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Abstract

The NTERA2 cl D1 (NT2) cell line, derived from human teratocarcinoma, exhibits similar properties as embryonic stem (ES)
cells or very early neuroepitheial progenitors. NT2 cells can be induced to become postmitotic central nervous system
neurons (NT2N) with retinoic acid. Although neurons derived from pluripotent cells, such as NT2N, have been characterized
for their neurotransmitter phenotypes, their potential suitability as a donor source for neural transplantation also depends
on their ability to respond to localized environmental cues from a specific region of the CNS. Therefore, our study aimed to
characterize the regional transcription factors that define the rostocaudal and dorsoventral identity of NT2N derived from a
monolayer differentiation paradigm using quantitative PCR (qPCR). Purified NT2N mainly expressed both GABAergic and
glutamatergic phenotypes and were electrically active but did not form functional synapses. The presence of immature
astrocytes and possible radial glial cells was noted. The NT2N expressed a regional transcription factor code consistent with
forebrain, hindbrain and spinal cord neural progenitors but showed minimal expression of midbrain phenotypes. In the
dorsoventral plane NT2N expressed both dorsal and ventral neural progenitors. Of major interest was that even under the
influence of retinoic acid, a known caudalization factor, the NT2N population maintained a rostral phenotype subpopulation
which expressed cortical regional transcription factors. It is proposed that understanding the regional differentiation bias of
neurons derived from pluripotent stem cells will facilitate their successful integration into existing neuronal networks within
the CNS.
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Introduction

The field of human embryonic stem (hES) cell research,

although young, holds a potential for advancing our understand-

ing of the mechanisms and pathways of human development and

may provide an unlimited source of human neuronal cells for basic

and applied research, therapeutic drug testing, and tissue repair or

replacement. Yet our current understanding and use of hES cells

for differentiation into neuron and glial subtypes is limited by the

legal, ethical, and political considerations imposed on the use of

these cells as well as the technical aspects of culturing these cells.

Another source of human pluripotent cells is embryonic carcinoma

(EC) cells derived from human male germ cell tumors. Human EC

(hEC) cells resemble hES cells in antigen expression patterns,

developmental potential, and global gene expression including common

gene expression patterns for both ‘‘stemness’’ and pluripotency

[1,2,3,4,5,6]. Unlike hES cells, most hEC cells are simple to passage,

do not require feeder support for propagation and do not undergo

spontaneous differentiation. The NTERA-2 cl. D1 (NT2) cell line is one

of the characterized hEC cell lines used as a model system for

differentiation of cells from the neural lineage [for review see [7]]. The

NT2 neurons (NT2N) derived from NT2 cells are post-mitotic polarized

cells that express neurofilaments, generate action potentials and calcium

spikes, express, release, and respond to neurotransmitters. They have

been used as cell grafts for a rat stroke model where they mature and

display functional integration as well as in phase 1 and 2 clinical trials

with stable stroke patients [2,8,9,10,11,12,13,14,15]. Studies have also

reported that NT2 cells are capable of differentiating into astrocytes

[16,17]. Recently, NT2 cells have been reported to be capable of

generating all three germ layers when differentiation was induced by in

vitro generation of embryoid bodies [5].

Neural progenitors carry their positional identity which on further

differentiation defines the phenotype and activity of the neurons

generated. This positional identity makes these progenitors more

responsive to environmental cues for a specific neural region which is

of critical importance in transplantation. Although the type of neuro-

transmitters expressed by NT2N was first investigated by Guillemain

et al. the lack of spatial identity information results in the inability to

determine (for example) if a tyrosine hydroxylase expressing

catecholaminergic neuron is of midbrain, forebrain or hypothalamus

fate [2]. To address this knowledge gap, we performed quanti-

tative gene expression analysis of both NT2 cells and purified NT2N

to quantify the regulation of the expression of transcription factors

which define the regional identities of neural progenitors and neural

neurotransmitter phenotypes following retinoic acid differentiation.

Results

Differentiation of NT2 cells yields neuronal and glial
populations

In order to assess that the characteristic morphological

properties were consistent with their immunocytochemical prop-
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erties NT2 cells and NT2N underwent fluorescence staining with

antibodies specific for the undifferentiated progenitor (SSEA3 and nestin),

neuron (b-tubulin III, Tau, MAP2, and synapsin 1), astroglial (GFAP and

S-100b), or oligodendrocyte (CNPase) phenotypes. As seen in Fig. 1A–C,

NT2 cells expressed both SSEA3 and nestin as previously reported [18].

Staining was not seen with the neuron, astroglial or oligodendrocyte

markers (data not shown) with the exception of b-tubulin III (BT3) and

GFAP. BT3 and GFAP were co-expressed mainly in the nucleus with

light staining of the cytoplasm (Fig. 1B). NT2N displayed no staining for

undifferentiated progenitor or oligodendrocyte markers (data not shown)

but did display staining for all of the neuron markers and GFAP (Fig. 1D–

F). GFAP and BT3 were co-expressed and were confined to the

cytoplasm and neurites (Fig. 1D). Also, as seen in Fig. 1D there are a small

number of what appears to be radial glial cells which display only GFAP

staining and a bipolar morphology (one short and one long unbranched

process).

NT2N co-express Tau and MAP2 staining within cell bodies

(Fig. 1E). Since the NT2N were grouped in cell clusters, neural

Figure 1. Marker expression of NTERA2 (NT2) cells and ATRA differentiated NTERA2 neurons (NT2N). NT2 cells (A–C) co-express GFAP
and SSEA3 with GFAP staining confined to the nucleus (A). NT2 cells also co-express GFAP and b-tubulin III (BT3) which are both mainly confined to
the nucleus (B). Nestin with GFAP are co-localized in NT2 cells (C). NT2N assembled themselves into cell clusters which co-expressed GFAP and BT3
found within the cytoplasm and neurites (D). Arrow heads point to cells that appear as radial glia cells which only display GFAP staining (D). NT2N
also express neural markers TAU and MAP2 with MAP2 confined to dendrites (tapering morphology shown by arrow heads) and TAU not displaying
restriction to axons. In merge panel insert shows close-up view of neurite (E). Synapsin 1 staining is seen as punctate along neurite projections co-
expressing BT3 (F). Photomicrographs were obtained at 100X (A–C; scale bar 200 mm) and 200X (D–F; scale bar 100 mm).
doi:10.1371/journal.pone.0016174.g001
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extensions from one cell body were unable to be identified.

However, MAP2 staining within neural extensions was restricted

to only a subset of all neural extensions (which appear to be

dendrites based on their tapering morphology) emanating from the

clusters whereas Tau staining was present in all neural extensions

(Fig. 1E). Synapsin staining was puntate along the neurites with

lighter staining seen within the neurites and cytoplasm (Fig. 1F).

ATRA differentiated NT2 cells (after mitotic inhibitor treat-

ment but before the purification of NT2N) were stained for GFAP,

S-100b, BT3, and Tau (Fig. 2A–C). This approach allowed for the

examination of both the neuron and non-neuron phenotypes

present in the culture. All cells present in the culture, to some

extent, displayed GFAP staining. This included the cell clusters as

well as large flat apolar cells appearing morphologically like

protoplasmic astrocytes (Fig. 2A) Also, groups of cells, smaller than

the large protoplasmic cells but larger than the neural cells, were

seen displaying fibroblastic multipolar astrocyte-like morphology.

Staining with S-100b revealed that the large protoplasmic cells

and most of the cells within the cell clusters did not express S-100b
(Fig. 2B). Cells that expressed S-100b were the smaller fibroblastic

astroglial-like cells which were also found within the cell clusters.

The S-100b cells did express co-localization with GFAP but did

not co-localize with Tau indicating the presence of astrocytes

(Figure 2B–C).

NT2N discharge action potentials
To confirm that the NT2 neurons possess the intrinsic electrical

excitability characteristic of neurons, whole-cell patch clamp

recordings were obtained from these cells after 2–3 weeks in

neuron purified culture. Under the current-clamp configuration,

intracellular current injections were applied from the resting

membrane potential, which averaged 261.960.4 mV (n = 4).

This evoked a tonic pattern of action potential (AP) discharge in all

cells examined (Fig. 3), with a mean AP amplitude of

48.565.6 mV and a threshold of 226.961.3 mV. The minimum

current intensity needed to elicit AP discharge (i.e. rheobase) was

27.568.5 pA.

To investigate whether the purified neurons establish functional

synaptic contacts voltage-clamp recordings were used to examine

the prevalence of spontaneous excitatory and inhibitory postsyn-

aptic currents (sEPSCs and sIPSCs, respectively). Despite the

presence of an extensive network of neuronal processes, we failed

to observe sEPSCs or sIPSCs in any of the sampled cells (n = 10),

suggesting that the in vitro environment was insufficient to promote

synaptogenesis despite clearly promoting neural differentiation.

‘‘Stemness’’, dermal layer, phenotype specific, and
growth factor expression

The transcriptional regulation of ES cell self-renewal and

differentiation involves transcription factors POU class 5 homeo-

box 1 (POU5F1; Oct3/4), Nanog homeobox (NANOG) and sex

determining region Y-box 2 (Sox2) [19]. Down regulation of these

genes removes repression of the differentiation genes and allows

the ES cells to differentiate. NT2 cells expressed all three genes

with NANOG and SOX2 displaying a much higher level of

expression compared with POU5F1 (Fig. 4A). Upon differentia-

tion with ATRA, the resulting NT2N expressed a significant

down-regulation of NANOG (-71 fold change) and POU5F1 (-8-

fold).

Since NT2 cells have been reported to be capable of

differentiating into all three dermal layers expression of endoder-

mal (GATA binding protein 4; GATA4), mesodermal (brachyury

homolog; T) and ectodermal (nestin; NES) markers were

investigated. NT2 cells expressed all 3 dermal markers with the

expression of T an order of magnitude greater than NES which

was higher than GATA4. NT2N also expressed all 3 genes with

only NES being up-regulated (9-fold) and GATA4 and T

undergoing down-regulation (-9 and -34-fold respectively).

To confirm the presence of radial glial (RG) cells, we examined

the expression of phenotype markers fatty acid binding protein 7

(FABP7) and SLC1A3 (EAAT1/GLAST) which known to be

found in this population [20,21]. Both FABP7 and SLC1A3

mRNA was expressed in the NT2 cells. FABP7 was up-regulated

in NT2N (13.7-fold), with no significant change seen in SLC1A3

expression (Fig. 4A), suggesting the maintained presence of or an

increase in the RG cell population. In addition, the expression of

GFAP and BT3 (TUBB3) were investigated in order validate the

previous immunocytochemical findings (Fig. 1). Expression of

GFAP was seen in NT2 cells which was up-regulated (207-fold) in

NT2N (Fig. 4A), consistent with the increase in GFAP staining

seen within this cell population. NT2 cells expressed TUBB3 at a

level just below that seen for the average expression of the

housekeeping genes which was up-regulated in NT2N (4-fold).

Due to the ability of NT2 cells to proliferate in the absence of

feeder cells or the addition of growth factors we examined the

expression of fibroblast growth factor 2 (FGF2; b-FGF) and

epidermal growth factor (EGF) expression. EGF and FGF2 have

been reported to be necessary to maintain pluripotency of hES

cells [22]. NT2 cells expressed both EGF and FGF2 which were

maintained for EGF and up-regulated for FGF2 (4-fold) in NT2N.

Figure 2. Cell types following all-trans-retinoic acid differentiation of NTera2 cells before purification of neurons. Large protoplasmic
astrocytes-like cells that form the basal layer of cells that NTera2 neurons rest on display weak GFAP staining (A). Neural cluster which contains
multipolar fibrous astrocytes which co-express GFAP and S-100b (B). The fibrous astrocytes do not display co-expression of S-100b with b-tubulin III
positive neurons (C). Photomicrographs were obtained at 100X (A; scale bar 200 mm) and 400X (B–C; scale bar 50 mm).
doi:10.1371/journal.pone.0016174.g002
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Neurotransmitter Related Gene Expression
Consistent with the neural morphology, NT2N have been

reported to express a variety of neurotransmitter phenotypes [2].

This current investigation focused on the expression of GABAer-

gic, glutamatergic, catecholaminergic, and cholinergic phenotypes.

Glutamic acid decarboxylase 65 (GAD65) and glutamic acid

decarboxylase 67 (GAD67) are encoded by GAD2 and GAD1-67

respectively. These two enzymes are responsible for the synthesis

of c-aminobutyric acid (GABA). GAD1 contains two alternative

splice variants yielding GAD 25 and GAD44 [23]. GAD25 is

abundant during early developmental stages but is also present in

the adult brain in regions that undergo continuous synaptic

rearrangements [23,24]. This study focused on GAD1-25, GAD2,

and GAD1-67 since GAD44 is detected only later in development

[23]. All three isoforms were expressed in NT2 cells with GAD1-

67 and GAD2 at much lower expression than GAD1-25. NT2N

expressed all three isoforms with GAD2 and GAD1-25 displaying

no significant change and GAD1-67 significantly up-regulated (9-

fold) (see Fig. 4B).

Vesicular glutamate transporter (VGLUT) confers glutamate

uptake activity to synaptic vesicles. Three isoforms are present

VGLUT 1/2/3 encoded by SLC17A7/A6/A8. VGLUT1 and

VGLUT2 are segregated in the brain and expressed in presynaptic

terminals revealing functional glutamatergic synapse. VGLUT3 is

expressed in presynaptic terminals not classically accepted as

glutamatergic [25,26]. VGLUT1 and 2 were studied here due to

their specificity for glutamatergic neurons. NT2 cells expressed

both SLC17A6 and SLC17A7 with SLC17A7 displaying a much

lower level than SLC17A6 (Fig. 4B). NT2N expressed both

isoforms studied here with only SLC17A7 (VGLUT1) displaying a

significant increase (74-fold).

Tyrosine hydroxylase (TH) is the enzyme responsible for the

synthesis of dopamine and is present in all catecholaminergic

neurons. NT2 cells expressed TH which displayed a significant

increase (5-fold) in NT2N (Fig. 4B).

Choline acetyltransferase (ChAT) is the rate-limiting enzyme in

the synthesis of acetylcholine and the most specific indicator of

cholinergic neurons. NT2 cells expressed ChAT which was

significantly increased (12-fold) in NT2N (Fig. 4B).

Region-Specific Regulatory Gene Expression
Determination of the regional-specific regulatory genes expressed

by NT2N cells was undertaken to determine if in vitro differentiation

of NT2 cells by ATRA led to the establishment of multiple regional

or specific area neural markers of the CNS. NT2N have been

intensively studied but the regional differentiation of these cells has

not been investigated. Due to the use of ATRA one would expect a

caudalization effect to occur yielding neurons of posterior hindbrain

and spinal cord fates [27]. The transcriptional markers used in this

study were all expressed in NT2 cells with the exception of NK2

homeobox 2 (NKX2-2). NKN2-2 was not consistently expressed in

all passages of NT2 cells and when expressed resulted in a Ct of 40

or greater (data not given). Within the NT2N population NKX2-2

could not be detected.

Figure 5 shows the relative expression of regional specific

transcription factor genes along the rostocaudal axis. Of the

rostocaudal markers studied here forebrain makers forkhead box

G1 (FOXG1), and empty spiracles homolog 2 (EMX2) were up-

regulated (2-fold and 10-fold respectively) with LIM homeobox 2

(LHX2) and forebrain midbrain marker orthodenticle homeobox 2

(OTX2) significantly down-regulated (-3-fold and -67-fold respec-

tively). Of the midbrain-hindbrain markers studied engrailed

homeobox 1(EN1), engrailed homeobox 2 (EN2) and paired box 2

(PAX2) were up-regulated (23-fold, 11-fold, and 3-fold respectively)

with GS homeobox 2 (GSX2) and NK2 homeobox 1 (NKX2-1)

displaying no significant change in their expression. Anterior

hindbrain markers gastrulation brain homeobox 2 (GBX2) and

rhombomeric maker early growth response 2 (EGR2; Krox20) were

down regulated (both by -4-fold) with homeobox (HOX) genes

HOXB2, HOXA1, HOXD3, and HOXB6 all displaying up-

regulation (6-fold, 3-fold, 10-fold, and 34-fold respectively). The

transcriptional factor code expressed by the NT2N population would

indicate the presence of progenitors from the forebrain, hindbrain

and spinal cord with little presence of midbrain progenitors.

Figure 6 shows the relative expression of regional specific

transcription factor genes in the dorsoventral axis for telencepha-

lon-related (Fig. 6A) and spinal cord-related genes (Fig. 6B). It should

be noted that some overlap in the two groups exists because genes

such as paired box 6 (PAX6) are expressed in multiple CNS regions

and the NT2 cells generate a mixed population of neural progenitors.

The dorsal telencephalon transcription factors neurogenin 2

(NGN2), EMX2, and PAX6 as well as ventral transcription factors

distal-less homeobox 2 (DLX2) and achaete-scute complex

homolog 1 (ASCL1; Mash1) were up-regulated (6-fold, 10-fold,

71-fold, and 3-fold respectively) in the NT2N population (Fig. 6A).

Telencephalonic ventral markers GSX2 and NKX2-1 showed no

significant change while dorsal marker neurogenin 1 (NGN1)

expression could not be detected in NT2N.

Figure 3. Electrical activity of retinoic acid-differentiated
NTERA2 neurons. Representative traces from a cell exhibiting a tonic
pattern of action potential discharge in response to direct current
injections of 10 pA (top) to 40 pA (10 pA steps; 1 sec duration) from
the resting membrane potential.
doi:10.1371/journal.pone.0016174.g003
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The dorsal spinal cord transcription factors NGN2 and ASCL1

were up-regulated (6-fold and 3-fold respectively), while atonal

homolog 1 (ATOH1; Math1) and paired box 7 (PAX7) showed no

significant change and paired box 3 (PAX3) and NGN1 were

down-regulated (-7-fold and not detected respectively). The ventral

spinal cord transcription factors developing brain homeobox 2

(DBX2) and paired box 6 (PAX6) were up-regulated (17-fold and

71-fold respectively), developing brain homeobox 1 (DBX1), NK6

homeobox 1 (NKX6-1), and oligodendrocyte lineage transcription

factor 2 (OLIG2) showed no significant change, and Iroquois

homeobox 3 (IRX3) was down-regulated (-7-fold) within the

NT2N population. The transcriptional factor code expressed by

the NT2N population represents the presence of both dorsal and

ventral progenitors that are found within the telencephalon and

spinal cord. The data however, does not imply that all progenitor

types found in these two regions of the CNS are present.

Discussion

While it has been clearly established that NT2 cells can

differentiate along the neural ectodermal pathway into postmitotic

neurons after exposure to ATRA, our study is the first to attempt to

characterize the positional identity expressed by this population of

NT2N [8,28,29,30,31,32,33]. The results of this study demonstrate

that under monolayer culture conditions NT2 cells differentiate into

GABAergic and glutamatergic neurons expressing transcription

factors typically observed in the dorsal and ventral forebrain,

hindbrain, and spinal cord. Remarkably, NT2N maintain a rostral

subpopulation of neurons even after differentiation in the presence of

the caudalization influence of RA. Given that culture paradigms are

able to alter the neurotransmitter phenotypes expressed by hESC and

NT2 cells, we further characterized the resultant neurons [34,35,36].

We found that NT2N express neurotransmitter phenotypes that are

consistent with previous reports and are electrically active but are

immature since they do not form functional synapses. Also, the

presence of astrocytes and possible radial glia was noted with no

indication of the presence of oligodendrocytes.

Regional specification of NT2N

Analysis of the expression of regional specific transcription

factors along the rostocaudal axis revealed that NT2 cells,

Figure 4. Relative mRNA expression of cell marker genes and neurotransmitter related genes expressed by NTERA2 (NT2) and
NTERA2 all-trans retinoic acid differentiated neurons (NT2N). Relative amount of mRNA normalized to the average of 3 reference genes
(G3PDH, PPIA, and NUBP1). Relative amount of mRNA for NT2 (black bar) and NT2N (gray bars) were obtained from 6 passage matched cultures
(ranging from 25–36) and all samples were analyzed independently in triplicate. Panel A displays the expression of ‘stemness’, dermal layer, cell type
makers, and growth factor genes. Panel B displays the relative expression of neurotransmitter related genes. All data are expressed as the average
relative gene expression + SEM. For the comparison of NT2 to NT2N: # p,0.05, %, p,0.01, and & p,0.005.
doi:10.1371/journal.pone.0016174.g004
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although expressing all the rostocaudal genes examined here, did

show high expression levels of OTX2 and LHX2 (relative mRNA

levels .103) indicating the presence of anterior genes mainly of

cortical fates. These cells also highly expressed PAX2, GBX2,

EGR2, HOXB2, and HOXA1 which are characteristic of

hindbrain fates as well as rhombomeric marker EGR2 (Krox20).

More caudal markers HOXD3, and HOXB6 were detected in

decreasing amounts again consistent with hindbrain fates.

Expression of midbrain markers did not rise to this level of

expression. This transcription code would indicate that both

forebrain and hindbrain fates are present within the population of

NT2 cells, suggesting that NT2 cells express an early neuroepi-

thelial stem cell population similar to that reported for neural

rosettes [37]. Since NT2 cells have been reported not to undergo

spontaneous differentiation, unlike ES cells, the presence of

hindbrain transcription factors may be due to the caudalizing

effect of the culture environment as suggested by the high

expression of FGF2 seen here [38].

NT2N transcription factor code indicates the presence of

forebrain, hindbrain, and spinal cord transcriptional markers. Due

to the use of ATRA one would expect a caudalization effect to

occur yielding neurons of the posterior hindbrain and spinal cord

fates. This is seen with the NT2N population with a movement

towards the expression of a more caudal hindbrain fate and the

up-regulation of genes of the spinal cord fate. However, this occurs

without the loss of cortical fates. The known caudalization effect of

RA is somehow resisted by the neural progenitors of this cell

population. One possibility is that RA induces the expression of

PAX6 [39]. In the E10 mouse, when the neural tube is undergoing

regionalization, PAX6 is expressed in forebrain, hindbrain and

spinal cord which concur with the neural fates seen in the NT2N

population [40]. PAX6 is able in a context-dependent manner to

either promote neuroepithelial proliferation or differentiation and

its loss results in a 50% reduction of RG and cortical neurons [41].

Therefore, PAX6 may maintain proliferation of a subpopulation

of cells which continually provide new neural precursors which

maintains the rostral fate seen within the NT2N population. In

addition to PAX6, the high expression of NANOG even after

differentiation with ATRA may also contribute to the resistance of

NT2 cells to either caudalize or undergo differentiation given that

the high expression of NANOG suppresses the differentiation of

ESCs by RA [42].

Rostocaudal patterning of the neural ectoderm initially occurs

in the late blastula through gastrula stages [43] It has been

reported that the presumptive rostral neural ectoderm expresses

CYP26, from the late blastula onwards, which encodes retinoic

acid 4-hydroxylase which specifically degrades RA. The earliest

known marker for caudal ectoderm is HOXB1b which is

expressed in early gastrula and displays a complimentary pattern

to CYP26 [44]. Kudoh et al. have hypothesized that caudalization

occurs by suppression of rostral fates in a two-step process [43].

The first step appears to be regulated by FGFs and WNTs which

down-regulates CYP26, followed by up-regulation of caudal genes

by RA. This would suggest that in order for the rostral population

to survive caudalization CYP26 expression needs to be main-

tained. The NT2 cell population is not homogeneous as evidenced

by their expression of rostocaudal genes as presented here.

Therefore, a population of rostral progenitors is contained within

this population that upon addition of RA is able to maintain itself

without being caudalized. We would propose that the rostral

population of progenitors would express CYP26. Previous work

has shown that there is an antagonism between FGF and RA

signaling in controlling neural differentiation [45]. We have shown

that FGF2 is expressed in NT2 cells and is further up-regulated in

the purified NT2N population which would suggest that other

FGFs and possibly other classes of morphogens are expressed

Figure 5. Relative mRNA expression of regional specific transcription factor genes in the rostocaudal direction for NTERA2 (NT2)
cells and purified NTERA2 all-trans retinoic acid differentiated neurons (NT2N). Relative amount of mRNA normalized to the average of 3
reference genes (G3PDH, PPIA, and NUBP1). Relative amounts of mRNA for NT2 (black bar) and NT2N (gray bars) were obtained from 6 passage
matched cultures (ranging from 25–36) and all samples were analyzed independently in triplicate. Genes are given from rostral to caudal direction
(left to right). Dashed lines divide genes for the forebrain, midbrain, hindbrain, and spinal cord. All data are expressed as the average relative gene
expression + SEM. For the comparison of NT2 to NT2N: # p,0.05, % p,0.01, and & p,0.005.
doi:10.1371/journal.pone.0016174.g005
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endogenously by these cells. Since RA up-regulates the expression

of CYP26 and as studied here is added exogenously, in a

concentration much higher than physiological, these rostral

progenitors should be able to resist FGFs and/or WNTs down-

regulation influence on CYP26 and, therefore, resist caudalization

[46].

The transcription factors expressed in the forebrain displayed

an up-regulation or no change in their expression in the NT2N

population with the exception of OTX2 and LHX2. The down-

regulation of LHX2 still results in very high level of expression and

therefore;, would maintain the expression of cortical fates. The

very low level of OTX2 expression seen here could indicate a

movement away from the rostral fate. OTX2 is widely expressed

throughout the forebrain and midbrain where it defines areas of

the rostral brain of E8-E10 mouse embryos. However, starting

from E10.75 OTX2 expression in the murine cerebral cortex

Figure 6. Relative mRNA expression of regional specific transcription factor genes in the dorsoventral direction for NTERA2 (NT2)
cells and purified NTERA2 all-trans retinoic acid differentiated neurons (NT2N). Relative amounts of mRNA normalized to the average of 3
reference genes (G3PDH, PPIA, and NUBP1). Relative amount of mRNA for NT2 (black bar) and NT2N (gray bars) were obtained from 6 passage
matched cultures (ranging from 25–36) and all samples were analyzed independently in triplicate. Panel A displays the relative expression from the
telencephalon and panel B from the spinal cord in a dorsal to ventral order. Dashed line divide dorsal and ventral genes. All data are expressed as the
average relative gene expression + SEM. For the comparison of NT2 to NT2N: # p,0.05, %, p,0.01, and & p,0.005.
doi:10.1371/journal.pone.0016174.g006
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rapidly disappears just prior to the onset of neurogenesis at E11.0

[47]. This would suggest that the loss in the expression of OTX2

seen in the NT2N population is not necessarily a movement to a

more caudal fate but just the normal loss of OTX2 during

neurogenesis.

In the dorsoventral axis the expression of regional transcription

factors needs to be considered in respect to the rostocaudal region.

As a result the dorsoventral transcription factors were evaluated

separately for the telencephalon and the spinal cord. NT2 cells

express all telencephalonic transcription factors studied here with

high expression being seen in ventral (subpallial) factors DLX2

and ASCL1. DLX2 and ASCL1 are expressed in both the lateral

and medial ganglionic eminences (LGE and MGE) in vivo which

give rise to GABAergic cortical interneurons and cholinergic

telencephalic neurons [48]. DLX2 has been show to induce

GAD1-67 [49]. However, within the MGE, NKX2-1 controls the

development of both telencephalic cholinergic neurons and

GABAergic cortical interneurons and its removal results in a loss

of 50% of the GABAergic interneurons and a total loss of

cholinergic neurons [48]. The weak expression of NKX2-1 in

NT2 cells would thus predict a reduced development of

cholinergic neurons which is consistent with the high expression

of GAD and the very low expression of CHAT seen in the NT2

cell population.

The NT2N population displays an up-regulation of DLX2 and

ASCL1 and no change in NKX2.1 expression. This suggests that

the same ventral fate seen in NT2 cells is present within the NT2N

population. Up-regulation of the genes responsible for the dorsal

telencephalon progenitors is seen following ATRA differentiation.

However, the expression of NGN1 is undetectable. NGN2 is a

downstream target for PAX6 and its up-regulation is most likely a

direct result of PAX6 expression [50]. In NT2 cells RA has been

reported to up-regulate NGN1 throughout the 21 days of the

ATRA differentiation [30]. It appears that the loss of NGN1

expression may be due to the removal of ATRA or that the use of

the mitotic inhibitors may have removed the population of NGN1

expressing progenitors. Up-regulation of NGN2, EMX2, and

PAX6 define the dorsal telencephalon by inhibiting expression of

ventral markers. This leads to the development of glutamatergic

projection neurons (pyramidal). Pyramidal neurons preferentially

express SLC17A7 (VGLUT1) [51]. The development of pyrami-

dal neurons is consistent with the up-regulation of SLC17A7 and

no change in the expression of SLC17A6 seen in the NT2N

population.

NT2 cells express all of the spinal cord dorsoventral axis

transcription factors studied here with high expression of ASCL1,

PAX3, PAX7, NKX6.1, and OLIG2 indicating the present of

both dorsal and ventral neural progenitors. Given the expression

of transcription factors expressed in NT2 cells the intermediate

progenitor domains of ventral progenitor 0 (vp0), and vp1 and the

most ventral domain vp3 are poorly expressed or lacking.

Following exposure of NT2 cells to ATRA the NT2N

population expresses nearly the same progenitor populations as

expressed in NT2 cells. NKX2.2 expression is totally absent

following ATRA and would suggest the absence of vp3

progenitors. The expression of OLIG2 would suggest the possible

development of motor neurons which requires the association of

OLIG2 with NGN2. However, the development of oligodendro-

cytes requires the interaction of OLIG2 with NKX2-2. Since

NKX2-2 is undetectable in the NT2N population the lack of

oligodendrocyte development seen in this population is consistent

with the loss of NKX2.2 expression [52,53]. An increase in the

progenitor population from vp0, and vp1 is seen with the NT2N

population due to the up-regulation of DBX2 which is consistent

with the reported dependence of these progenitor regions on RA

for their development [54].

Neuronal characterization of NT2 cells and NT2N
NT2N described here appear to be immature due to the lack of

restriction of TAU to axons and their lack of formation of

functional synapses. The punctate staining seen with Synapsin 1

has been previously reported to occur in NT2N cultured with or

without astrocytes [12,29]. Here we report that the NT2N possess

intrinsic electrical excitability characteristic of neurons but fail to

establish functional synaptic contacts despite their extensive

network of neural processes. This result appears to be in

agreement with previous reports that the NT2N as well as other

neurons generated from hES cell require cell contact with mature

astrocytes in order to induce synaptogenesis [12,55].

The presence of different neurotransmitter phenotypes has been

previously reported for both monolayer [2] and aggregate

differentiation methods [29]. In agreement with previous reports,

the population of NT2N characterized here displayed up-

regulation of genes directly linked to the GABAergic, glutamater-

gic, catecholaminergic, and cholinergic phenotypes.

We also report the presence of astrocytes in the ATRA-

differentiated cell population before isolation of NT2N and within

the cell clusters present in the purified NT2N population. The

generation of oligodendrocytes, was not seen. This may be due to

the inability of NT2 cells to differentiate into oligodendrocytes, as

supported by the lack of NKX2-2 expression, and is agreement

with other studies using human neurospheres or hES cell lines

[56,57].

As expected, significant down-regulation of the ‘‘stemness’’

genes NANOG and POU5F1 was observed although SOX2

expression was maintained. This finding is in agreement with

previous work [58]. Upon examination of dermal markers

expressed by NT2 cells endodermal, mesodermal, and ectodermal

markers were all present. However, only the ectodermal marker

was up-regulated in response to ATRA triggered differentiation

while both endodermal and mesodermal markers were down-

regulated. This result is consistent with the maintained SOX2

levels forcing the differentiation of ES cells along the ectodermal

differentiation pathway at the expense of endodermal and

mesodermal cell fate [58].

Immunocytochemical analysis of the NT2 and NT2N cell

populations did display some differences from what has been

previously reported for these cells [29,32,57,59]. The NT2 and

NT2N cells displayed co-localized staining for both GFAP and

BT3 which was confirmed by the expression of both BT3

(TUBB3) and GFAP (GFAP) mRNA. GFAP staining of BT3+

neurons has been previously reported in vitro and was attributed to

the presence of serum-containing medium [60]. The presence of

serum used here to maintain NT2N could account for the co-

localization of BT3 and GFAP. BT3 staining of undifferentiated

NT2 cells is consistent with the reported BT3 staining of

undifferentiated hES cell lines [57]. The expression of GFAP in

NT2 cells is surprising but may be accounted for by the fact that

these cells were derived from an adult in contrast to hES cells

derivation from the blastocyst. Human adult neural stem cells

within the subventricular zone display GFAP [61]. EC cells are

derived from carcinoma in situ (CIS) cells showing high similarity

to primordial germ cell/gonocytes, which through a process of

adaptation undergo dedifferentiation to become EC cells [62,63].

Since NT2 cells are EC cells which are derived from a restricted

embryonic/neonatal precursor cell developed in an adult niche

one might hypothesize that expression of GFAP in theses adult-

derived cancerous stem cells may occur. However, in the human
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midgestational fetus in vivo co-expression of GFAP, BT3, and

nestin is seen in the telencephalic VZ/SVZ at the ganglionic

eminence and the developing cortical plate [64]. This correlates

with the expression of these three genes at both the protein and

mRNA levels in NT2 cells and may indicate that NT2 cells express

an early neural progenitor phenotype as previously reported by

Pleasure et al [59]. This correlates with the expression of these

three genes at both the protein and mRNA levels in NT2 cells.

This expression pattern combined with the expression of FABP7

and SLC1A3 are consistent with human RG or neural precursor

cells [21]. Based on their bipolar morphology RG cells appear to

be present within the cell clusters of the NT2N population which is

consistent with the differentiation pathway seen during both in vivo

and in vitro differentiation of hESC [35,65,66,67].

Unlike hES cells, NT2 cells do not require either the use of

feeder cells or the addition of FGF2 and EGF. The high expression

level of NANOG may account for the ability of NT2 cells to grow

well in the absence of feeder cells as has been reported for hES

cells expressing high levels of NANOG [68]. Furthermore, human

EC cells have been reported to produce FGF2 [69,70]. We have

confirmed that NT2 cells express FGF2 as well as EGF mRNA. If

the expression of mRNA for both FGF2 and EGF translate into

protein expression, as reported for FGF2, this may also account for

the ability of NT2 cells to self-replicate without the need for feeder

cells or additional growth factors.

Conclusion
Given the transcription factor code expressed by NT2 cells and

NT2N it appears that NT2 cells under the paradigm studied here

are restricted to areas of PAX6 expression, namely the forebrain,

hindbrain, and spinal cord, yielding both dorsal and ventral

progenitors from these areas. This restricted transcriptional code

resulted in both glutamatergic and GABAergic neurotransmitter

phenotypes from these regions which contrasts with the preferential

GABAergic phenotype seen in long-term expanded primary and ES

cell derived neural precursors [71,72]. The maintained expression

of a rostral precursor population in the presence of both endogenous

and exogenous caudalization factors is a surprise and the relevant

underlying mechanism remains unclear. It can be hypothesized that

the total NT2 cell population does not undergo differentiation at the

same rate and even under the influences of growth factors and/or

morphogens a population of early neural progenitors is maintained

possibly through the high expression of PAX6 and/or NANOG.

This may be a condition of the EC cell malignant state. Yet this cell

line provides both a model of human neural cell differentiation and

a source of a diverse population of human central nervous system

neurons which are amenable to further study. Given that NT2N

cells have been used for phase 1 and 2 clinical trials in stable stroke

patients and to date (10 and 5 years after publication of the trials

respectively) transplanted NT2N have demonstrated consistent

non-tumorigenic outcomes and are as efficacious as human fetal

cells, these neurons may be cautiously viewed as useful for

therapeutic use [15]. Understanding the regional specification of

the neurons derived from pluripotent stem cells may facilitate their

integration and aid the design of effective strategies for neural

transplantation within the CNS.

Materials and Methods

Cell Culture
NTERA-2 cl.D1 (NT2) cells were obtained from American

Type Culture Collection (CRL-1973; Manassas, VA) and

maintained in Dulbecco’s modified Eagle’s medium (high glucose)

containing 10% fetal bovine serum (FBS), 2 mM L-alanyl-L-

glutamine (AG), 25 mM HEPES buffer (pH7.3), 1X minimum

essential medium non-essential amino acids, 56 mM b-mercapto-

ethanol (b-ME), and 25 mg/ml gentamicin sulfate (GS). The cells

were fed twice a week and split 1:4 when confluent by mechanical

scraping. For differentiation with retinoic acid NT2 cells were

trypsinized with 0.05% trypsin/EDTA and plated at

2.76104cells/cm2 in Opti-MEM I (Invitrogen; Carlsbad, CA)

containing 4% FBS, 2 mM AG, 56 mM bME, 25 mg/ml GS, and

10 mM all-trans retinoic acid (ATRA; Sigma-Aldrich, St. Louis).

Cell were fed twice a week for four weeks and the neurons were

isolated in accordance with Pleasure et al. [8]. Briefly, following

ATRA differentiation, cells were replated at 1:6. After 1–2 days

cultures were mechanically shaken to dislodge cells and these free-

floating cells were plated onto poly-L-ornithine (PLO)/Matrigel or

Geltrex coated growth surface in Opti-MEM I containing 4%

FBS, 2 mM AG, 56 mM bME, 25 mg/ml GS, 1 mM cytosine

arabinoside, 10 mM fluorodexoyuridine, and 10 mM uridine.

Cells were fed twice a week for four weeks. Following this

treatment, purified neurons were isolated by mechanically

dislodging the neurons from the basal layer of cells and replated

on PLO/Matrigel or Geltrex in the same media without cytosine

arabinoside, fluorodexoyuridine, or uridine.

Antibodies and Immunofluorescence
For immunofluorescence NT2 cells or purified ATRA differenti-

ated NT2 cell derived neurons (NT2/N) were grown on 12 mm glass

coverslips coated with poly-L-ornithine (PLO; Sigma)/Matragel

(Becton Dickerson) and washed with phosphate buffered saline (PBS,

pH 7.2). The cells were then fixed for 20 min in 4% paraformal-

dehyde and 4% sucrose in PBS. The cells were then washed 2X with

PBS and permeabilized for 20 min with 0.3% Triton X-100 in PBS.

The cells were then washed with PBS and blocked for 1 hr with 1%

bovine serum albumin in PBS. The cells were then incubated for 2 hr

with the primary antibody at the listed dilutions in PBS. Following

primary antibody incubation the cells were washed 3X with PBS and

incubated with the appropriate secondary antibody for 1 hr in PBS.

Following washing 3X in PBS the coverslips were mounted for

microscopy in Vectashield hard-set mounting medium (Vector

Laboratories, Burlingame, CA). Images were acquired using a Nikon

Microphot-SA microscope with a SensiCam cooled CCD camera

(Cooke Corp., Eugene, OR) and using CamWare image acquisition

software (Ver 2.13, Cooke Corp.).

Anti-human stage specific embryonic antigen 3 (SSEA3) (sc-

21703, Santa Cruz Biotechnology, CA), anti-tubulin, beta III

isoform (MAB1637, Chemicon International), and anti-29,39-

cyclic nucleotide 39-phosphodiesterase (CNPase) monoclonal

antibodies (C 5922, Sigma-Aldrich) were used at a dilution of

1:50. Anti-nestin monoclonal human specific antibody (MAB5326,

Millipore), anti-microtubules associated protein 2 (MAP2) mono-

clonal antibody (13–1500, Invitrogen), anti-TAU polyclonal

antibody (AHB0351, Invitrogen), anti-glial fibrillary acidic protein

(GFAP) IgG purified polyclonal antibody (G 9269, Sigma-

Aldrich), and. anti-synapsin 1 polyclonal antibody (A6442,

Invitrogen) were used at a dilution of 1:200. Fluorescein (FITC)

conjugated goat anti-mouse IgG (115-095-062), FITC-conjugated

goat anti-rat IgM (112-095-075), FITC-conjugated goat anti-

rabbit IgG (111-095-144), Cy3-conjugate goat anti mouse (115-

095-146) and Cy3-conjugated goat anti-rabbit (111-165-144)

(Jackson ImmunoResearch, West Grove, PA) were used at a

dilution of 1:100.

Electrophysiological recordings
Coverslips with NT2N were transferred to a submersion-type

chamber (RC-22; Warner Instruments, Hamden, CT), mounted
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on the stage of an upright microscope (BX51WI; Olympus, Center

Valley, PA) and perfused at room temperature with oxygenated

artificial CSF (aCSF) solution containing the following (in mM):

125 NaCl, 2.5 KCl, 25 NaHCO3, 1.0 NaH2PO4, 1.0 MgCl2, 2.0

CaCl2, and 25 glucose, at a rate of 1.5–3 ml/min.

Recording electrodes were constructed from thin-walled single-

filamented borosilicate glass (1.5 mm outer diameter; World

Precision Instruments, Sarasota, FL) using a microelectrode puller

(Sutter Instruments, Novato, CA). Pipette resistances ranged from

5 to 7 MV and seal resistances were .1 GV. For voltage-clamp

experiments, patch electrodes were filled with a solution

containing the following (in mM): 130 Cs-gluconate, 10 CsCl,

10 HEPES, 11 EGTA, 1.0 CaCl2, and 2.0 MgATP, pH 7.2 (300–

305 mOsm). EPSCs were isolated at a holding potential (hp) of

270 mV while IPSCs were recorded at a hp of 0 mV, thus

minimizing the contribution of NMDA and AMPA/kainate

receptor-mediated events [73]. Current clamp experiments used

an electrode solution of (mM): 130 potassium gluconate, 10 KCl,

10 Hepes, 1.0 EGTA, 0.1 CaCl2, 2.0 MgATP, pH 7.2 (300–305

mOsm). Neurons were visualized with infrared-differential inter-

ference contrast and whole-cell patch-clamp recordings were

obtained using a Multiclamp 700B amplifier (Molecular Devices,

Sunnyvale, CA). Under the current-clamp configuration, action

potentials were evoked via current injection through the recording

electrode (10–50 pA in 10 pA steps; 1 sec duration).

Membrane voltages were adjusted for liquid junction potentials

(approximately –14 mV) calculated using JPCalc software (P.

Barry, University of New South Wales, Sydney, Australia;

modified for Molecular Devices). Currents were filtered at 4–

6 kHz through a –3 dB, four-pole low-pass Bessel filter, digitally

sampled at 20 kHz, and stored on a personal computer (ICT,

Cincinnati, OH) using a commercially available data acquisition

system (Digidata 1440A with pClamp 10.0 software; Molecular

Devices). All data are expressed as mean 6 SEM.

RNA Isolation and cDNA Preparation
Total RNA was collected from passage matched (ranging from

25–36) NT2 and NT2N cultures (N = 6/experiment) following a

HBSS w/o wash. RNA extraction and DNase I treatment were

accomplished using the Absolutely RNA Purification Kit accord-

ing to the manufacturer’s instructions (Stratagene, La Jolla, CA).

The RNA was quantitated using a fluorescence method (Quant-iT

RNA assay Kit and Qubit Fluorometer; Invitrogen). The isolated

RNA was aliquoted and stored at 275uC in 10 mM Tris-HCl

buffer (pH 8.0) until use. One mg of total RNA per reaction, 4

reactions per sample, were reverse transcribed in a volume of

20 ml, using the iScript cDNA Synthesis Kit (Bio-Rad Laborato-

ries, Hercules, CA) by incubation at 25uC for 10 min, 42uC for

45 min, 85uC for 5 min followed by a hold at 4uC. The first strand

cDNA reaction was stored at 220uC until use.

Oligonucleotide Primers
Primers were designed using Primer-BLAST software which

incorporates Primer3 software to design the primers and a BLAST

search of the primers against a user selected database (Homo

sapiens Refseq RNA database). (www.ncbi.nlm.nih.gov/tools/

primer-blast/) [74]. All primers were designed to allow for specific

amplification of the gene specific mRNA independent of splice

variants (when possible), to anneal at 60uC, and to traverse an

intron boundary (see Supporting Information Table S1). All

amplicons were confirmed by agarose electrophoresis to assess if

the amplicon was the predicted size and a single product. All

oligonucleotides used in this study were synthesized by Operon

Biotechnologies Inc. (Huntsville, AL).

Quantitative RT-PCR
Quantitative RT-PCR (qPCR) was performed on the MPx3005

instrument (Stratagene). Each 25 ml reaction included 12.5 ml of

DyNAmo HS SYBR Green 2X Master mix (New England

Biolabs, Inc.; Ipswich, MA) containing 2.5 mM MgCl2, 0.3 mM

each forward and reverse primer, 2 mM ROX reference dye, and

25 ng of cDNA. The experiment was performed following the

following protocol: activation of the Taq polymerase at 95uC for

15 min, followed by 45 cycles of denaturing at 95uC for 15 sec,

annealing at 60uC for 1 min, extension at 72uC for 1 min followed

by fluorescence measurement at 516 and 610 nm (SYBER Green

and ROX respectively). This was followed by a melting curve

analysis. All experiments included no-template controls and all

samples were analyzed independently in triplicate. The determi-

nation of PCR efficiency, threshold cycle (Ct) determination, and

RNA starting concentration were calculated using raw fluores-

cence data using LinRegPCR analysis software [75,76].

Statistical Analysis
Groupwise comparison of gene expression ratios was performed

by REST-2009 (December 2009 release) [77]. Expression data

was normalized to the geometric mean of three housekeeping

genes: glyceraldehyde-3-phosphate dehydrogenase (G3PDH),

peptidylprolyl isomerase A (cyclophilin A; PPIA), and nucleotide

binding protein 1 (NUBP1). Randomization was conducted using

6,000 permutations for statistical evaluation. The REST 2009

program incorporates correction for amplification efficiencies (as

determined by LinReg) into the calculation of gene expression

ratios. The level of significance was determined as p,0.05.
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Table S1 Primer sequences and amplicon size.

(DOCX)

Author Contributions

Conceived and designed the experiments: DEC JL MB. Performed the

experiments: DEC JL MB. Analyzed the data: DEC MB. Contributed

reagents/materials/analysis tools: DEC MB. Wrote the paper: DEC JL

MB.

References

1. Josephson R, Ording CJ, Liu Y, Shin S, Lakshmipathy U, et al. (2007)

Qualification of Embryonal Carcinoma 2102Ep As a Reference for Human

Embryonic Stem Cell Research. Stem Cells 25: 437–446.

2. Guillemain I, Alonso G, Patey G, Privat A, Chaudieu I (2000) Human NT2

neurons express a large variety of neurotransmission phenotypes in vitro. J Comp

Neurol 422: 380–395.

3. Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, et al. (2003) Gene

expression patterns in human embryonic stem cells and human pluripotent germ

cell tumors. ProcNatlAcadSciUSA 100: 13350–13355.

4. Henderson JK, Draper JS, Baillie HS, Fishel S, Thomson JA, et al. (2002)

Preimplantation Human Embryos and Embryonic Stem Cells Show Compa-

rable Expression of Stage-Specific Embryonic Antigens. Stem Cells 20: 329–337.

5. Pal R, Ravindran G (2006) Assessment of pluripotency and multilineage

differentiation potential of NTERA-2 cells as a model for studying human

embryonic stem cells. Cell Prolif 39: 585–598.

6. Andrews PW, Matin MM, Bahrami AR, Damjanov I, Gokhale P, et al. (2005)

Embryonic stem (ES) cells and embryonal carcinoma (EC) cells: opposite sides of

the same coin. Biochemical Society Transactions 33: 1526–1530.

Regional Differentiation of ECC-Derived Neurons

PLoS ONE | www.plosone.org 10 January 2011 | Volume 6 | Issue 1 | e16174



7. Briscoe J, Pierani A, Jessell TM, Ericson J (2000) A Homeodomain Protein Code

Specifies Progenitor Cell Identity and Neuronal Fate in the Ventral Neural

Tube. Cell 101: 435–445.

8. Pleasure SJ, Page C, Lee VM (1992) Pure, postmitotic, polarized human neurons

derived from NTera 2 cells provide a system for expressing exogenous proteins

in terminally differentiated neurons. Journal of Neuroscience 12: 1802–1815.

9. Squires PE, Wakeman JA, Chapman H, Kumpf S, Fidock MD, et al. (1996)

Regulation of intracellular Ca2+ in response to muscarinic and glutamate

receptor agonists during the differentiation of NTERA2 human embryonal

carcinoma cells into neurons. EurJ Neurosci 8: 783–793.

10. Younkin DP, Tang CM, Hardy M, Reddy UR, Shi QY, et al. (1993) Inducible

expression of neuronal glutamate receptor channels in the NT2 human cell line.

ProcNatlAcadSciUSA 90: 2174–2178.

11. Hardy M, Younkin D, Tang CM, Pleasure J, Shi QY, et al. (1994) Expression of

non-NMDA glutamate receptor channel genes by clonal human neurons.

J Neurochem 63: 482–489.

12. Hartley RS, Margulis M, Fishman PS, Lee VM, Tang CM (1999) Functional

synapses are formed between human NTera2 (NT2N, hNT) neurons grown on

astrocytes. J Comp Neurol 407: 1–10.

13. Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998)

Transplantation of cryopreserved human embryonal carcinoma-derived neurons

(NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:

310–321.

14. Bliss TM, Kelly S, Shah AK, Foo WC, Kohli P, et al. (2006) Transplantation of

hNT neurons into the ischemic cortex: cell survival and effect on sensorimotor

behavior. J Neurosci Res 83: 1004–1014.

15. Hara K, Yasuhara T, Maki M, Matsukawa N, Masuda T, et al. (2008) Neural

progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in

stroke. Progress in Neurobiology 85: 318–334.

16. Sandhu JK, Sikorska M, Walker PR (2002) Characterization of astrocytes

derived from human NTera-2/D1 embryonal carcinoma cells. J Neurosci Res

68: 604–614.

17. Bani-Yaghoub M, Felker JM, Naus CC (1999) Human NT2/D1 cells

differentiate into functional astrocytes. Neuroreport 10: 3843–3846.

18. Andrews PW, Casper J, Damjanov I, Duggan-Keen M, Giwercman A, et al.

(1996) Comparative analysis of cell surface antigens expressed by cell lines

derived from human germ cell tumours. IntJCancer 66: 806–816.

19. Li YQ (2010) Master Stem Cell Transcription Factors and Signaling Regulation.

Cellular Reprogramming (Formerly ‘‘Cloning and Stem Cells’’) 12: 3–13.

20. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, et al. (2004)

Differentiation of mouse embryonic stem cells into a defined neuronal lineage.

NatNeurosci 7: 1003–1009.

21. Zecevic N (2004) Specific characteristic of radial glia in the human fetal

telencephalon. Glia 48: 27–35.

22. Sun Y, Pollard S, Conti L, Toselli M, Biella G, et al. (2008) Long-term tripotent

differentiation capacity of human neural stem (NS) cells in adherent culture.

Molecular and Cellular Neuroscience 38: 245–258.

23. Szabo G, Katarova Z, Greenspan R (1994) Distinct protein forms are produced

from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs

during development. Mol Cell Biol 14: 7535–7545.

24. Krizbai IA, Katarova Z, Szabo G, Parducz A, Wolff JR (2000) Modulation of

the truncated GAD25 by estrogen in the olfactory bulb of adult rats.

Neuroreport 11: 791–794.

25. Fremeau RT, Jr., Kam K, Qureshi T, Johnson J, Copenhagen DR, et al. (2004)

Vesicular Glutamate Transporters 1 and 2 Target to Functionally Distinct

Synaptic Release Sites. Science 304: 1815–1819.

26. Schafer MKH, Varoqui H, Defamie N, Weihe E, Erickson JD (2002) Molecular

Cloning and Functional Identification of Mouse Vesicular Glutamate Trans-

porter 3 and Its Expression in Subsets of Novel Excitatory Neurons. Journal of

Biological Chemistry 277: 50734–50748.

27. Okada Y, Shimazaki T, Sobue G, Okano H (2004) Retinoic-acid-concentration-

dependent acquisition of neural cell identity during in vitro differentiation of

mouse embryonic stem cells. Developmental Biology 275: 124–142.

28. Misiuta IE, Saporta S, Sanberg PR, Zigova T, Willing AE (2006) Influence of

retinoic acid and lithium on proliferation and dopaminergic potential of human

NT2 cells. J NeurosciRes 83: 668–679.

29. Podrygajlo G, Tegenge MA, Gierse A, Paquet-Durand F, Tan S, et al. (2009)

Cellular phenotypes of human model neurons (NT2) after differentiation in

aggregate culture1. Cell Tissue Res 336: 439–452.

30. Megiorni F, Mora B, Indovina P, Mazzilli MC (2005) Expression of neuronal

markers during NTera2/cloneD1 differentiation by cell aggregation method3.

Neurosci Lett 373: 105–109.

31. Przyborski SA, Morton IE, Wood A, Andrews PW (2000) Developmental

regulation of neurogenesis in the pluripotent human embryonal carcinoma cell

line NTERA-2. EurJ Neurosci 12: 3521–3528.

32. Serra M, Leite SB, Brito C, Costa J, Carrondo MJ, et al. (2007) Novel culture

strategy for human stem cell proliferation and neuronal differentiation.

J NeurosciRes 85: 3557–3566.

33. Simoes PD, Ramos T (2007) Human pluripotent embryonal carcinoma

NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic

medium. J NegatResults Biomed 6: 5.

34. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem

cells. JCell Biochem 105: 633–640.

35. Nat R, Nilbratt M, Narkilahti S, Winblad B, Hovatta O, et al. (2007)

Neurogenic neuroepithelial and radial glial cells generated from six human

embryonic stem cell lines in serum-free suspension and adherent cultures1. Glia

55: 385–399.

36. Guan K, Chang H, Rolletschek A, Wobus AM (2001) Embryonic stem cell-

derived neurogenesis. Retinoic acid induction and lineage selection of neuronal

cells5. Cell Tissue Res 305: 171–176.

37. Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O (2009) A rosette-type, self-

renewing human ES cell-derived neural stem cell with potential for in vitro

instruction and synaptic integration. ProcNatlAcadSciUSA.

38. Andrews PW (1998) Teratocarcinomas and human embryology: pluripotent

human EC cell lines. Review article. APMIS 106: 158–167.

39. Gajovic S, St-Onge L, Yokota Y, Gruss P (1997) Retinoic acid mediates Pax6

expression during in vitro differentiation of embryonic stem cells1. Differenti-

ation 62: 187–192.

40. Inoue T, Nakamura S, Osumi N (2000) Fate mapping of the mouse

prosencephalic neural plate. DevBiol 219: 373–383.

41. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, et al. (2002) Glial

cells generate neurons: the role of the transcription factor Pax62. Nat Neurosci 5:

308–315.

42. Chambers I, Colby D, Robertson M, Nichols J, Lee S, et al. (2003) Functional

expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem

cells. Cell 113: 643–655.

43. Kudoh T, Wilson SW, Dawid IB (2002) Distinct roles for Fgf, Wnt and retinoic

acid in posteriorizing the neural ectoderm. Development 129: 4335–4346.

44. Alexandre D, Clarke JD, Oxtoby E, Yan YL, Jowett T, et al. (1996) Ectopic

expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch

neural crest and phenocopies a retinoic acid-induced phenotype. Development

122: 735–746.

45. Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, et al.

(2003) Opposing FGF and retinoid pathways control ventral neural pattern,

neuronal differentiation, and segmentation during body axis extension. Neuron

40: 65–79.

46. Ray WJ, Bain G, Yao M, Gottlieb DI (1997) CYP26, a novel mammalian

cytochrome P450, is induced by retinoic acid and defines a new family. J Biol

Chem 272: 18702–18708.

47. Simeone A, Acampora D, Mallamaci A, Stornaiuolo A, D’Apice MR, et al.

(1993) A vertebrate gene related to orthodenticle contains a homeodomain of the

bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse

embryo2. EMBO J 12: 2735–2747.

48. Marin O, Anderson SA, Rubenstein JLR (2000) Origin and Molecular

Specification of Striatal Interneurons. Journal of Neuroscience 20: 6063–6076.

49. Stuhmer T, Anderson SA, Ekker M, Rubenstein JLR (2002) Ectopic expression

of the Dlx genes induces glutamic acid decarboxylase and Dlx expression.

Development 129: 245–252.

50. Scardigli R, Baumer N, Gruss P, Guillemot F, Le RI (2003) Direct and

concentration-dependent regulation of the proneural gene Neurogenin2 by

Pax61. Development 130: 3269–3281.

51. Fremeau Jr., Troyer MD, Pahner I, Nygaard GO, Tran CH, et al. (2001) The

Expression of Vesicular Glutamate Transporters Defines Two Classes of

Excitatory Synapse. Neuron 31: 247–260.

52. Mizuguchi R, Sugimori M, Takebayashi H, Kosako H, Nagao M, et al. (2001)

Combinatorial Roles of Olig2 and Neurogenin2 in the Coordinated Induction of

Pan-Neuronal and Subtype-Specific Properties of Motoneurons. Neuron 31:

757–771.

53. Zhou Q, Choi G, Anderson DJ (2001) The bHLH Transcription Factor Olig2

Promotes Oligodendrocyte Differentiation in Collaboration with Nkx2.2.

Neuron 31: 791–807.

54. Pierani A, Brenner-Morton S, Chiang C, Jessell TM (1999) A Sonic Hedgehog-

Independent, Retinoid-Activated Pathway of Neurogenesis in the Ventral Spinal

Cord. Cell 97: 903–915.

55. Johnson MA, Weick JP, Pearce RA, Zhang SC (2007) Functional Neural

Development from Human Embryonic Stem Cells: Accelerated Synaptic

Activity via Astrocyte Coculture. Journal of Neuroscience 27: 3069–3077.

56. Ostenfeld T, Joly E, Tai YT, Peters A, Caldwell M, et al. (2002) Regional

specification of rodent and human neurospheres2. Brain Res Dev Brain Res 134:

43–55.

57. Carpenter MK, Inokuma MS, Denham J, Mujtaba T, Chiu CP, et al. (2001)

Enrichment of Neurons and Neural Precursors from Human Embryonic Stem

Cells. Experimental Neurology 172: 383–397.

58. Zhao S, Nichols J, Smith AG, Li M (2004) SoxB transcription factors specify

neuroectodermal lineage choice in ES cells. Molecular and Cellular Neurosci-

ence 27: 332–342.

59. Pleasure SJ, Lee VM (1993) NTera 2 cells: a human cell line which displays

characteristics expected of a human committed neuronal progenitor cell.

J Neurosci Res 35: 585–602.

60. Piper DR, Mujtaba T, Rao MS, Lucero MT (2000) Immunocytochemical and

Physiological Characterization of a Population of Cultured Human Neural

Precursors. Journal of Neurophysiology 84: 534–548.

61. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004)

Radial glia give rise to adult neural stem cells in the subventricular zone.

ProcNatlAcadSciUSA 101: 17528–17532.

Regional Differentiation of ECC-Derived Neurons

PLoS ONE | www.plosone.org 11 January 2011 | Volume 6 | Issue 1 | e16174



62. Kristensen DM, Sonne SB, Ottesen AM, Perrett RM, Nielsen JE, et al. (2008)

Origin of pluripotent germ cell tumours: the role of microenvironment during
embryonic development. MolCell Endocrinol 288: 111–118.

63. Looijenga LH, Gillis AJ, Stoop HJ, Hersmus R, Oosterhuis JW (2007)

Chromosomes and expression in human testicular germ-cell tumors: insight
into their cell of origin and pathogenesis. AnnNYAcadSci 1120: 187–214.

64. Draberova E, Del Valle L, Gordon J, Markova V, Smejkalova B, et al. (2008)
Class III beta-tubulin is constitutively coexpressed with glial fibrillary acidic

protein and nestin in midgestational human fetal astrocytes: implications for

phenotypic identity. J Neuropathol Exp Neurol 67: 341–354.
65. Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial Glia Serve as Neuronal

Progenitors in All Regions of the Central Nervous System. Neuron 41: 881–890.
66. Gotz M, Barde YA (2005) Radial Glial Cells: Defined and MajorIntermediates

between EmbryonicStem Cells and CNS Neurons. Neuron 46: 369–372.
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