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Mammalian oocytes and zygotes are overtly and deceptively simple cells poised to elaborate
a foundation to support the development of highly complex multi-cellular embryos. Yet
these cells have turned out to be extraordinary resilient receptacles which provide a conduit
for designs etched in laboratory notebooks to living animals and beyond.

The generation of the first transgenic mammals was achieved by injection of naked DNA
into pro-nuclei of mouse zygotes three decades ago. This success provided the first
indication that these cells were endowed with the machinery to support experimental genetic
manipulation of their genomes. This remarkable feature was soon recognized to be a general
property of other mammalian zygotes with the generation of transgenic rats, rabbits and
farm animal species.

The technical simplicity of transgenic technology has led to its widespread application in
pursuit of scientific questions as well as industrial applications such as protein production.
However, the technology has, until now, only supported the insertion of exogenous DNA at
random sites in the genome. It has proven to be extremely difficult to manipulate the
genome in a site-specific manner by this route. Cui and colleagues, writing on page xxx of
this issue, have finally overcome this barrier, making use of zinc finger nucleases (ZFNs) to
stimulate targeted integration of transgenes by homologous recombination1. This technology
will dramatically alter the speed and repertoire of genetic alterations that can be generated in
a variety of mammalian species.

Evidence that mouse pro-nuclei are endowed with the machinery to support homologous
recombination emerged more than 20 years ago, but the efficiencies were too low to be
practically useful2. Instead, the technology to manipulate the mouse genome has relied on
embryonic stem (ES) cells, which have been so extraordinarily receptive to homologous
recombination. Up to now, mouse ES cells with targeted mutations are available for more
than 12,000 genes 3, thus they have become the genetic repository for the mouse.
Unfortunately, the link between cultured ES cells and production of mutant animals could
not be readily established in other species. ES cell lines isolated from species other than the
mouse, rarely exhibit germ line colonization, although recent success has been reported in
the rat4, 5.

The lack of authentic ES cells held back attempts to manipulate endogenous genes in most
mammalian species for many years. This barrier was eventually overcome by utilizing a
remarkable feature of the mammalian oocyte to re-programme a somatic cell nucleus,
effectively converting it to a zygotic genome6. By performing gene targeting in cultured
somatic cells and then using these for nuclear transfer, it became possible to manipulate
endogenous genes in several mammalian species7. Despite these successes, the technical
difficulties have been substantial because of the low efficiencies of both gene targeting in
somatic cells and the subsequent re-programming of their nuclei.

The research reported by Cui et al. provides for the first time a route to directly manipulate
the rat genome, an approach which bypasses the requirement for germ-line competent ES
cells or somatic nuclear transfer. This approach also offers an avenue towards targeted
modification of other mammalian genomes. The major difficulty in achieving gene targeting
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with naked DNA injected into pro-nuclei is the very low efficiency of targeted rather than
random integration2. Gene targeting is stimulated by several orders of magnitude in somatic
cells by provision of a double strand break in the host genome8. Cleaving the mammalian
genome at any defined site was not possible until ZFNs were developed. ZFNs are modular
proteins which couple sequence-specific binding of zinc finger DNA binding domains to the
nuclease domain of the restriction endonuclease FokI9. ZFNs function as homo- or hetero-
dimers, cleaving DNA between two sequences recognized by the zinc-finger arrays (Figure,
ZFN technology). The large number of different zinc fingers, their diversity of recognition
sequences and their modularity will in principle enable them to be developed to target any
DNA sequence10.

Following the initial demonstration of sequence-specific cleavage of the Drosophila
genome11, ZFNs have been shown to stimulate targeted integration of a template sequence
via homologous recombination in fruit flies, plants and human cells10. Cui et al. in this
issue1 and Meyer et al. in a recent report12, both demonstrate that co-injection of a pair of
ZFN mRNAs with a targeting vector into pro-nuclei stimulates the frequency of gene
targeting by workable levels, 2-20% (Figure, pronucleus injection route). Interestingly, live-
born founder animals obtained from these experiments are mosaics which carry several
different mutant alleles with deletions at the target locus, as well as correctly targeted alleles
and unmodified wild-type alleles. Deletions are expected products following non-
homologous end-joining (NHEJ) of cleaved DNA in the absence of targeting and have been
described previously following expression of ZFNs in zygotes13. The transmission of
multiple different mutant alleles from the same founder reflects germline mosacism caused
by expression and cleavage activity of ZFNs after DNA replication in maternal and/or
paternal pro-nuclei. The ability to simultaneously generate a spectrum of mutations can be
advantageous for genetic purposes.

Despite these advances, several questions remain to be addressed about ZFN stimulated
pronuclear targeting. Molecular biologists are familiar with unwanted off-target activity of
restrictions enzymes. To what extent do ZFNs cleave other sites in the genome? The
comparatively small size of deletions generated at illegitimate sites suggests that off-target
cleavages will be hard to trace. Does the physical damage of the host genome observed in
many transgenic animals generated by pronuclear injection occur in this setting too? The
importance of the answers to these questions will undoubtedly depend on the frequency and
type of unwanted events, their linkages to the desired genomic alterations and the context in
which the technology is applied.

The mutant alleles generated using conventional gene targeting technology in mouse ES
cells have steadily embodied greater degrees of sophistication over the last two decades. The
repertoire of genetic alterations that can be achieved by ZFN-stimulated pronuclear targeting
is fertile ground for exploration. Although mutant rats have recently been established using
rat ES cell technology14 (Figure, ES cell route), ZFN targeting applied directly to the zygote
(Figure, pronucleus injection route) presents considerable advantages. Pro-nuclear injection
of nucleic acids is well established, widely practiced and applicable to any strain. Moreover
transmission of the engineered allele from founder rats is readily achieved. Provided ZFNs
with the appropriate specificity can be generated, the community of rat researchers can look
forward to rats with a myriad of defined genome modifications.

This technology will also find applications in a multitude of other species, which hitherto
have required somatic cell re-programming to achieve directed modifications of their
genomes. While vector-chromosome gene targeting has yet to be demonstrated in the pro-
nuclei of farm animal zygotes, this is likely to be possible. ZFNs have also be shown to
stimulate gene targeting in a variety of species, thus this technology can also be used in
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combination with somatic nuclear transfer, removing a bottle neck in achieving directed
modification by this route (Figure, somatic nuclear transfer route). While the promise of this
technology will stimulate numerous applications, the terms, conditions and costs associated
with commercially provided ZFNs can be prohibitive and may limit their potential.
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