
The K153R Polymorphism in the Myostatin Gene and
Muscle Power Phenotypes in Young, Non-Athletic Men
Catalina Santiago1., Jonatan R. Ruiz2., Gabriel Rodrı́guez-Romo3, Carmen Fiuza-Luces1, Thomas Yvert1,
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Abstract

The Lys(K)153Arg(R) polymorphism in exon 2 (rs1805086, 2379 A.G replacement) of the myostatin (MSTN) gene is a
candidate to influence skeletal muscle phenotypes. We examined the association between the MSTN K153R polymorphism
and ‘explosive’ leg power, assessed during sprint (30 m) and stationary jumping tests [squat (SJ) and counter-movement
jumps (CMJ)] in non-athletic young adults (University students) [n = 281 (214 men); age: 21–32 years]. We also genotyped
the MSTN exonic variants E164K (rs35781413), I225T, and P198A, yet no subject carried any of these variant MSTN alleles. As
for the K153R polymorphism, we found only one woman with the KR genotype; thus, we presented the results only for men.
The results of a one-way ANCOVA (with age, weight and height entered as covariates) showed that men with the KR
genotype (n = 15) had a worse performance in vertical jumps compared with those with the KK genotype [SJ: vertical
displacement of center of gravity (CG) of 35.1761.42 vs. 39.0660.39 cm, respectively, P = 0.009; CMJ: vertical displacement
of CG of 36.4461.50 vs. 40.6360.41 cm, respectively, P = 0.008]. The results persisted after adjusting for multiple
comparisons according to Bonferroni. Performance in 30 m sprint tests did however not differ by K153R genotypes. In
summary, the MSTN K153R polymorphism is associated with the ability to produce ‘peak’ power during muscle contractions,
as assessed with vertical jump tests, in young non-athletic men. Although more research is still needed, this genetic
variation is among the numerous candidates to explain, alone or in combination with other polymorphisms, individual
variations in muscle phenotypes.
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Introduction

Some gene polymorphisms are candidates to explain individual

variations in muscle phenotypes. The myostatin (MSTN or growth

differentiation factor 8, GDF8 [MIM601788]) gene [1] is receiving

growing attention in the last years. The MSTN gene encodes

myostatin, a skeletal muscle-specific secreted peptide that functions

mainly to modulate myoblast proliferation and thus muscle mass

and strength [2]. Variants of the MSTN gene are associated with

muscle hypertrophy phenotypes in a range of mammalian species,

most notably cattle [3,4], dogs [5] and mice [2]. A MSTN

polymorphism was recently associated with sprinting ability and

racing stamina in thoroughbred horses [6]. The myostatin-null

mouse model also provides insights into the physiological role of

this protein. Besides its function in reducing sarcopenia [7], it

appears that myostatin also regulates the structure and function of

tendon tissues, as the stiffness of tendons is 14 times higher in

myostatin-deficient mice than in their wild type controls [8].

Variations in the MSTN gene, as well as myostatin inhibition,

can also have functional consequences in humans (see below). The

potential association between MSTN variations and muscle mass

phenotypes is best exemplified in the study by Schuelke et al. [9].

They reported the case of 4-year old child with both copies of the

MSTN gene carrying a mutation (g.IVS1+5gRa transition in the

splice donor site in intron 1) that results in a premature stop codon

and failure to synthesize a mature, functioning protein. The child

exhibited extraordinary muscle development for his age and

precocious physical prowess. Systemic treatment with the

myostatin inhibitor MYO-029 provides an adequate safety margin

and can induce improvements in the muscle strength/function of

adult patients with muscular distrophies [10]. As this type of

treatment would be likely to also stimulate muscle growth in

healthy humans, myostatin manipulation could be among the next

generation of doping in elite sports [11].

Of the identified MSTN variations in humans, the Lys(-

K)153Arg(R) polymorphism located in exon 2 (rs1805086, 2379

A.G replacement) is one candidate to influence skeletal muscle

phenotypes [12]. The Lys(K)153Arg(R) aminoacid replacement is

found within the active mature peptide of the myostatin protein; it

could theoretically influence proteolytic processing with its
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propeptide, or affinity to bind with the extracellular activin type II

receptor (ActRIIB). The latter results in intracellular activation the

SMAD pathway, through which myostatin induces myoblast

proliferation [13] and differentiation [14], and thus muscle mass

[15]. The frequency of the mutant R allele is of about 3–4%

among Caucasians, with a frequency of mutant homozygotes (RR)

below 1% [12,15,16]. Such low allelic frequency certainly limits

the possibility of studying large groups of people carrying the R

variant. To date, published data on the MSTN K153R

polymorphism and human muscle phenotypes have yield contro-

versial results, partly attributable to inter-ethnic and gender

differences. Kostek et al. [15] recently found an association

between the variant MSTN 153R allele and maximal isometric

contraction of the elbow muscle flexors in African-American

young adults of both genders, yet not in Caucasians. Previous

studies reported no significant effect of MSTN variants on the

muscle mass response to strength training of either Caucasians or

African Americans of both genders, including World-class body-

builders and elite power lifters [12]. Although, in another study

MSTN genotypes did not explain differences in the hypertrophic

response to strength training in adults of both genders, when

women were analysed separately, the 153R allele was associated

with a greater muscle hypertrophic response to training [17]. The

MSTN K153R polymorphism can also affect muscle phenotypes in

the elderly [16,18,19]. For instance, Seibert et al. reported lower

muscle strength in old African American women (n = 54, 70–79

years) who carried the variant 153R allele [18].

No study has yet assessed the association between MSTN

genotypes and muscle power during naturally occurring move-

ments, e.g. jumping and sprinting tasks. It was the purpose of our

study to examine the association between the MSTN K153R

polymorphism and ‘explosive’ leg power of non-athletic young

adults, as assessed during specific jumping and sprint tests. We

hypothesized that the 153R allele is associated with decreased

performance in the aforementioned tests. We also genotyped the

MSTN exonic variants E164K (rs35781413), I225T and P198A

because they also seem to cause amino acid replacements in the

gene product (myostatin) expressed in human skeletal muscle [20].

Methods

Ethics statement
The Medical Ethics Committee of Universidad Europea de Madrid

(Madrid, Spain) approved the study design, study protocols and

informed consent procedure. All participants provided written

informed consent.

Subjects
The study sample comprised 281 healthy young adults

(University students) [mean(SD) age: 21(2) years (range: 21, 32)]

of both genders (214 men, 67 women) who took part in a previous

study [21]. Inclusion criteria were to be free of any diagnosed

cardiorespiratory disease, and not to be engaged in competitive

sports such as (i) formal, supervised ‘power’ (e.g. weight lifting or

alpine skiing) or jumping oriented type of training (e.g.

plyometrics, volleyball or basketball) or (ii) endurance training

(e.g. running, swimming of bicycling), that is, performing less than

one (power) or three (endurance) structured weekly training

sessions within the last year. All participants were of the same

Spanish (Caucasian) ancestry for at least 3 generations.

Genotype assessment
Sequences corresponding to the E164K, I225T, K153R and

P198A variants were amplified during Spring 2009 by the

polymerase chain reaction (PCR) in the Genetics Laboratory of

the Universidad Europea de Madrid. The primers used were 59-

GAAAACCCAAATGTTGCTTC-39 and 59-TGTCTAGCT-

TATGAGCTTAGGG-39. The PCR conditions were as follows:

initial denaturing at 95uC 10 min; 35 cycles at 95uC 1 min, 52uC
45 s, 72uC 1 min and a final extension at 72uC 5 min.

The resulting PCR products were genotyped by single base

extension (SBE) [22]. The primers used for E164K, I225T

K153R, and P198A were 59-CAAACACTGTTGTAGGAG-

TCT-39, 59-CTGAATCCAACTTAGGCA-39, 59-TTTAATA-

CAATACAATAAAGTAGTAA-39, and 59-TTTTTTTTATCT-

CTGAAACTTGACATGAAC-39 respectively. The PCR SBE

conditions were: 96uC 10 s; 25 cycles at 50uC 5 s and 60uC 30 s.

The resulting PCR products were detected in an ABI PRISM

(Applied Biosystems, Foster City, CA).

Phenotype assessment
Assessment of leg muscle ‘explosive’ power was performed

during spring 2008 in the same location (UEM) and all the tests

were supervised by the same researchers, as detailed elsewhere

[21]. Squat (SJ) and counter-movement jump (CMJ) tests were

performed using an infrared contact timing platform (Globus Ergo

Tester, Codognè, Italy) to evaluate leg muscles’ ability to produce

‘explosive’ power [23]. Both tests were performed three times

(each separated by a two-minute rest period) and the best score

was retained.

Subjects also performed a 30 m sprint test in an indoor

rubberized track under two conditions: (1) starting from the

stationary (standing) position [23] and (ii) starting with a previous

15 m run (running) thereby allowing achieving higher speeds in

the first meters of the test [24]. The difference in performance time

between both tests (at 15 m and 30 m respectively) was used as an

index of subject’s ability to produce acceleration, i.e. lesser

difference implies higher acceleration capacity. We used photo-

electric gates at 0, 15 and 30 meters to start and stop a digital

timer. We previously showed the reliability of the aforementioned

tests for explosive leg muscle power assessment in a subgroup of

the present subjects [21].

Statistical analysis
We tested Hardy-Weinberg equilibrium using a x2 test. We

analysed the differences in the study phenotypes among genotypes

(KK vs. KR) of the K153R (rs1805086) polymorphism by one-way

analysis of covariance, where the polymorphism was entered as a

fixed factor, the phenotype was entered as a dependent variable,

and age, weight and height were entered as covariates. We

calculated the effect size statistics as Cohen’s d (standardized mean

differences) and 95% confidence interval [25]. Values of d 0.2, 0.5

and 0.8 are considered small, medium and large effects,

respectively. We used Bonferroni & Holm method to correct for

multiple testing [26]. All statistical analyses were performed using

the PASW (v. 18.0 for WINDOWS, Chicago).

Results

We detected no failures in sample collection and DNA

acquisition. Genotyping success rate was .99.29% (two missing

data, one man and one woman).

Genotype distributions met Hardy-Weinberg equilibrium

(P = 0.59). No subject carried the variant alleles E164K, I225T,

or P198A. We found only one woman with the KR genotype; thus,

we present the results only for men. Table 1 shows the association

between the K153R polymorphism and study phenotypes in men.

We observed that men with the KR genotype had a worse
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performance in vertical jump (SJ and CMJ) compared with those

with the KK genotype. The results persisted after adjusting for

multiple comparisons. The variance explained ranged from 5 to

10%. Effect size statistics, as measured by the Cohen’s d, indicated

a medium effect size. Performance in sprint tests did not differ by

K153R genotypes.

Discussion

The main, novel finding of our study was that the variant 153R

allele of the MSTN K153R polymorphism is associated with

decreased jumping performance in young non-athletic men.

Sprinting (running) ability was however unaffected by the MSTN

K153R genotypes. Although more research is needed, and while

keeping in mind that exercise-related phenotypes are likely

polygenic, our data give support for a role of the MSTN K153R

polymorphism in explaining, at least partly, individual variations

in the humans’ capacity for muscle ‘peak’ power generation. In

contrast, in the present cohort of subjects we previously found no

association between performance in the jump/sprint tests and the

R577X polymorphism in the gene (ACTN3) encoding a-actinin-3

[21]. This variation is thought to play an important role in the

muscles’ ability to produce high power, at least in elite athletes

[27].

We assessed ‘explosive’ muscle power by means of jumping and

sprinting tests, which are naturally occurring multi-joint move-

ments in humans that involve the coordinated participation of the

majority of lower limb muscles [28,29]. We believe this is in fact a

strength of our study versus previous research in the field of

genetics and exercise-related phenotypes that used other tests for

muscle power assessment, for instance, maximal concentric muscle

work during single-joint movements (e.g. flexor elbow contrac-

tions) at relatively low angular velocities (#120u?s21) [30].

However, during actual natural high muscle power actions such

as the sprint and jumps performed by our subjects, angular

velocities at the hip or knee joints can approach 800–1000u?s21

[31]. To note is that our findings are partly limited by the fact that

we did not assess muscle mass in our cohort, and therefore we

could not determine whether the influence of MSTN K153R

genotypes on muscle power is mediated by its expected effects on

muscle mass. Finally, the finding that the MSTN K153R

polymorphism was associated with vertical jump performance

but not with sprint performance warrants further investigation.

Although both tests are thought to determine muscle power

performance, stationary jumps and running sprints are determined

by different factors. The critical factor during running sprints,

owing to the short duration of the foot contact on the ground, is

the rate of force development, which in turn is determined by

many factors such as muscle fibre type, synchronization of motor

units, tendon stiffness, or lean mass of lower extremities [32]. In

contrast, the ability of leg muscles (quadriceps) to produce power

during the concentric phase of muscle contraction is the main

factor affecting stationary vertical jumps as the ones we used here

[33]. The elastic properties of tendons can also influence jump

ability, at least in the case of CMJ. Compared with a stiffer muscle

tendon complex (MTC), people with a more compliant MTC

should be more efficient in utilizing elastic strain energy during

jumps [34,35]. The fact that our KR subjects showed worst

jumping performance than their wild-type KK counterparts could

be associated, at least partly, with a potential role of myostatin in

tendon structure. Myostatin-deficient mice showed indeed 14

times higher tendon stiffness than wild-type mice [8]. Further

research is needed to determine the possible association between

MSTN polymorphisms and tendon characteristics in humans. Up

to date, published data on the MSTN K153R polymorphism and

human muscle phenotypes (at baseline or in response to training)

have yield controversial results, at least in adults of young or

medium age. Inter-ethnic differences in allele frequencies, gender-

related differences and the low allelic frequency of the 153R allele

(limiting the possibility of studying large groups of people carrying

the R variant) are important reasons for controversy. Kostek et al.

[15] recently found an association between the MSTN 153R allele

and maximal isometric contraction of the elbow muscle flexors in a

group of 23 African-American young adults of both genders, yet

Table 1. Mean estimates of study phenotypes by genotypes of the K153R (rs1805086) polymorphism in the GDF8 gene in men.

KK (n = 201) KR (n = 15) P R2 Cohen’s d (95%CI)

Vertical Jump Tests

SJ

Flight time (s) 563.09 (38.95) 533.94 (43.13) 0.007 0.100 0.74 0.461–1.014

Vertical displacement of CG (cm) 39.06 (5.44) 35.17 (5.49) 0.009 0.095 0.71 0.431–0.983

CMJ

Flight time (s) 574.35 (39.62) 543.29 (46.20) 0.005 0.057 0.76 0.483–1.038

Vertical displacement of CG (cm) 40.63 (5.67) 36.44 (5.92) 0.008 0.053 0.72 0.446–0.999

Sprint Tests

30m running start

Time at 15 m (s) 1.92 (0.14) 1.91 (0.08) 0.684 0.049 0.11 20.159–0.378

Time at 30 m (s) 3.76 (0.21) 3.75 (0.17) 0.987 0.065 0.00 20.263–0.273

30m standing start

Time at 15 m (s) 2.54 (0.12) 2.56 (0.13) 0.533 0.002 20.17 20.436–0.101

Time at 30 m (s) 4.41 (0.19) 4.44 (0.23) 0.559 0.014 0.16 20.111–0.425

Values are means (standard deviation).
P values related to group differences (one way analysis of covariance after adjusting for age, weight and height).
Cohen’s d (standardized mean differences) and 95% confidence interval (CI). Values of d 0.2, 0.5 and 0.8 are considered small, medium and large effects, respectively.
Abbreviations: SJ, squat jump; CMJ, counter-movement jump; CG, centre of gravity.
doi:10.1371/journal.pone.0016323.t001
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this association was not corroborated in a much larger cohort of

Caucasian young adults (n = 509, also men and women). Maximal

dynamic contraction (one repetition maximum) was also unaffect-

ed by MSTN genotypes in both cohorts. Ferrell et al. [12] reported

no significant effect of the MSTN variants we studied here on the

muscle mass response to strength training in either Caucasians or

African Americans (n = 153 men and women). In another study

[17], MSTN genotypes did not explain differences in the

hypertrophic response to strength training in 32 adults (age range:

21–75 years) of both genders studied as a group; yet, when women

were analyzed separately the 153R allele was associated with a

68% larger increase in muscle volume in response to training.

Thomis et al. [30] reported similar values in elbow flexor strength

at baseline or in response to training in a young adult with the

153KR genotype compared with those with the 153KK genotype.

Evidence for the putative influence of the MSTN K153R

polymorphism on muscle phenotypes is probably stronger in the

elderly [16,18,19]. Notably, in a cohort of old African American

women (n = 54, 70–79 years). Seibert et al. [18] reported lower

muscle strength (hip and knee flexion and handgrip strength

combined) in those who carried the 153R allele. We recently

reported lower muscle mass/function in a very old woman (age 96

years) with the very rare MSTN 153RR genotype compared to her

age-matched referents with the 153KK genotype [19].

Although more research is needed, the putative effect of the

K153R polymorphism on muscle phenotypes is due to its potential

to alter the function of the MSTN gene [12]. Myostatin enters the

bloodstream as a latent precursor protein; it then undergoes a

proteolytic process to become a mature peptide (free from the

propeptide) that binds to extracellular activin type II receptor

(ActRIIB) [15]. Binding of myostatin to ActRIIB induces

intracellular activation of SMAD proteins and, through the

SMAD pathway, myostatin modulates myoblast proliferation

[13] and differentiation [14], and thus ultimately muscle mass

[15]. The Lys(K)153Arg(R) aminoacid replacement is found

within the active mature peptide of the myostatin protein, and

could theoretically influence (i) proteolytic processing with its

propeptide or (ii) affinity to bind with ActRIIB [36,37]. This in

turn would result in inability of myostatin to modulate muscle

mass/power [15].

In summary, the MSTN K153R polymorphism is associated

with the ability to produce ‘peak’ power during muscle

contractions, as assessed with vertical jump tests, in young non-

athletic men. Thus, although more research is still needed, this

polymorphism is among the numerous candidates to explain,

alone or in combination with other polymorphisms, individual

variations in muscle phenotypes.
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