, time to
extinction is independent of the mutational effect, suggesting that
the probability of extinction is not changed by accumulating mu-
tations on the short time scale on which extinction occurs. Within
the B-region, extinction is because of the accumulation of very mild
deleterious mutations and is extremely slow. The time to extinction
does depend on the mutational effect, with milder effects taking
longer to cause extinction. Population carrying capacity has very
little impact on extinction time, indicating that the accumulation
dynamics of mutations are almost entirely governed by random
genetic drift, with the rate of mutation accumulation being = U for
any K. Within the +y-region, extinction is also because of the
accumulation of deleterious mutations; there, however, the time
scale of extinction is extremely sensitive to the population carrying
capacity and the magnitude of the mutational effect. As the
carrying capacity drops, even mutations of large effect rapidly
accumulate by genetic drift and hasten the extinction of the
population. If the mutational effect is very large, and the carrying
capacity is not too low, then natural selection has a strong influence
on the time to extinction.

The larger populations in Fig. 2 clearly demonstrate that the
minimum time to extinction, ¢, occurs for some intermediate
magnitude of the mutational effects. Table 1 displays the values
of s and K that minimize the time to extinction. The value of the
mutational effect that minimizes the median extinction time is
s = 1.6/K. Our result agrees very well with Crow’s theory that,
for a specified population size, there is a mutational effect that
minimizes fitness, and that Ks is of order 1 (15). Theoretical work
by Lande also predicts such an inverse relationship for s (8).

Metapopulation patches
0 64 128 192 256 320 384 0O 64 128 192 256 320 384 0O 64 128 192 256 320 384
Fan

Furthermore, Table 1 also shows there is an approximate
doubling of #,;, for successive pairs of s and K.

Single Population with Polygynous Mating. Most population genetic
models assume a random union of gametes, but this mating system
is in reality rather rare (36). In most animal mating systems,
individuals (rather than gametes) come together to mate (36). A
more realistic mating system for many species is lottery polygyny,
where all males attempt to mate many times, but females mate only
once or a few times (36). Mating behavior approximating lottery
polygyny is found in such diverse organisms as Drosophila (36),
wood frogs (36), banner-tailed kangaroo rats (37), and grizzly
bears (37).

Theory predicts that lottery polygyny should produce an
effective population size that is 2/3 of the actual size (36, 38).
Under lottery polygyny, we find extinction times equivalent to
those of the benchmark population with roughly 2/3 as many
individuals, in agreement with theory. For example, with K =
128 and s = 0.05, lottery polygyny gives a median extinction time
of 997 generations (Fig. 34), whereas the benchmark population
(Fig. 2), with 2/3 as many individuals (K = 85), produces a
median time to extinction of 1,096 generations.

Single Population with Polygynous Mating and Environmental Sto-
chasticity. Fluctuations in the population carrying capacity can
cause a drastic reduction in the genetic effective population size
(32, 33). We find that fluctuations in the carrying capacity do
indeed cause a large reduction in the extinction genetic effective
population size with a consequent decline in the time to extinc-
tion (compare Fig. 3 A-B). For example, returning to our
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nearest-neighbor dispersal). The
carrying capacity of apatch, K =
8. For B, K is lognormally distrib-
uted with CV(K) = 0.2. Spatially
asynchronous environmental

stochasticity is modeled by independently sampling K for each patch, each generation. For C, K is lognormally distributed over time, with CV(K) = 0.2. Spatially
synchronous environmental stochasticity is modeled by sampling a single value of K for all patches, once per generation. Polygynous mating, fecundity R = 10. The
homozygous (heterozygous) mutational effect, s = 0.05 (0.017). See Fig. 3 for initial conditions.
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Fig.5. The collapse of metapopulation viability in fragmented habitat. Habitat
fragmentation is modeled by systematically altering the dispersal range of indi-
viduals from global (OJ) to nearest neighbor (O). The time to extinction can
collapse suddenly as the dispersal range (see Eq. 3) decreases below a threshold
value (comparer = 23andr = 12).For the diamond plots, the dispersal radii are
(Upper to Lower) r = 23, 12, 6, and 3. For comparison, the extinction times for
metapopulations without mutation accumulation are also plotted (m, global
dispersal; ®, nearest-neighbor dispersal). Each patch corresponds to the territory
of a mating pair (40). Monoecious random mating, fecundity R = 5. The ho-
mozygous (heterozygous) mutational effect is 0.025 (0.01). Initially, individuals
are mutation free, which inflates the extinction time scaling.

reference set of parameters K = 128 and s = 0.05, we find that
the fluctuating carrying capacity drops the time to extinction to
just 70 generations (Fig. 3B). Comparing this extinction time to
our ideal benchmark population (Fig. 2), we find that the
effective size of the fluctuating population in this particular
example is close to an ideal population of size K, = 8.

Accelerated Extinction Caused by Mutation Accumulation. The rela-
tive risk of extinction because of demographic and genetic factors
has received much attention in conservation biology (cf. ref. 19).
With this risk in mind, we investigate the extinction—time scaling for
a population without mutation and for an identical population that
is also subject to the accumulation of new mild mutations. For the
population without mutation, increased carrying capacity causes
the time to extinction to grow very rapidly (@, Fig. 34). Extinction
is unlikely for all but the smallest populations. Although environ-
mental stochasticity retards the very rapid growth of extinction time
somewhat (@, Fig. 3B), increased carrying capacity still rapidly
reduces the risk of extinction.

We find that the accumulation of new mildly deleterious muta-
tions fundamentally alters the scaling of extinction time (open
symbols, Fig. 3), causing the extinction of populations that would be
deemed safe on the basis of demography alone (@, Fig. 3).
Increased carrying capacity still provides additional insurance
against extinction by increasing the efficiency of selection against
deleterious mutations. In fact, at very low K, the rise in the
extinction time for populations with and without mutation accu-
mulation is the same. However, the rise in extinction time with
carrying capacity is rather slow over an intermediate range of K.
Ultimately, as the carrying capacity increases further, natural
selection finally becomes efficient, and the time to extinction rises
rapidly (because our focus is on shorter time scales, this phase is not
prominent in Fig. 3). Moreover, the range of carrying capacities
vulnerable to accelerated mutational extinction depends on the
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mutational effect, s, becoming larger as the mutational effect
becomes smaller.

Metapopulation Structure. Metapopulation extinction time (Fig. 44)
is highly sensitive to changes in the number of metapopulation
patches and their connectivity. Increasing the number of patches or
enlarging the dispersal neighborhood increases the median time to
extinction. This result parallels what we found for a single popu-
lation, where increasing the carrying capacity increased the median
time to extinction (Fig. 3). In both situations, the median time to
extinction increases because natural selection becomes more effi-
cient.

The dispersal neighborhood size can have a strong effect on
mutation accumulation. Global dispersal markedly enhances the
efficiency of natural selection and produces the longest median
times to extinction (O, Fig. 44). Nearest-neighbor dispersal
hampers natural selection and produces the shortest median
times to extinction ([J, Fig. 44). However, in both cases, for
metapopulations with more than a few patches, mutation accu-
mulation accelerates extinction time by many orders of magni-
tude, compared to a globally dispersing metapopulation without
mutation accumulation (@, Fig. 44). Furthermore, extinction
because of mutation accumulation can be quite rapid, on the
order of tens of generations.

The extinction time scaling in Fig. 44 implies that the extinc-
tion genetic effective population size is highly sensitive to the
dispersal range of individuals within the metapopulation. Under
global dispersal (O, Fig. 44), the extinction genetic effective size
grows rapidly with the number of metapopulation patches,
causing extinction time to increase. Adding patches increases the
overall number of individuals in the metapopulation, which
directly increases the effective size because global dispersal
thoroughly mixes the metapopulation. By contrast, under nearest-
neighbor dispersal (O, Fig. 44) the extinction genetic effective
size asymptotes as the number of metapopulation patches in-
creases, causing the extinction time to approach a constant.
Comparing the asymptotic extinction time of the nearest-
neighbor metapopulation (75 generations; [J, Far Right, Fig. 44)
to our ideal benchmark population (s = 0.05, Fig. 2), we find that
the effective size is close to an ideal population of size K, = 6.
Remarkably, a nearest-neighbor metapopulation of census size
K = 3,072 is able to resist mutation accumulation only like an
ideal population of size K, = 6 in this particular example.

The extinction genetic effective size, under nearest-neighbor
dispersal, is not made larger by adding patches to the metapopu-
lation, because mixing between distant patches is poor. Assortative
mating increases the likelihood of inbreeding depression and ac-
celerates the rate of mutation accumulation. Moreover, the local
mutation accumulation process is much faster than the diffusive
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Fig. 6. Interaction of the mutational effect with habitat fragmentation. The
homozygous (heterozygous) mutational effectis (A)s = 0.2(0.03), (B)s = 0.05
(0.017), and (B) s = 0.0125 (0.0056). See Fig. 4A for details.
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Fig.7. The decline and extinction of a metapopulation caused by mutation accumulation. Initially, each of the 800 patches is filled to carrying capacity (K = 10) with
mutation-free individuals. In the initial phase (<150 generations), mutations accumulate relatively rapidly because the variance in viability, and consequently the
response to selection, is low. This causes the average viability within patches to plummet throughout the metapopulation. Around generation 300, the rate of mutation
accumulation becomes highly variable among regions, resulting in the relatively rapid extinction of some regions. However, the inexorable onslaught of new mutations
and their accumulation eventually cause the extinction of the entire metapopulation. By contrast, in a single population with the same carrying capacity (8,000), we
would expectviability to reach a quasisteady state and the time to extinction to be extremely long, if notindefinite. Nearest-neighbor dispersal with emigration fraction,
m = 1/3. Monoecious random mating with fecundity, R = 5. The homozygous (heterozygous) mutational effect is 0.025 (0.01).

process that transports alleles across the metapopulation. To in-
crease the extinction genetic effective size of the metapopulation,
the dispersal range must be increased. Our results are consistent
with Whitlock and Barton’s finding that spatial subdivision usually
decreases the genetic effective size of a population (39).

Metapopulation Structure and Environmental Stochasticity. Environ-
mental stochasticity influences the scaling of extinction time with
a potency that depends on synchrony among the metapopulation
patches. Asynchronous environmental fluctuations (Fig. 4B)
simply stretch the scaling that was found in a constant environ-
ment (Fig. 44). The range of carrying capacities vulnerable to
mutation accumulation under global dispersal expands (O, Fig.
4A), but otherwise the overall form of the scaling is quite similar.

Synchronous environmental fluctuations are devastating to met-
apopulations with and without mutation accumulation (Fig. 4C). In
both cases, the effective size of the metapopulation approaches a
constant as the number of patches grows. Beyond a certain size,
neither type of metapopulation benefits from adding patches, as is
indicated by the asymptotic behavior of extinction time.

Under synchronous environmental fluctuations, the acceleration
of extinction caused by mutation accumulation is striking (Fig. 4C).
For a large metapopulation without mutation accumulation, the
extinction time is about 2,000 generations (@), whereas for a large
globally dispersing metapopulation with mutation accumulation,
the extinction time is just slightly longer than 100 generations (O).
Moreover, the nearest-neighbor dispersing metapopulation with
mutation accumulation lasts only 55 generations (OJ).

2932 | www.pnas.org/cgi/doi/10.1073/pnas.031358898

Habitat Fragmentation and the Collapse of Metapopulation Viability.
For metapopulations, we find that mutation accumulation and
extinction time are highly sensitive to habitat fragmentation. We
model habitat fragmentation by altering the connectivity among
patches by changing the size of the dispersal neighborhood. Our
assumption is that barriers reduce dispersal efficiency in frag-
mented natural systems. Extinction time falls precipitously when
the size of the dispersal neighborhood drops below a critical
threshold (compare successive diamond plots, Fig. 5). This
threshold indicates that there is a critical level of habitat
connectivity that must be maintained for efficient selection
against deleterious mutations. Previous work has shown that
purely demographic models of a territorial species also exhibit
abrupt changes in persistence/extinction behavior, associated
with the ratio of unsuitable to suitable habitat (40).

Interaction of the Mutational Effect with Habitat Fragmentation. For
a metapopulation in unfragmented habitat, mildly deleterious
mutations are more damaging than highly deleterious mutations
(compare the extinction time scaling of the globally dispersing
metapopulations (O, Fig. 6) for the effects s = 0.2, 0.0125). Because
unfragmented habitat provides conditions that are closest to sys-
tem-wide random mating, the effective size of the metapopulation
is relatively large, enhancing selection against highly deleterious
mutations. Yet mildly deleterious mutations are nearly neutral,
accumulate relatively rapidly, and produce a more rapid extinction
time scaling. This situation is similar to what we found in the
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benchmark single population case for larger carrying capacities
(Fig. 2). Just as in the single population case with large carrying
capacity, the mild mutational effects are the most damaging,
causing the minimum time to extinction.

For a metapopulation in fragmented habitat, highly deleteri-
ous mutations are the most damaging, leading to the most rapid
extinction time scaling (compare the extinction time scaling of
the nearest-neighbor dispersing metapopulations (CJ, Fig. 6) for
the effects s = 0.2, 0.0125). Because the effective population
size of fragmented habitat is quite low, even a mutational effect
s = 0.2 is nearly neutral and causes the most rapid erosion of
metapopulation viability. This situation is similar to what we
found in the single population case for smaller carrying capac-
ities (Fig. 2). Just as in the single population case with small
carrying capacity, the larger mutational effects are the most
damaging, causing the minimum time to extinction.

Variable Time to Extinction in Homogeneous Habitat. We find that the
decline and extinction of a metapopulation because of mutation
accumulation can be a strikingly complex spatiotemporal process
(Fig. 7). Fluctuations in viability because of stochastic feedback
between selection, mutation, segregation, linkage, crossing-over,
inbreeding depression, dispersal, density-dependence, and finite
population size generate an extremely heterogeneous pattern of
extinction. All of the heterogeneity in Fig. 7 is due to endogenous
biological mechanisms—the environment is entirely homogeneous.

Discussion

Early work suggested that demography is usually of more
immediate importance to biological conservation than popula-
tion genetics in determining the minimum viable sizes of wild
populations (19). More recently, theory has shown that the
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accumulation of deleterious mutations may threaten small iso-
lated populations on time scales relevant to conservation (8,
10-13). Here we have shown that accumulation of deleterious
mutations may be a significant threat to large metapopulations
and would be expected to exacerbate the effect of habitat loss or
fragmentation on metapopulation viability. From a genetic
perspective, a single large fragmented metapopulation is much
more vulnerable to extinction than a panmictic population of the
same overall number of individuals. Because the interaction
between mutation accumulation and metapopulation demogra-
phy is synergistic, an assessment of metapopulation viability
based only on demographic forces is especially likely to under-
estimate the risk of extinction.

The decline in the scaling of extinction time because of habitat
fragmentation is especially troublesome from a conservation
perspective. Because the decline is sudden but extinction itself
still takes a while to occur, the metapopulation may be com-
pletely inviable on intermediate or long time scales, although
appearing healthy on short time scales. In other words, a sharp
reduction in time to extinction can occur for a gradual increase
in the degree of habitat fragmentation, and the looming fate
of the fragmented metapopulation will not be immediately
obvious. Fortunately, because extinction is delayed, there might
be sufficient time for habitat remediation that would presumably
restore efficient selection against deleterious mutations.
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