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Abstract
The widely used nonobese diabetic (NOD) mouse model of autoimmune (Type 1) diabetes
mellitus shares multiple characteristics with the human disease, and studies employing this model
continue to yield clinically relevant and important information. Here, we review some of the
recent key findings obtained from NOD mouse investigations that have both advanced our
understanding of disease pathogenesis and suggested new therapeutic targets and approaches.
Areas discussed include antigen discovery, identification of genes and pathways contributing to
disease susceptibility, development of strategies to image islet inflammation and the testing of
therapeutics. We also review recent technical advances that, combined with an improved
understanding of the NOD mouse model’s limitations, should work to ensure its popularity, utility
and relevance in the years ahead.

Keywords
antigens; autoimmune diabetes; humanized mice; NOD mice; therapies; Type 1 diabetes

The nonobese diabetic (NOD) mouse model of (autoimmune) Type 1 diabetes first appeared
in the scientific literature in 1980 [1]. As it became available to researchers worldwide, this
inbred model of spontaneous disease was rapidly embraced and remains a mainstay of
current Type 1 diabetes research (FIGURE 1). The model is not without its critics, whose
feelings stem primarily from the disappointing realization that while multiple manipulations
have been reported to prevent disease in NOD mice [2], this goal has not yet been achieved
in people. However, the disease in the mouse model has numerous striking similarities to
that in humans, and these serve to explain the continued utility of NOD mice as a research
tool. These similarities include common antigenic targets (TABLE 1), the expression of
class II MHC molecules (i.e., I-Ag7 and HLA-DQ8) displaying related peptides [3] and
genetic polymorphisms affecting shared pathways [4]. Indeed, there are numerous instances
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where discoveries made in NOD mice were found to parallel the human disease. As just one
example, the β-cell protein islet-specific glucose-6-phosphatase catalytic subunit-related
protein (IGRP) was first identified as a target of islet-reactive CD8+ T cells in NOD mice
[5]. Subsequent work revealed that IGRP peptides are also targeted by CD8+ T cells in
patients with Type 1 diabetes [6–8]. In addition to antigen discovery, other areas of utility
for the NOD mouse include identification of disease susceptibility genes, testing of
therapeutics and identification of new targets, exploration of environmental influences on
disease and the development of imaging strategies (FIGURE 2). The purpose of this article
is to provide an update on progress made in these areas, with the help of NOD mice, from
2005 to the present day. Special mention will be made of those developments having
established or potential applicability to Type 1 diabetes in humans. Recent technical
advances, such as the availability of NOD-derived embryonic stem (ES) cells [9,10] and the
development of increasingly ‘humanized’ NOD strains [11,12], will also be discussed, as
they are likely to further increase both the popularity and the utility of the NOD mouse
model in the study of Type 1 diabetes.

Antigen discovery
Our understanding of disease pathogenesis has been greatly enhanced through the study of
Type 1 diabetes antigens in NOD mice (TABLE 1). A large body of evidence now supports
a key role for insulin autoreactivity in diabetogenesis [13]. Pathogenic responses to insulin
in NOD mice are directed at Ins1/2B9–23 and Ins1/2B15–23 in CD4+ [14] and CD8+ T cells
[15], respectively. NOD mice have been generated that are null for Ins1 and Ins2 but express
a transgenic Ins2 gene in which InsB16 has been altered from Y to A [16], preventing both
binding of InsB15–23 to H-2Kd and activation of InsB9–23-specific CD4+ T cells. The
transgenic mice do not develop Type 1 diabetes or any signs of β-cell-specific
autoimmunity, suggesting the importance of InsB9–23 and/or InsB15–23 in the development
of Type 1 diabetes in NOD mice. Indeed, in NOD mice, establishment of tolerance to insulin
can lead to prevention of diabetes [17] as well as remission of established disease [18].

Studies in NOD mice have also suggested structural and antigen-processing characteristics
of autoantigens, which may contribute to pathogenicity. InsB9–23 binds weakly to the NOD
MHC class II molecule I-Ag7 in two adjacent peptide-binding registers, which are
recognized by different subsets of CD4+ T cells [19]. Similarly, a subset of pathogenic
InsB9–23-reactive T cells does not respond to exogenous insulin processed by antigen-
presenting cells, but does respond if the antigen-presenting cells are in contact with β-cells
or have been fed secretory granules purified from β-cells [20]. The use of a monoclonal
antibody specific for InsB9–23 but not proinsulin or insulin recently revealed InsB9–23-
positive granules in a subset of β-cells [20]. Taken together, these results suggest an
antigenic property of InsB9–23, which is specifically conferred by β-cells, possibly reflecting
a conformational or posttranslational modification of the peptide. Along these lines, a
natural cleavage product of the neuroendocrine protein chromogranin A, WE14, was
recently identified as the target of the highly pathogenic NOD-derived CD4+ T-cell clone
BDC2.5 [21]. Binding of WE14 to I-Ag7 is atypical in that it is mediated by the C-terminal
portion of the peptide-binding groove and seemingly by regions outside of the binding
groove of I-Ag7. Whether and how this unusual binding may permit escape of BDC2.5-like
T cells during thymic negative selection awaits additional studies. However, some
possibilities in this regard include low-affinity binding to I-Ag7 (poor antigen presentation)
or inefficient interactions of the WE14/I-Ag7 complex with the T-cell receptor. These
studies of insulin and chromogranin A have therefore contributed to a model of diabetes
pathogenesis in which autoreactive T cells escape thymic negative selection because
recognition of their cognate antigens is compromised due to weakly or atypically bound
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peptides, and/or due to β-cell-dependent constraints on antigen processing or presentation
[22].

Several islet autoantigens targeted in Type 1 diabetes have yet to be identified. For example,
CD4+ and CD8+ T-cell clones of unknown specificity that are pathogenic in transfer
systems, transgenic mice and retrogenic mice, and are known to recognize islet antigens,
have been isolated from NOD mice [23,24]. Moreover, the islet-infiltrating T-cell repertoire
is thought to be complex, especially at later stages of inflammation [25], but also antigen
specific [26]. In addition, known CD8+ T-cell specificities account for a minority of
infiltrating CD8+ T cells [27]. Previous methods for Type 1 diabetes antigen identification
have been laborious and slow, relying on biochemical or genetic screens, or on the testing of
candidate antigens whose identity was suggested by extensive prior investigations (TABLE
1). A recent bioinformatic search for genes highly and preferentially expressed in islet β-
cells identified the Type 1 diabetes antigen ZNT8 [28], suggesting that the computational
prediction of Type 1 diabetes antigens is feasible. Indeed, pancreatic duodenal homeobox 1
(PDX1) was another high-ranking potential antigen predicted in this study, which was
recently identified independently as a Type 1 diabetes antigen [29]. Analysis of islet
transcripts represented in the Unigene database suggests the existence of a large set of islet-
specific genes that is enriched for known Type 1 diabetes antigens (FIGURE 3). To our
knowledge, every β-cell-specific protein examined to date is a target of either antibody or T-
cell responses in either NOD mice or humans, and most are shared (TABLE 1). Some islet-
specific, non-β-cell antigens have also been described [30]. If the relationship between islet
specificity and antigenicity proves to be robust, hundreds of unidentified islet-specific
antigens may await discovery (FIGURE 3). We therefore advocate a systematic examination
of islet-specific genes as potential Type 1 diabetes antigens. Of course, the number of
potential T-cell and antibody epitopes among these antigens will be considerably larger.

Nonobese diabetic mice provide the only model that can address this scale of antigen
discovery efficiently. Importantly, NOD mice are amenable to high-throughput technologies
that can interrogate the relevant pathogenic cell types directly. The recent finding that entry
and accumulation of T cells in the islets of NOD mice requires the T cells to be specific for
islet antigens [26] supports the use of islet-infiltrating cells in antigen discovery efforts.
NOD mice can also be used to test the pathogenic hierarchy of candidate antigens by
tolerogenic [17], gene ablative and/or mutational approaches [16], while HLA and human
antigen transgenic and knock-in mice should help in the translation of these findings to
human disease. Finally, retrogenic mice should enable rapid assessment of novel T-cell
receptor specificities with respect to pathogenicity as they are discovered [23]. A detailed
knowledge of the pathogenic response in NOD mice should inform the development of
therapies, clinical trials and prognostic markers for Type 1 diabetes.

Identification of disease susceptibility genes
Nonobese diabetic mice and derivative congenic and recombinant congenic strains have
been used extensively for the mapping of autoimmune diabetes susceptibility loci
(designated Idd for insulin-dependent diabetes) and nearly 50 such loci have been reported
to date [31]. In some cases, a candidate gene that is probably responsible (alone or in part)
for the disease-promoting effect of an Idd locus has also been identified [31]. For Idd5.1,
one such gene is Ctla4 [32,33]. In NOD mice, a polymorphism that affects RNA splicing
results in diminished production of a CTLA-4 isoform that lacks the ligand-binding domain
[33] and signals negatively in T cells [34]. Importantly, Ctla4 is also associated with
susceptibility to Type 1 diabetes in humans, although the molecular explanation is thought
to be different and to involve decreased production of a soluble form of CTLA-4 [33] that is
capable of inhibiting T-cell proliferation by binding to CD80 and CD86 [35].
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Nonobese diabetic mouse studies greatly facilitated the progress that was recently made in
the elucidation of another shared pathway for Type 1 diabetes development in NOD mice
and humans, namely, that involving IL-2 and its receptor [4]. While Il2 has long been
suspected to be a causal gene for the effect of Idd3 on diabetes development in NOD mice,
compelling evidence for this was only recently provided [36]. Sequencing of the Il2 gene
from a panel of diabetes-resistant and susceptible mouse strains revealed numerous disease-
associated single-nucleotide polymorphisms, although none were nonsynonymous or
obviously capable of altering RNA splicing. However, thymocytes, splenocytes and anti-
CD3-stimulated splenocytes from NOD mice all contained lower amounts of Il2 mRNA
when compared with their counterparts isolated from NOD.B6 Idd3 mice. Reduced IL-2
production correlated with a smaller proportion of Foxp3+CD4+ T cells in the pancreatic
lymph nodes and reduced functional competence of CD4+CD25+ regulatory T cells,
suggesting a mechanism for the association of Idd3 with diabetes susceptibility. Importantly,
susceptibility to Type 1 diabetes in humans has been mapped to the gene encoding IL-2Rα
(CD25) [37,38], and defects in regulatory T cells have been reported in Type 1 diabetes
patients [39,40]. These results illustrate the utility of NOD mice in the identification of
disease susceptibility genes (or affected pathways) with human relevance, and they also
highlight the power of the mouse model in clarifying the mechanisms responsible for the
observed disease associations.

Exploration of environmental influences
The cumulative diabetes incidence observed for female NOD mice housed at different
institutes varies wildly (i.e., from 15 to 100%), suggesting that the environment can
influence the development of autoimmune diabetes [41]. While such environmental factors
remain largely ill defined, the finding that reduction in microbial load increases diabetes
incidence in NOD mice [42] fostered interest in the potential protective nature of microbes
(or their components) that continues today. Indeed, deliberate infection of NOD mice with a
variety of specific organisms, including Schistosoma mansoni [43], Mycobacterium avium
[44], Trichinella spiralis [45], Heligmosomoides polygyrus [45] and Salmonella
typhimurium [46], inhibits diabetes development. As reviewed [47], the potential
mechanisms responsible for these protective effects include Th2 skewing, increased
regulatory T-cell and natural killer T-cell activity, and modulation of antigen-presenting
cells towards a diabetes-protective phenotype.

Recently, the seminal observation was made that interaction between the intestinal flora and
the innate immune system in NOD mice can influence the development of Type 1 diabetes
[48]. In this study, NOD mice genetically deficient in MyD88, an adaptor protein for
multiple Toll-like receptors, were found to be resistant to diabetes development and to
exhibit altered gut flora. Strikingly, transfer of this altered flora rendered germ-free NOD
mice resistant to Type 1 diabetes. Interestingly, a probiotic compound (VSL#3; a mixture of
Bifidobacterium and Lactobacillus species and Streptococcus salivarius subsp.
thermophilus) [49] and the fungal cell wall constituent zymosan [50] were among the agents
tested in NOD mice from 2005 to the present that have been shown to delay or prevent
disease (TABLE 2). As knowledge in this area continues to expand, informed application to
Type 1 diabetes in humans may be suggested.

Testing of therapeutics & identification of new potential targets
In 2005, a comprehensive review of all preventive or therapeutic interventions that had been
tested in female NOD mice became available to the scientific community [2]. This heroic
effort included all interventions (subject to certain inclusion criteria, such as the availability
of diabetes incidence data), regardless of whether they had a favorable, neutral or
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unfavorable influence on disease course. Importantly, the authors were among the first to
highlight the fact that protocol differences (e.g., in terms of relative dose and disease stage)
between NOD mouse studies and human trials probably contributed to the disappointing
results reported in patients [2], a notion subsequently affirmed by others [51]. As a result of
collective extensive experience with the NOD mouse model, the field is far more aware now
than it was one or two decades ago of its limitations and of the factors that need to be
considered when translating therapies to the human disease. It is now recognized that a
regimen that prevents disease in NOD mice when begun at 4 weeks of age will not
necessarily be successful in reversing ongoing autoimmunity in a patient. Differences
between mouse and human immunology are also better appreciated [52]. Despite its
limitations, the NOD mouse model has aided in the development of promising interventions
for Type 1 diabetes patients, for example, anti-CD3 treatment. The ability of anti-CD3 to
reverse Type 1 diabetes was discovered in NOD mice [53], and subsequent human trials
have demonstrated the capacity of anti-CD3 to slow the rate of loss of insulin production
and reduce exogenous insulin requirements in patients [54,55].

Given the belief that NOD mouse studies will continue to suggest therapeutic strategies to
be considered for translation to patients, we have compiled representative interventions that
have recently (reported in 2005 or later) been shown to prevent (TABLE 2) or reverse
(TABLE 3) spontaneous Type 1 diabetes in female NOD mice. While not exhaustive, these
compilations are intended to illustrate the variety of approaches being pursued. Their
examination suggests some general trends. The first is a growing interest in B cells,
evidenced by the use of multiple reagents to deplete or manipulate these cells in NOD mice
in order to prevent (TABLE 2) or reverse disease (TABLE 3). B-cell-depleting reagents
successfully employed include anti-CD20 [56,57], anti-BLyS [58], BAFF/APRIL blockade
[59] and cytotoxin-coupled anti-CD22 [60]. Although it has been known for nearly 15 years
that B cell-deficient NOD mice do not develop diabetes [61], B cells have been relatively
neglected by investigators, as Type 1 diabetes has long been viewed as a strictly T-cell-
mediated disease. However, we now know that B cells act as efficient antigen-presenting
cells that permit the development of T-cell responses to β-cell antigens such as GAD65 [62].
Thus, their manipulation would seem to be a rational strategy. Indeed, the use of anti-CD20
(rituximab) in new-onset Type 1 diabetes in patients was recently explored [63]. Although
as disease was not reversed, further protocol optimization is warranted, some clinical benefit
was achieved.

Examination of TABLE 2 and TABLE 3 also reveals that, in contrast to most recent
prevention studies in NOD mice, several reversal studies have employed combination
therapies (TABLE 3), including anti-CD3 plus either an insulin peptide [64] or exendin-4
[65]; lisofylline plus exendin-4 [66]; EGF plus gastrin [67]; glucagon-like peptide-1 plus
gastrin [68]; and a dipeptidyl peptidase (DPP)-4 inhibitor plus a proton pump inhibitor [69].
Multiple ongoing or planned clinical trials in patients with Type 1 diabetes have also
adopted this combination approach [70], for example, GAD65 in combination with the
proton pump inhibitor lansoprazole and the DPP-4 inhibitor sitagliptin [201] and autologous
cord blood cells in combination with vitamin D and omega-3 fatty acids [202]. When
considering the utility of the NOD mouse in suggesting clinical interventions, it is important
to note that several of the agents listed in TABLE 2 and TABLE 3 are the subject of ongoing
or planned studies in Type 1 diabetes patients or at-risk individuals. These include proton
pump and DPP-4 inhibitors [201], mesenchymal stem cells [203], anti-CD3 [204,205],
granulocyte colony-stimulating factor (G-CSF) [206], dendritic cells [207], lisofylline [208]
and intranasal insulin [209,210].

In addition to the execution of preclinical studies in NOD mice, more ‘basic’ research
conducted in this model can help in the identification of molecules, cell types or pathways
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previously understudied from a Type 1 diabetes perspective that could potentially be
targeted for clinical benefit. Examples from the period covered by this review include IL-21
[71–73], Th17 cells [74], and the glucocorticoid-induced TNF receptor [75] and inducible
costimulator pathways [76].

Development of imaging strategies
In recent years, the NOD mouse model of Type 1 diabetes has become a valuable tool for
the development of imaging protocols that permit the visualization of disease-relevant
phenomena such as islet inflammation [77–79] and β-cell death [80]. Non-invasive methods
that are being developed to detect islet inflammation include both direct visualization of
islet-infiltrating T cells [77,78] and indirect examination of the consequences of
inflammation, such as microvascular alterations [79]. As an example of the former, anionic
magnetic nanoparticles, which are efficiently internalized by cells, were used to label T cells
isolated from the spleens of diabetic NOD mice [77]. Upon transfer of the labeled cells to
nondiabetic NOD recipients, their homing to the pancreatic lymph nodes and pancreas was
successfully visualized by in vivo MRI for at least 20 days posttransfer. No alterations in T-
cell survival or function were noted as a result of the labeling procedure. While suggesting a
number of research applications, the need to label diabetogenic T cells ex vivo would appear
to limit the eventual translation of this technique to the imaging of spontaneous islet
inflammation in patients. By contrast, administration of antigen-coated super-paramagnetic
iron oxide nanoparticles to NOD mice allowed visualization of the islet accumulation of
naturally arising T cells by in vivo MRI [78]. This advance was made possible by the
identification of IGRP206–214/H-2Kd as the target of a prevalent population of diabetogenic
T cells in NOD mice [5], as the antigen used to coat the nanoparticles was a mimotope of
this peptide/MHC complex. Continuing efforts to identify antigens recognized by islet-
reactive T cells in Type 1 diabetes patients has led to the identification of peptides that could
potentially be used to move this technique from mouse to man. These include IGRP265–273
and InsB10–18, as both have been identified in multiple studies as T-cell targets in HLA-
A*0201-positive individuals [6,7,81–85]. They also have identical sequences in mice and
humans and are recognized by islet-infiltrating T cells isolated from HLA-A*0201-
transgenic NOD mouse models [11,12,86], supporting the idea that they are disease-
relevant. These characteristics should facilitate reagent testing in NOD-based models before
translation to patients.

Nonobese diabetic mice have also been used to demonstrate the indirect visualization of islet
inflammation as a consequence of inflammation-induced microvascular alterations [79].
Such alterations permit administered magnetic nanoparticles to leak from the vasculature
and be taken up by macrophages in the insulitic lesions. The resulting accumulation of
nanoparticles allows islet inflammation to be detected by MRI. Importantly, when diabetic
NOD mice were treated with a regimen of anti-CD3 that leads to remission in approximately
half of all recipients after 2–4 weeks, MRI visualization of islet inflammation permitted
early identification (after only 8 days) of animals that would ultimately have a favorable
clinical response [79].

Methods to image β-cell death are also being developed, with the NOD mouse model also
contributing to this area. When Cy5.5-labeled annexin V was administered to NOD mice
between the ages of 3 and 12 weeks, pancreatic accumulation of the probe was observed
upon ex vivo near-infrared fluorescence imaging of pancreata obtained from 8- and 12-
week-old mice [80]. Although in vivo imaging was not utilized in this study, the authors
discussed their expectation that methodological advances will eventually render this
technique suitable for noninvasive imaging of β-cell death. The ability to visualize both islet
inflammation and β-cell death would present new opportunities to better understand the
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disease process, permit monitoring of these events in at-risk individuals and those
undergoing preventive or reversal therapies, and facilitate the development and testing of
strategies to interfere with disease development.

Recent technical advances
The inability to generate NOD ES cells capable of efficient germline transmission has
severely hampered the use of gene knock-in technology in NOD mice and has prohibited the
direct testing of the diabetes-promoting activity of candidate genes present in Idd loci. In
addition, knock-out strains generated using non-NOD ES cells followed by repeated
backcrossing to NOD mice may give misleading results due to the contribution of non-NOD
DNA flanking the knock-out allele [87,88]. These technical hurdles now appear to have
been overcome with the recent publication of two independent reports of the derivation of
NOD ES cells exhibiting germline transmission [9,10]. One approach employed a serum-
free and feeder cell-free system in which small-molecule inhibitors of differentiation (the
glycogen synthase kinase inhibitor Chir99021 and the mitogen-activated protein kinase
inhibitor PD0325901) were combined with leukemia inhibitory factor, a regulator of ES cell
self-renewal and pluripotency [10]. Multiple ES cell lines were derived from NOD embryos
using this strategy and maintained to passage 14 with a normal karyotype and continued
expression of the pluripotency factors Nanog and Oct4. Chimeric mice were readily
obtained when the NOD ES cells were injected in C57BL/6 blastocysts. Upon mating of the
chimeric mice with NOD partners, efficient germline transmission was observed, as
determined by coat color and verified by flow cytometric detection of NOD class I and class
II MHC molecules and molecular analysis of microsatellite markers. In addition, NOD ES
cell-derived female mice developed spontaneous diabetes at a rate and incidence equivalent
to that of female NOD mice housed in the same facility. Finally, germline transmission of
NOD ES cells that had been genetically modified was also confirmed. Another approach to
the generation of NOD ES cell lines also employed small-molecule inhibitors but in a
system containing mouse embryonic fibroblasts as feeder cells [9]. One of the lines so
derived recently became available from The Jackson Laboratory (Bar Harbor, ME, USA). In
addition, bacterial artificial chromosome libraries have recently been prepared for the two
commonly used NOD substrains (NOD/ShiLtJ and NOD/MrkTac) [89]. These libraries will
greatly facilitate the construction of efficient targeting vectors to be used in conjunction with
the newly developed NOD ES cells. It should be noted that the production of gene-targeted
mice using NOD-derived ES cells has not yet been reported.

Another recent advance that has increased the utility and the clinical relevance of the NOD
mouse model is the development of strains that have been ‘humanized’ to varying degrees.
One aspect of this humanization has been the development of NOD mice expressing the
human class I MHC molecule HLA-A*0201 [12], which is a Type 1 diabetes-associated
allele in patients [90–92], in the absence of murine class I MHC molecules. These
NOD.β2m−/−.HHD mice have been used to map epitopes of IGRP and preproinsulin that are
recognized by islet-infiltrating HLA-A*0201-restricted CD8+ T cells [12,86]. At least some
of these peptides are now known to also be targeted by CD8+ T cells in Type 1 diabetes
patients [7,93], thus demonstrating the utility of this HLA-transgenic NOD mouse strain. A
further humanized version of this strain, designated NOD.β2m−/−.HHD.Ins2−/−, has
recently been described [11]. In these mice, HLA-A*0201 is expressed in the absence of
murine class I MHC molecules. In addition, Ins2 deficiency leads to reduced thymic
expression of insulin and serves to mimic the situation in humans bearing predisposing
alleles of the insulin gene [94,95].

Ideally, a humanized mouse model of Type 1 diabetes would incorporate human immune
cells. To this end, Roep and coworkers reported the transfer of human β-cell-specific CD4+
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T-cell clones to NOD-scid mice [96]. Human antigen-presenting cells were also transferred,
as the mice did not express the human MHC restriction element for the clones in this case.
In these experiments, the T cells accumulated in the pancreas, pancreatic lymph nodes and
spleen, but not in other sites. While encouraging, only early peri-insulitis could be observed
in the recipient mice. Recently, NOD.scid.IL2rγnull mice have emerged as a much improved
recipient for the engraftment of human peripheral blood mononuclear cells [97] or CD34+

cells [98]. Multiple laboratories are currently working to incorporate human antigens, human
β-cell-specific T cells and HLA class I molecules into this model system.

Expert commentary & five-year view
As we mark the 30th anniversary of the NOD mouse model of Type 1 diabetes, it should be
with gratitude for all it has taught us and excitement in anticipation of the secrets it has yet
to reveal. NOD mice have contributed to our knowledge in a variety of areas, including
antigen discovery and the identification and validation of therapeutic targets. The model is
not perfect, and some of its imperfections, such as differences in lifespan compared with
humans, have no ready remedies. However, the field is now more aware of the limitations of
the model and how best to design investigations that will minimize the impact of these
limitations. For example, many protocols are capable of preventing disease in NOD mice if
treatment is initiated prior to the onset of insulitis. Yet, over the last few years, many
researchers have wisely turned instead to the more clinically relevant situation in which
attempts are made to reverse insulitis or even diabetes itself. This logical trend should
continue in the future. Disease reversal is likely to require not only attention to the
destructive autoimmune process, but also some manipulation of the remaining β-cell mass
(e.g., with agents such as glucagon-like peptide-1 and gastrin) to facilitate its recovery and
augmentation, and studies in the NOD mouse will continue to be a critical component of
these efforts.

Recent advances that should increase the utility of the NOD mouse model include the
development of NOD-derived ES cells reported to be capable of efficient germline
transmission. It should now be possible to knock out genes directly in the NOD background,
eliminating the need for time-consuming and costly backcrossing and preventing artifact
results due to the carry-over of genetic material from the original knock-out strain. NOD ES
cells will also facilitate the efficient generation of knock-in mice that will aid in the
elucidation of the contribution of specific genes to diabetes susceptibility and resistance.
One could also envision knock-in of human genes, for example, those encoding
autoantigens. Such work could become part of a more general push to increase the clinical
relevance of the NOD mouse model by humanizing it in various ways, including the
introduction of human MHC molecules and immune cells. These technical advances should
significantly enhance the utility and importance of the NOD mouse model and its ability to
yield clinically relevant results and information. Cooperation among Type 1 diabetes
researchers engaged in mouse, rat and human investigations will also go far to facilitate
progress towards an improved understanding of the disease and tangible benefits for patients
and at-risk individuals.

Key issues

• The nonobese diabetic (NOD) mouse model of Type 1 diabetes, although
imperfect, exhibits multiple striking similarities to the disease in humans.

• Investigations utilizing NOD mice continue to advance our understanding of
disease pathogenesis and to yield information that is applicable to Type 1
diabetes in humans.
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• Areas of utility for the NOD mouse model include antigen discovery,
identification of disease susceptibility genes, testing of therapeutics, exploration
of environmental disease influences and the development of imaging strategies.

• The availability of NOD-derived embryonic stem cells will now permit knock-in
and knock-out strains to be developed directly on the NOD background, thus
greatly enhancing the utility of the model.

• Increasingly humanized NOD-derived strains, incorporating human MHC
molecules, antigens, predisposing factors and even human immune cells, are
being developed and probably represent the future direction of research.
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Figure 1. The nonobese diabetic mouse model continues to be a mainstay of Type 1 diabetes
research
The PubMed database was searched using the search string ‘NOD mice, diabetes.’ The plot
depicts retrieved citations for each year, excluding review articles.
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Figure 2. Recent contributions of the nonobese diabetic mouse model to our understanding of
Type 1 diabetes have occurred in the indicated areas
Examples of discoveries covered within this review are shown. See text for details and
references. G-CSF: Granulocyte colony-stimulating factor; GM-CSF: Granulocyte-
macrophage colony-stimulating factor; NOD: Nonobese diabetic; PDX1: Pancreatic
duodenal homeobox 1.
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Figure 3. Islet-specific genes remain largely unexplored as Type 1 diabetes antigens
Islet specificity was calculated as the frequency of a given transcript within the Unigene
mouse islets expressed sequence tag library 16013 [178] divided by the cumulative
frequency of that transcript in all tissues represented by the Unigene ‘profiles’ dataset
excluding whole pancreas [211,212]. The islet library contained 24,059 expressed sequence
tags corresponding to 6451 unique genes. Gene bins are 0.1 islet specificity units wide.
Known islet-specific Type 1 diabetes antigens are positioned along the smoothed
distribution according to their islet specificity values. Approximately 700 genes span the
region bounded by IA-2β at the left and INS at the right, suggesting a rich source of as-yet
unidentified Type 1 diabetes antigens.
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