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Abstract

The mitochondrial genomes of seed plants are exceptionally fluid in size, structure, and sequence content, with the
accumulation and activity of repetitive sequences underlying much of this variation. We report the first fully sequenced
mitochondrial genome of a legume, Vigna radiata (mung bean), and show that despite its unexceptional size (401,262 nt),
the genome is unusually depauperate in repetitive DNA and "promiscuous” sequences from the chloroplast and nuclear
genomes. Although Vigna lacks the large, recombinationally active repeats typical of most other seed plants, a PCR survey
of its modest repertoire of short (38-297 nt) repeats nevertheless revealed evidence for recombination across all of them. A
set of novel control assays showed, however, that these results could instead reflect, in part or entirely, artifacts of PCR-
mediated recombination. Consequently, we recommend that other methods, especially high-depth genome sequencing, be
used instead of PCR to infer patterns of plant mitochondrial recombination. The average-sized but repeat- and feature-poor
mitochondrial genome of Vigna makes it ever more difficult to generalize about the factors shaping the size and sequence
content of plant mitochondrial genomes.
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Introduction

The mitochondrial genomes of seed plants are exceptionally
fluid in size, structure, and sequence complexity, making the adage
"no two are alike" applicable in ways that are unparalleled by
other organelle genomes. Much of this diversity reflects the
accumulation and activity of repetitive sequences. Repeats of
diverse size and number have been characterized from the roughly
20 seed plant mitochondrial genomes so far sequenced. At one
extreme, the nearly 1 Mb Cucurbita mitochondrial genome
contains tens of thousands of short (2040 nt) dispersed repeats
that comprise >30% of its genome [1], whereas other genomes
contain small numbers of large (1-120 kb) and mostly species-
specific segmental duplications [2]. The size and number of
repeats in a plant mitochondrial genome is important because they
are also the sites of intramolecular recombination, so repeats
ultimately underlie much of the known structural diversity in plant
mitochondrial genomes as well. Recombination across inverted
repeats inverts the intervening sequences, whereas recombination
across directly oriented repeats separates the genome into pairs of
subgenomic molecules [3,4]. These processes create a structurally
dynamic assemblage of genomic molecules i vivo and have led to a
virtual scrambling in the gene orders of closely related species 3]
and even conspecific genetic lines [2,6,7]. Recombination can also
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cause sequence duplications and deletions, resulting in rapid and
sometimes substantial shifts in genome size. For example, although
the mitochondrial genomes of five maize cytotypes have virtually
identical sequence complexities, a set of large (0.5-120 kb),
cytotype-specific duplications has led to >25% variation in
genome size [2]. Likewise, a male-sterile strain of Beta vulgaris
contains an 87 kb duplication that is absent from its fertile
counterpart [8,9]. Recombinationally derived deletions, some of
which have important deleterious consequences [10,11], are
common as well.

Recombination frequency is proportional to the size of the
repeat: large (>1 kb) repeats recombine at high frequency,
intermediate-sized (100-1000 nt) repeats recombine sporadically,
and short (<100 nt) repeats are thought to recombine rarely, if
ever [7,12,13]. Evidence for repeat-mediated recombination
traditionally comes from physical mapping of overlapping clones
[14], restriction fragment analysis [15], and Southern hybridiza-
tion studies [4]. More recently, whole-genome sequencing projects
based on paired-end sequencing of clone libraries have used
conflicting signals in genome assemblies to infer patterns of
intramolecular recombination [16-18]. Finally, PCR across
predicted recombination boundaries has also been used to detect
recombinant genotypes [18]. The ability of PCR to amplify low-
concentration templates is thought to make it particularly well
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suited for detection of rare recombinants involving short repeats
[7,19,20].

In addition to repeat content, seed plant mitochondrial genomes
also show substantial variation in gene content, reflecting ongoing
gene loss and functional gene transfer to the nucleus [17,21]. Most
gene losses involve ribosomal protein genes and two respiratory
genes, sdh3 and sdh4 [22,23]. A survey of some 300 diverse seed
plants revealed only two losses of the remaining 24 genes. One of
these genes, cox2, was found to be universally present across all 300
taxa, save one recent functional transfer to the nucleus in a group
of papilionoid legumes [24-29]. We sequenced the mitochondrial
genome of one of these legumes, Vigna radiata (mung bean),
confirmed the absence of the cox2 gene, and discovered a genome
in an ongoing state of reduction with respect to gene content. In
addition, a comparative analysis of repeat content in the fully
sequenced seed plant mitochondrial genomes shows that Vigna has
a paucity of repeats of all size classes, including the large
recombinationally active repeats present in most seed plants.
Although PCR revealed evidence of recombinational activity for
numerous short repeats, a novel set of control assays showed that
methodological artifacts undermine any firm conclusions about
the extent of i wviwo recombination in the Vigna mitochondrial
genome.

Results and Discussion

Genome Assembly and Sequence Content

The Vigna mitochondrial genome was sequenced to an average
read-depth of roughly 8 x following standard protocols for shotgun
Sanger sequencing. This included ligation of random 3-kb DNA
fragments into plasmid vectors followed by transformation of E.
coli with the recombinant plasmids. The genome contains one
region that is apparently recalcitrant to cloning. A sequence of
approximately 100 nt in length, occupying positions 120136—
120243 in the genome, was not covered by any of the roughly
2,300 clones generated for the project. PCR and sequencing of this
region closed the assembly and revealed two copies of an 11-nt
inverted repeat that might have inhibited cloning.

The Vigna mitochondrial genome assembled into a single,
circular-mapping molecule of length 401,262 nt and 45.1% GC
content, both of which are near the median values of fully
sequenced seed plant mitochondrial genomes. The genome
contains 31 protein, 3 rRNA, and 16 tRNA genes (Fig. 1). Two
identical copies of the atp9 gene are present in the genome. Vigna
has one of the most protein-gene-poor mitochondrial genomes so
far sequenced in plants, with only two caryophyllids, Beta and
Stlene, having fewer intact genes [8,17]. Like other genome projects
(see ref. [30] for discussion), the Vigna genome sequence confirms
the high accuracy of the inferences of mitochondrial gene content
made by Adams et al. [22] in their Southern blot assay of 280
diverse angiosperms. This first completely sequenced legume
mitochondrial genome also confirms the absence of the cox2 gene.
The cox2 gene loss, originally inferred by Southern blot
hybridization [28], represents the best-studied case of recent
functional transfer of an organellar gene to the nuclear genome,
with the transfer restricted to a subset of papilionoid legumes
[24-29]. Although most other respiratory genes have never been
found to have been lost during angiosperm evolution, 17 genes (15
ribosomal protein and 2 respiratory) are known to have been lost
frequently [22,31,32]. Nine of these 17 genes are either absent
from the Vigna mitochondrial genome (1p2, 1pl10, 1ps2, rps1 1, 1ps13,
sdh3) or are present as pseudogenes in various stages of attrition
(rps7, 1ps19, sdh4). The sdh4 gene is the most intact of these, with
just a single 10-nt insertion located roughly 30 amino acids
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upstream of the conserved stop codon. Although the insertion
drastically alters the downstream reading frame, it does not
introduce a premature stop codon, raising the possibility that the
sdh4 gene in Vigna is functional, having 1) co-opted a stop codon
roughly 15 amino acids downstream of the conserved stop codon,
and 2) tolerated substantial 3’ extension and drastic amino acid
divergence in the last ~20% of the conserved length of the gene.
Functional studies of the mitochondrial sdk4 gene, or demonstra-
tion of functional transfer of sdh4 to the nuclear genome, will help
resolve these possibilities. Roughly half of the ~300 nt 7ps79 gene
1s present, albeit in two disparately spaced pieces, whereas just a
single 58 nt fragment of the ~450 nt 7ps7 gene remains in the
genome. Although sensitive BLAST searches of the genome found
a few short DNA fragments (27 and 33 nt in length) with =93%
similarity to cox2, these could easily represent spurious matches. All
pseudogene fragments have retained a relatively high (92-98%)
sequence similarity to their intact homologs in Citrullus, suggesting
that pseudogenes are "disappearing” via deletions and/or
recurrent reshuffling rather than gradual sequence decay. This
stands in sharp contrast to the retention of an essentially full-length
1ps14 pseudogene in grasses for some 80 million years [30].

The Vigna mitochondrial genome contains a conserved set of 17
cs-spliced and five #rans-spliced group II introns (Fig. 1). Seed plant
mitochondrial genomes typically require trans-splicing of the intron
separating exons 3 and 4 of the nad5 gene to create a full-length
nadb transcript. In Vigna, exon 3 is identically oriented and less
than 3 kb apart from exon 4 (Fig. 1), raising the possibility of a
recent reversion to cis-splicing of this intron.

As in other seed plants, genes and introns comprise a relatively
small fraction, just 16.4%, of the overall Iigna mitochondrial
genome. BLAST searches revealed only trace amounts of
chloroplast- and identifiably nuclear-derived DNA in the interge-
nic regions, with these two sequence types comprising just 0.5%
and 1.6% of the total sequence, respectively (Table 1). These two
"promiscuous" sources of DNA typically constitute a more
substantial fraction of seed plant mitochondrial genomes [1,33].
Most nuclear fragments showed similarity to transposable
elements, and one fragment matched a lectin protein kinase
pseudogene previously found in the mitochondrial genomes of two
cucurbits [1]. A large fraction of the non-coding DNA (29.3%,
excluding chloroplast- and nuclear-derived sequences) resembles
plant mitochondrial DNA from previously sequenced plant
mitochondrial genomes or from plant genome projects in the
NCBI whole-genome shotgun database (e.g., Lotus, Medicago, and
Ricinus), based on a BLAST expect cutoff of 1e-6 (Table 1). One of
these regions shows sequence similarity to a group B DNA
polymerase and a DNA-directed RNA polymerase, a syntenic
arrangement similar to intra- and extrachromosomal plasmids
found in other plant mitochondria [34,35]. The genome also
contains two regions with similarity to mitovirus-like RNA
polymerases from Ricinus and Vitis [36].

Repetitive DNA

Although the current sample of fully sequenced seed plant
mitochondrial genomes 1is still taxonomically sparse, some
preliminary trends in repeat content are emerging. For example,
compared to Cycas and most eudicots, the nine grass genomes
have, on average, a greater proportion of their genomes occupied
by large (>1 kb) repeats. Coverage by large repeats varies
considerably within grasses and underlies substantial changes in
sequence complexity between relatively recently diverged taxa
(e.g., Oryza and Bambusa) as well as subspecies (Fig. 2) and genetic
lines [2] of maize. By contrast, eudicot mitochondrial genomes
show greater disparities in genome size, but with the exception of
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Figure 1. The circular-mapping mitochondrial genome of Vigna radiata. Features on transcriptionally clockwise and counter-clockwise
strands are drawn on the inside and outside of the circle, respectively.
doi:10.1371/journal.pone.0016404.g001

genome is skewed towards fewer and shorter repeats when compared
to comparably sized, repeat-poor genomes (e.g., Bambusa) or even the
much smaller genomes of Silene and Brassica (Fig. 2). Most Vigna
repeats are less than 100 nt in length, and most of these are less than
40 nt in length (Fig. 3). The largest repeat in the Iigna mitochondrial
genome contains a duplicate copy of the a#p9 gene, and at just 297 nt
in length, is substantially shorter than the largest repeat in all other
fully sequenced seed plant mitochondrial genomes. Vigna contains
only one copy of the 314-nt recombining repeat that is well-
characterized from the mitochondrial genomes of several Phaseolus
species (a closely related legume) [37]. Finally, Vigna is one of a small
number of sequenced mitochondrial genomes (including Bambusa,
Vitis, and Cucurbita) that lacks the large (>1 kb) recombining repeats
that are otherwise characteristic of seed plant mitochondrial genomes

the male-sterile genetic line of Beta, lower overall coverage by large
repeats (Fig. 2). This trend is particularly evident in rosids, in
which coverage by large repeats does not exceed 6% for any one
species, and in which the two largest sequenced mitochondrial
genomes (Vitis and Cucurbita) contain no large repeats (Fig. 2).
Despite these apparent trends, the current sample of genomes is
still too sparse, or in some cases too biased (e.g., monocots are
represented solely by grasses), to draw firm conclusions about the
evolution of repeat content in plant mitochondrial genomes.
With fewer repeats than all previously sequenced seed plant
mitochondrial genomes, Vigna represents an extreme with respect to
repeat content (Figs. 2 and 3). Repeats contribute very little to the
overall size of the Vigna genome (just 2.7% coverage compared to 8—
62% coverage in other genomes; Fig. 2). The Vigna mitochondrial
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Table 1. Genome coverage by coding and non-coding
features in the mitochondrial genome of Vigna radiata.

Feature # nucleotides % genome
Coding Protein exons 28,879 7.2

cis-spliced introns 32,431 8.1

rRNA 5,258 13

tRNA 1,186 0.3

Conserved syntenic' 84,457 21.0
Non-coding Mitochondrial-like? 117,726 29.3

Chloroplast-like 2,093 0.5

Nuclear-like 6,579 1.6
Uncharacterized®  — 190,407 475

"Includes all genes, cis- and trans-spliced introns, and the highly conserved
(putatively functional) sequences immediately flanking them.

2Intergenic sequences with similarity to previously sequenced plant
mitochondrial DNA, based on a BLAST e-value cutoff of 1e-6 and excluding
chloroplast- and nuclear-like sequences.

3The portion of the genome that lacks detectable similarity to sequences in
GenBank. The uncharacterized regions, conserved syntenic regions, and
identifiable non-coding DNA (mitochondrial-, chloroplast- and nuclear-like)
sum to the entire length of the genome.
doi:10.1371/journal.pone.0016404.t001

(Fig. 3). Mapping studies have shown that Brassica hirta lacks large
repeats as well [38]. Thus, as they do with genome size [1], mutation
rate [39], and RNA editing frequency [40], seed plant mitochondrial
genomes also show substantial differences in repeat content and,
presumably, recombinational activity.

Intramolecular Recombination

We detected one chimeric sequencing read that conflicted with the
main assembly in that it spanned a predicted recombination boundary
involving a 175-nt direct repeat. The discovery of this short and
apparently recombinationally active repeat, coupled with the absence
of large repeats in the genome, prompted us to screen this and 35
additional short repeats (Dataset S1) for evidence of recombinational
activity using the PCR strategy illustrated in Figure 4. Using purified
mitochondrial DNA as the template, PCR detected recombinant
products for every repeat in our survey, regardless of length (38
297 nt), sequence similarity (93-100%), and orientation (direct or
inverted) (Fig. S1). Direct sequencing of PCR products invariably gave
results consistent with the expectation for repeat-mediated recombi-
nation. The characteristics of six representative repeats from our
survey are shown in Table 2, and the corresponding recombinant
DNA sequences are available in Dataset S2.

PCR-mediated recombination poses a potential problem when
amplifying any kind of repetitive target region (e.g., multigene
families and microsatellites) [41]. Although PCR recombination
has not, to the best of our knowledge, been reported for the kinds
of assays of intramolecular recombination reported here, we
wanted to determine whether i vitro recombination during PCR
could create the patterns observed here and in other PCR-based
studies on plant mitochondrial recombination [7,19,20]. To do so,
we identified four single-copy regions of varying length (55, 90,
148, and 639 nt) and high sequence similarity (94-100%) in the
mitochondrial genomes of two different species, Vigna radiata and
Cucurbita pepo, and treated these regions as surrogate repeats in a set
of PCR-based recombination assays similar to those described
above (Figs. 4 and S2). We used two different PCR templates for
these assays. The first was a 1:1 mixture of total DNA from each
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species, and the second was an artificial template with substantially
higher concentrations of the target regions. We created the latter
by separately amplifying the regions of interest from each species
then combining the amplicons into a 1:1 mixture. To test for
recombination, we performed PCR using either the total DNA or
an artificial amplicon mixture as template, together with primers
designed to amplify a bi-species PCR recombination product
(Figs. 4 and S2). Because each primer bound to the DNA of a
different species, and because our template DNA contained no
contiguous and naturally occurring recombinant molecules, PCR-
mediated recombination is the only plausible means by which a
positive PCR result could be obtained. Using the total DNA
mixture as the template, we amplified the intended target region
for just two of the eight potential recombination products. These
two recombinant products (148 H<F and 639 A—D) were
recovered in relatively low yields (Fig. S3). For each of the four bi-
species amplicon mixtures, however, we obtained high yields of
both possible recombinant products from both dilutions of the
artificial template (Fig. S3). Direct sequencing of one high-yield
amplicon for each of the eight recombinant products confirmed
our prediction of a chimeric, half-Vigna/half-Cucurbita PCR
product.

The higher incidence of PCR recombination in the amplicon
templates is consistent with previous findings of increased rates of
PCR recombination with increased concentration of template
DNA [42,43]. This is also supported by PCR amplifications of the
recombinant configurations from Vigna total DNA, as these
reactions contained only about 1/70™ the level of mitochondrial
genomes (see Methods) as the purified mitochondrial DNA
template used in the assays described at the beginning of this
section. The total-DNA assays gave quite variable results
compared to the assays that used purified mitochondrial DNA,
yielding (depending on the repeat) either no detectable product,
lower levels of product, of comparable levels of product (not
shown). Because the total DNA derives from an unidentified and
potentially different genetic line than the purified mitochondrial
DNA, it is formally possible that mitochondrial repeat content
differs somewhat among genetic lines.

These results, together with the bi-species control assays, suggest
that many of the Vigna recombination products are either present in
viwo 1n very low abundance [37] or are actually absent m vivo, with
their recovery a consequence of PCR-mediated recombination. The
bi-species control experiments show that very short regions of
sequence identity are sufficient to mediate PCR recombination, the
result of either template exchange by 7Tag polymerase [44] or
premature extension termination within the repeat and subsequent
illegitimate priming by incompletely extended products [41].
Although it is now clear that PCR recombination can mimic patterns
of naturally occurring intramolecular recombination in plant
mitochondrial genomes, we cannot rule out that at least some,
perhaps many, of the Vigna repeats actually do recombine  vivo, as
has been reported for a number of similarly short repeats in the
mitochondrial genomes of Arabidopsis [7,19] and Phaseolus [20]. The
recovery of a recombinant clone involving a short, 175-nt repeat
indicates that at least one of the Figna repeats probably does
recombine (or has recombined) i vivo, but that the recombination
products exist at a low enough level that most of them would not be
recovered in our relatively low-depth (~8X) genome assembly.
Indeed, quantitative real-time PCR on two recombination products
showed that recombinant configurations exist, whether through i vivo
or m wviro recombination, at levels 40—100% less than the main
assembly (not shown).

Although Southern blot hybridizations might provide corrob-
orating qualitative and semi-quantitative evidence concerning the
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Figure 2. Coverage by repetitive and non-repetitive sequences in fully sequenced seed plant mitochondrial genomes. Genome
coverage by repeats <1 kb in length is shown in blue, and coverage by repeats =1 kb in length is shown in red. Short repeats are sometimes
contained, either partly or entirely, within large repeats; genome coverage by these sites is shown in green. Coverage by non-repetitive portions of
the genome is shown in white, so the repetitive and non-repetitive fractions sum to the entire size of the genome. The number of repeats <1 kb and
=1 kb is indicated directly above each bar. These numbers over-estimate the number of unique repeat coordinates in the genome (see Materials and
Methods for details). The four Zea genomes are: 1, Zea mays subsp. mays; 2, Zea mays subsp. parviglumis; 3, Zea perennis; and 4, Zea luxurians.

doi:10.1371/journal.pone.0016404.g002

recombinational activity of the Vigna repeats, Southerns can be
insufficiently sensitive for detection of very-low-level recombinant
products associated with repeats as short as those in the Vigna
genome [7,19,20], resulting in false-negative evidence concerning
recombination. Taken together, the shortcomings of PCR and
Southern hybridizations are probably best overcome with whole-
genome, paired-end shotgun sequencing. Inexpensive, high-
throughput sequencing technologies have the potential to produce
deep enough coverage to quantify the relative i vivo proportions of
dominant and low-level recombinant mitochondrial genome
configurations throughout the genome. In the case of Vigna,
accurate estimation of the relative levels of minor genome
configurations will require sequencing the genome to a depth of
perhaps 1000-10,000 x. Strategies that merge traditional South-
ern hybridizations with paired-end shotgun data have also proven
powerful for understanding the qualitative and quantitative aspects
of plant mitochondrial DNA recombination [17]. In the end, high-
depth sequencing of the mitochondrial genome of Vigna, or any of
the growing number of seed plants without large repeats, will
ultimately show whether mitochondrial recombinational activity is
as notoriously variable across seed plants as are mitochondrial
genome size and sequence content [1l], mutation rate [39], and
RNA editing frequency [40].

Materials and Methods

Mitochondrial DNA Isolation, Genome Sequencing and
Assembly

Mitochondria were isolated from etiolated seedlings of Vigna radiata
cv. Berken using the DNAse I procedure [45], and mitochondrial
DNA was purified from lysed mitochondria by CsCl centrifugation
[46]. A single 3-kb library was constructed, cloned, and Sanger
sequenced by the U.S. DOE Joint Genome Institute (JGI) in Walnut
Creek, California. Detailed protocols are available at http://www.
jgt.doe.gov/sequencing/ protocols/prots_production.html. The vast
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Figure 3. Frequency distribution of repeat lengths in the
mitochondrial genome of Vigna radiata.
doi:10.1371/journal.pone.0016404.g003
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majority of sequence reads were assembled into a single, circular-
mapping contig with Phrap (www.phrap.org). Consed was used to
visualize and validate the final assembly, and to design PCR primers
for filling gaps and augmenting regions of low sequence coverage
[47]. The annotated genome sequence is available from GenBank
(accession HM367685).

Genome Annotation

Protein, rRNA, and tRNA genes were annotated as described in
Alverson et al. [1]. The mitochondrial genome was also compared
to a database of all previously sequenced seed plant mitochondrial
genomes with BLAST to identify putatively functional conserved
syntenic regions [1]. Briefly, these regions include genes, introns,
and the conserved sequences immediately flanking them. The latter
are delimited using both syntenic- and sequence-level conservation
as determined by BLAST comparison of the Vigna genome to a
database of all fully sequenced seed plant mitochondrial genomes.
These regions are likely to contain promoters, untranslated regions,
and trans-spliced introns. Chloroplast-derived sequences were
identified by comparing the Vigna mitochondrial genome to a
database of representative seed plant chloroplast genomes with
BLASTN, and non-coding mitochondrial-like sequences were
identified by searching the Vigna genome against a database of all
fully sequenced seed plant mitochondrial genomes. All regions that
did not match conserved syntenic regions and chloroplast-derived
sequences were extracted and searched against the Repbase
repetitive element database (ver. 13.05) [48] and the following
databases maintained by the National Center for Biotechnology
Information (NCBI): the non-redundant (nr) nucleotide and protein
databases, the whole genome shotgun (wgs) database, and the
est_others database. All NCBI-BLASTN (ver. 2.2.22+) searches
used the following settings: word_size 9, gapopen 5, gapextend 2,
reward 2, penalty —3, dust no.

Repeats and Recombination Analyses

Repeated sequences in Vigna and other seed plant mitochondrial
genomes were identified as described previously [1]. Briefly, the
genome was searched against itself using WU-BLAST with the
following settings: M =1, N=3, Q=3, and R=3, kap, span,
B=1x10", and W =7. All BLAST hits with a BLAST e-value <1
were considered repeats. We predicted recombination boundaries
for 36 repeats in the Vigna genome that varied in length,
orientation, and sequence identity, and used Consed [47] to
design PCR primers that would amplify one or both predicted
recombination products. PCRs were carried out in 25 pL volumes:
18.25 pL water, 2.5 pL. 10X buffer (New England Biolabs), 1 pL
(400 uM) dNTPs, 0.25 uL. Tag polymerase (New England Biolabs
#MO0267L), 1 uL (0.8 uM) per primer, and 1 pL (40 ng) of
purified Vigna mitochondrial DNA (from cv. Berken) or 2 uL.
(30 ng) of total Vigna DNA (from material of unknown genetic
ancestry purchased at local grocery store). Because mitochondrial
DNA comprises only about 2% of Vigna total DNA [49], the
effective concentration of mitochondrial template molecules in
PCR carried out using purified mitochondrial DNA was about 70
times that using total DNA. PCR conditions were as follows: 94°C
for 3 m, 35 cycles of (94°C for 30 s, 55°C for 30 s, 72°C for 60 s),
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Figure 4. PCR strategy for detecting intramolecular recombination across mitochondrial repeats. Arrows show the orientations of one
direct (red) and one inverted (blue) repeat. Arrowheads show the locations and orientations of PCR primers used to detect mitochondrial
recombination, relative to the main genome assembly (A). Recombination across a direct repeat (red) divides the genome into two circular
subgenomic molecules. The altered arrangement of primers dir-F and dir-R permits PCR-based detection of recombinant product A—D (B).
Recombination across an inverted repeat (blue) inverts the intervening sequences, enabling PCR amplification of recombinant product E—G with

primers inv-F and inv-R (C).
doi:10.1371/journal.pone.0016404.g004

and final extension at 72°C for 10 m. PCR products were purified
using ExoSAP-IT (United States Biochemical, Cleveland, OH),
and most were sequenced to verify that we had amplified the

expected products. Dataset S1 lists the 36 repeats assayed for
recombinational activity in the Vigna mitochondrial genome.
Recombination primers for six representative repeats (Table 2)

@ PLoS ONE | www.plosone.org

Table 2. Characteristics of six representative repeats assayed for recombinational activity in the mitochondrial genome of Vigna
radiata.

Repeat Percent Copy 1 Copy 2
Repeat length Orientation identity Start End Start End
A 175 direct 100 120320 120494 331059 331233
B 104 inverted 98 232468 232571 342673 342776
C 84 direct 100 94981 95064 345737 345820
D 80 inverted 93 148952 149031 161696 161775
E 53 direct 100 335325 335377 392959 393011
F 38 inverted 100 60480 60517 169122 169159
doi:10.1371/journal.pone.0016404.t002
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are listed in Table SI, and FASTA-formatted sequences of
sequenced PCR products are available in Dataset S2.

It is possible that positive PCR results do not reflect the
existence of naturally occurring recombinant molecules but
instead result from PCR-mediated recombination, which is a
concern when amplifying any kind of repetitive target region [41].
To determine whether PCR recombination can give false-positive
evidence of intramolecular recombination, we identified identical
or near-identical regions shared between the Vigna and Cucurbita
(GenBank GQ856148) mitochondrial genomes (Table S2). As
described in Results and Discussion and illustrated in Figure S2,
we treated these shared regions as surrogate repeats and
performed the same kind of PCR-based assays used to detect
recombination in the Vigna mitochondrial genome (Fig. 4). PCR
conditions were the same as above. The artificial template
described in the Results and Discussion was generated by
separately amplifying the repeat-containing regions from Vigna
and Cucurbita templates with PCR, gel-extracting the products with
a QIAquick Gel Extraction Kit (Qiagen Inc.), then pooling equal
volumes of the two PCR products into a single mixture (Fig. S2).
Primer sequences for these experiments are listed in Table S3, and
FASTA-formatted sequences for sequenced PCR products are
available in Dataset S2.

We calculated genomic coverage by repeats and estimated the
number of repeats for each of the seed plant mitochondrial
genomes shown in Figure 2. Coverage is a non-redundant measure
of the number of sites occupied by repeats, as determined by a
WU-BLAST of each genome to itself (see above). Short repeats are
sometimes contained, either partly or entirely, within larger
repeats. When calculating coverage, sites in the genome that fall
within two or more such overlapping repeats are counted only
once. Repeat number estimates (Fig. 2) are based on the number
of unique begin—end coordinates of BLAST hits in the genome. In
some cases, this number will over-estimate the actual repeat
number, especially for genomes that contain large numbers of
imperfect, multi-copy repeat families. For example, Silene latifolia
contains a family of six recombining direct repeats with a core
length of 1362 nt, but with up- and downstream repeat extensions
that differ among the six copies [17]. The number of unique
begin—end coordinates for a six-copy repeat can range from six (for
a six-copy perfect repeat family) to 30 (for a six-copy family of
imperfect, variably sized repeats). In this example, WU-BLAST
identified 25 different begin—end coordinates for this repeat family
(Fig. 2), arguably over-estimating the actual number of repeats by
as much as a factor of four.

Supporting Information

Figure S1 Short repeats in the Vigna mitochondrial
genome that showed evidence for recombinational
activity. Repeats vary in length (38-297 nt), sequence similarity
(93-100%), and orientation (direct or inverted).

(PDTF)

Figure 82 Outline of an assay to determine whether
PCR recombination can mimic plant mitochondrial
recombination. BLAST comparison of the Vigna and Cucurbita
mitochondrial genomes identified surrogate repeats, i.e., regions of
identical or near-identical sequence of lengths similar to the
repeats in our recombination survey. In all cases, the sequence
flanking each side of the "repeat" is unique both within and
between the two genomes. Arrows show the orientation of the
repeats, and arrowheads mark the location and orientation of

@ PLoS ONE | www.plosone.org
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PCR primers (A). Regions containing the surrogate repeats, shown
by gray boxes, were amplified with primer combinations V3+V4
for Vigna and C3+C4 for Cucurbita, gel-extracted, and the two
products were then combined into a 1:1 mixture (B). This mixture
was used as the template for PCR wherein one primer matched a
unique flanking region in Vigna and the other matched a unique
flanking region in Cucurbita. In vitro PCR recombination is the only
plausible means of obtaining a positive PCR result. Sequencing of
this product should reveal a chimeric, half-Vigna/half-Cucurbita
fragment (C).

(PDI)

Figure S3 Results of PCR recombination assays. Four
identical or near-identical regions, each with unique flanking
sequences, shared between the Vigna and Cucurbita mitochondrial
genomes served as surrogate repeats for the PCR recombination
assays illustrated in Figure S1. The four "repeats" were 55, 90,
148, and 639 nt in length. Lanes are marked as follows: V, PCR-
amplified "repeat” region from Vigna; G, PCR-amplified "repeat”
region from Cucurbita; V+C/10, a mixture of the Iigna and
Cucurbita amplicons diluted ten-fold; T, amplification of recombi-
nation products from a mixture of Vigna and Cucurbita total DNAs;
A, amplification of recombination products from undiluted
mixture of the V and € PCR products; A/10, amplification of
recombination products from a mixture of the V and C PCR
products, diluted 10-fold. We assayed both possible recombination
products, which are labeled according to Figure 4.

(TIF)

Table S1 Primers for PCR assays of intramolecular
recombination in the Vigna mitochondrial genome.

(PDF)

Table S2 Regions of the Vigna and Cucurbita mitochon-
drial genomes used for PCR recombination experi-
ments.

(PDF)

Table S3 Primers used for PCR recombination exper-
iments.

(PDF)

Dataset S1 General Feature Format file with locations,
orientations, and percent similarities for 36 repeats
assayed for recombinational activity in the Vigna
mitochondrial genome.

(TXT)

Dataset S2 DNA sequences from assays of mitochon-
drial recombination in Vigna and PCR-mediated recom-
bination between Vigna and Cucurbita.

(TXT)
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