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Making genes into gene products is subject to predictable errors,
each with a phenotypic effect that depends on a normally cryptic
sequence. Many cryptic sequences have strongly deleterious
effects, for example when they cause protein misfolding. Strongly
deleterious effects can be avoided globally by avoiding making
errors (e.g., via proofreading machinery) or locally by ensuring that
each error has a relatively benign effect. The local solution requires
powerful selection acting on every cryptic site and so evolves only
in large populations. Small populations with less effective selection
evolve global solutions. Here we show that for a large range of
realistic intermediate population sizes, the evolutionary dynamics
are bistable and either solution may result. The local solution
facilitates the genetic assimilation of cryptic genetic variation and
therefore substantially increases evolvability.
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The processes involved in the production of RNA and proteins
may occasionally fail to express gene products accurately (1).

For example, translation errors can lead to proteins with more
(e.g., stop codon read-through) or fewer (e.g., premature ter-
mination) amino acids. To be functional, a protein needs to fold
and to have one or several functional sites. Some changes to the
normal sequence of a protein will disrupt its folding, in which
case function is destroyed; only changes that preserve folding
have the potential to tinker with function. A similar dichotomy is
illustrated by the bimodal distribution of the possible effects of
new mutations, which can be lethal or nearly neutral, but very
rarely in between (2).
Certain errors in protein synthesis lead to the expression of

a sequence that is otherwise cryptic. For example, when a stop
codon is read through, an amino acid sequence translated from
the 3′-untranslated region (3′-UTR) may be added to the C-
terminal end of a protein; similarly, a splicing error may lead to
the inclusion of an intronic sequence in the coding form. These
cryptic protein-coding sequences have been exposed to very little
selection, except insofar as the same error (e.g., a stop codon
read-through) has been repeated on a regular basis. When this
selection is negligible, the probability that a sequence is nearly
neutral rather than deleterious is given by a mutational equi-
librium. Because the number of amino acid sequences that fold is
restricted (3), at this equilibrium most cryptic sequences are
deleterious. A globally low error rate will then be selected, be-
cause it impedes the expression of deleterious products from all
these loci. This low error rate will further reduce the action of
selection on individual cryptic sequences. This positive feedback
loop between accuracy and the proportion of cryptic sequences
that are strongly deleterious would ultimately lead to the evo-
lution of an infinitely small error rate if avoiding errors did not
come at a cost (4, 5), resulting in a trade-off between the cost of
expressing deleterious sequences and the cost of accuracy (6, 7).
There are two ways to handle the dangers posed by errors.

One is to avoid making errors. This is normally a global solution,
e.g., through improved proofreading machinery. The other is to
make more errors, but evolve robustness to the effects of each of

them. This is a local solution that needs to evolve separately at
each affected locus.
The positive feedback loop means that only one of the two

solutions is expected to evolve in a given population. Selection
for local solutions is weaker and is therefore expected only in
large populations. A similar prediction was previously made in
studies of the evolution of redundancy (8) and of chaperone
proteins (8–10). Here we confirm this prediction; however, we
also find that the evolutionary dynamics are bistable; i.e., either
a low error rate (global solution) or a high error rate (local so-
lution) can evolve, for a broad range of intermediate population
sizes. Moreover, we find that low and high error rates confer
different evolvability properties, owing to the fact that errors
expose potentially adaptive cryptic variation to selection.

Evolution of an Error Rate
We first parameterize our model for the case study of stop codon
read-through, assuming that the rate of read-through (denoted ρ)
is constant across loci and can be fine-tuned via mutations (4, 5,
11–15). Let each of the N individuals in the population have Ltot
loci; the elongated sequence including read-through into the 3′-
UTR is deleterious for Ldel of these loci and neutral for the
others. Potentially deleterious consequences of read-through in-
clude protein misfolding (1, 3, 16) and, when no “backup” stop
codon exists, nonstop mRNA decay (17). Mutations occur with
probability μ (= 10−8) at each of the nh (= 30) nucleotides of each
cryptic sequence and change the effect of read-through from
neutral to deleterious with probability pdel or from deleterious to
neutral with probability p−del. Assuming that deleterious effects
due to protein misfolding are representative, we estimate p−del =
0.4 (3) and set a lower value for the probability of reverse
mutations (p−del = 0.1). In the absence of selection, the expected
number of loci with a deleterious cryptic sequence is

LdelðneutralÞ ¼ Ltotpdel
pdel þ p− del

: [1]

A genotype i with deleterious cryptic sequences in Ldel(i) loci,
and error rate ρ(i), has fitness

ωðiÞ ¼ ωmðρðiÞ;LdelðiÞÞ×ωaðLdelðiÞÞ×ωsðρðiÞÞ; [2]

where ωm, ωa, and ωs denote components of fitness associated,
respectively, with the expression of deleterious cryptic sequences,
with deleterious sequences becoming permanently expressed
through new mutations and with the cost of proofreading during
protein synthesis. ω(i) was used to calculate the probability that an
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individual will be of genotype i in the next generation, using
a standard Wright–Fisher simulation without recombination
(Methods).
We first assume that effects of expression errors across mul-

tiple loci are multiplicative, such that each deleterious sequence
decreases fitness by a factor (1 − ρ)γ (Eq. 3). We used low values
of γ (typically 0.01), so that a deleterious product has a strong
negative effect on fitness only when it is expressed as a high
proportion of the total expression. This assumption is based on
the observation that most lethal mutations are strongly recessive,
as observed in Drosphilia (18) and Saccharomyces cerevisiae (19)
(Methods). The second term of Eq. 3 describes the fitness effect
of expressing the sequence following a backup stop codon in the
3′-UTR, which occurs with frequency ρ2. We assume that these
sequences are not affected by selection, so they are deleterious
for Ldel(neutral) loci. Subsequent sequences in the 3′-UTR,
expressed with frequency ≤ρ3, are ignored:

ωmðρ;LdelÞ ¼ ð1− ρÞγLdel
�
1− ρ2

�γðLtot −LdelÞ pdel
pdelþp−del

:
[3]

ωm = 0 when deleterious read-through is complete (ρ = 1),
which means that the loci considered code for essential proteins.
This multiplicative scenario could, for example, correspond to

the fitness effects of loss of function. We also examined a model
of additive fitness effects, which may better describe the gain of
a nonspecific toxic function, e.g., due to the aggregation of
misfolded proteins (1, 16). Fitness in the additive scenario
depends on the total concentration of all deleterious products
within the cell and on their toxicity. Fitness is decreased by the
product of a parameter, s (Methods), and the total concentration
of all deleterious proteins, so the component of fitness ωm (Eq.
2) can be rewritten:

ωmðρ;LdelÞ ¼max
�
0;  1− s

�
ρ
Ldel

Ltot
þ
�
1−

Ldel

Ltot

�
ρ2

pdel
pdel þ p− del

�
:

�

[4]

The low expression level ρ of a given cryptic sequence may increase
to 1 if the sequence is genetically assimilated. Assimilation happens
if a mutation changes the stop codon into a sense codon, which
occurs with approximate probability μa ¼ ð1þ 7=9þ 7=9Þμ (20).
Because the Ltot loci code for essential proteins, the assimilation of
a deleterious sequence leads to null fitness. There may therefore be
selection for mutational robustness, with fitness proportional to the
probability that no assimilation event will occur:

ωaðLdelÞ ¼ ð1− μaÞLdel : [5]

We assume that the rate of read-through decreases exponentially
with the time spent reading the stop codon. In other words, each
time a stop codon is “proofread” divides the remaining proba-
bility that an error will occur by a given amount. Speed of
translation is rate limiting for the growth of most micro-
organisms. Evidence for this rate limitation includes the positive
correlation between the growth rate and the cellular concen-
tration of rRNA in Salmonella typhimurium (21). Moreover,
hyperaccurate translation leads to slow growth in Escherichia coli
(4). Generation time is then proportional to 1 − log(ρ) × δ.
Assuming that fitness is inversely proportional to the generation
time, as expected for fast-growing species,

ωsðρÞ ¼ 1
1− logðρÞ× δ

: [6]

Note that Eq. 6 can also be interpreted as an opportunity cost in
an alternative additive currency, e.g., energy instead of time.

As a default, we set δ = 10−2.5. With this value, the generation
time increases by 0.72% when ρ changes from 10−2 to 10−3. Such
a small contribution of stop codon reading is compatible with the
observation that the rate of protein synthesis is determined
largely by the rate of translation initiation, which depends on the
availability of free ribosomes, itself slightly increased by faster
elongation or termination (22).

Evolutionary Dynamics of the Error Rate Are Bistable
Here we present results for the multiplicative fitness scenario (Eq.
3): Results for the additive scenario (Eq. 4) are very similar and
can be found in Figs. S1–S3. The optimal value of ρ for a given
value ofLdel is calculated fromEq. 2 and shown as a thick gray line
in Fig. 1A and Fig. S1A. The optimal error rate decreases when
the number of cryptic deleterious sequences increases. Consid-
ering the relationship in the opposite causal direction, equilibrium
values of Ldel, resulting from a mix of drift and selection, were
obtained by simulation for given values of ρ (Fig. 1A and Fig. S1A,
thin lines). When ρ is low, deleterious cryptic sequences are less
likely to be eliminated by selection and Ldel converges toward the
value given by mutation bias alone, which equals 400 in this ex-
ample. Higher values of ρ expose cryptic sequences to selection,
and Ldel tends to be low in consequence.
In a small population (N = 103), drift overcomes the weak

effect of selection on cryptic sequences, even for large values of ρ
at which cryptic sequences are more exposed. In consequence,
once the optimal value of ρ is reached for a given low value of
Ldel, more deleterious sequences fix. This increase in Ldel favors
the evolution of a lower error rate, which weakens selection on
cryptic sequences still further, and more of them tend to be
deleterious in consequence. This process (Movie S1) ultimately
leads to the evolution of a low rate of errors (log10(ρ) ≃ −3.15)
and of a large number of deleterious cryptic sequences (nearly
400). This steady state would be reached for any initial value of ρ
or Ldel. This result is confirmed by individual-based simulations,
in which both Ldel and ρ are randomly changed by mutation (Fig.
1A, Fig. S1A, and Movie S1).
In contrast, in a large population (N = 105) that starts with

a high error rate and no deleterious cryptic sequences, selection
eliminates deleterious cryptic sequences efficiently (Fig. 1A, Fig.
S1A, and Movie S1). With so few deleterious cryptic sequences,
a high value of ρ can be maintained because there is now so little
cost to the expression of cryptic sequences. This dynamical
process ultimately leads to a steady state where the rate of errors
is high ðlog10ðρÞ ≃− 1:71Þ and the number of deleterious cryptic
sequences is almost 0. This result is confirmed by individual-
based simulations (Fig. 1A, Fig. S1A, and Movie S1). In a large
population that starts with a low error rate and 400 deleterious
cryptic sequences, however, deleterious cryptic sequences are not
efficiently eliminated by selection after the optimal value of ρ is
reached. Reading through stop codons decreases fitness strongly,
and consequently a low error rate ultimately evolves (log10(ρ) ≃
−2.96), just as it did for a small population.
As the population size increases, selection against deleterious

sequences gets more efficient, so the same value of Ldel is
expected for a lower value of ρ. Graphically, this shifts the thin
curve to the left in Fig. 1A and Fig. S1A, while preserving its
shape. Past some critical value of N, the thin and thick curves
intersect three times instead of just once. At this point, a second
stable outcome appears, corresponding to a high error rate. As
shown in Fig. 1 B and C, this transition happens at ∼N= 104.3 for
Ltot = 500 in the multiplicative scenario. In very large pop-
ulations (N ≥ 106), the curves again intersect only once, this time
in the lower right corner of Fig. 1A and Fig. S1A, and only the
high-ρ attractor exists (Fig. 1B and Fig. S1B). The sigmoidal
shape of the thin curve explains why the evolved values of ρ differ
by as much as 30-fold between the two attractors in Fig. 1B, but
often vary little with N given the same attractor. The difference
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in error rates between the two attractors increases with the total
number of loci Ltot in the multiplicative scenario (Fig. S4) but
not in the additive scenario (Fig. S2). Increasing Ltot also
broadens the range of population sizes with a bistable outcome,
as well as the minimum population size at which ρ is bistable
(Fig. 1C and Fig. S2). Due to the accumulation of deleterious
mutations in cryptic sequences, the attractor with the lower ρ has
the lower mean population fitness (0.975 vs. 0.986 when N = 105

in the multiplicative scenario).
Bistability for some intermediate value of N was predicted for

all sets of parameter values used (Figs. S2–S6). When δ increa-
ses, meaning that the process of stop codon reading contributes
more to the time of protein synthesis, the range of population
sizes at which ρ is bistable gets slightly narrower, and the ratio of
ρ between the two attractors decreases (Fig. S5). Increasing γ so
that partial loss of function has larger fitness effects increases the
range of population sizes with a bistable outcome by decreasing
the lower bound of this range; it also increases the difference
between the two attractors (Fig. S6). Similar results were
obtained under the additive fitness scenario, where increasing
the toxicity of deleterious products (s) increases both the range
of population sizes with two attractors and the difference be-
tween the attractors (Fig. S3).

High Error Rate Attractor Has Higher Evolvability
So far, we have considered only the potentially catastrophic con-
sequences of read-through. While strongly deleterious sequences
dominate the dynamics described above, cryptic sequences that
are not strongly deleterious may tinker with rather than destroy
function and so contribute to adaptation. In this regard, the two
attractor genotypes expected from the coevolutionary dynamics
of ρ and Ldel may have different evolvability properties, with
nonlethal cryptic sequences potentially contributing to adapta-

tion via genetic assimilation (i.e., permanent loss of the stop
codon). Let us assume that K loci affect a trait value x and that
the effect size at each locus can be changed if a cryptic sequence
that is not catastrophically deleterious is expressed or assimi-
lated. Because a high rate of read-through eliminates strongly
deleterious sequences and thus facilitates the adaptive assimila-
tion of cryptic sequences, it might cause more rapid adaptation
after an environmental change alters the optimal trait value (23).
Let us modify the model slightly to test this prediction. The

regular sequences of K of the Ltot loci now have additive effects,
denoted αik for locus k (and genotype i), on the trait value xi. The
cryptic sequence has an additive effect denoted βik when it is
expressed with frequency ρ. A protein produced from locus k that
includes the expression of a cryptic sequence has strongly dele-
terious effects if Bik = 0 (otherwise Bik = 1). Strongly deleterious
proteins have no direct effect on the trait value. We thus have

xi ¼ ∑
K

k¼1
½ð1− ρÞ× αik þ ρ×Bik × ðαik þ βikÞ :� [7]

The trait value can be changed by point mutations occurring with
probability μ on nc = 300 or nh = 30 nucleotides in the regular
or cryptic sequence of a locus, respectively. A mutation changes
αik or βik by an amount sampled from a normal distribution with
mean = −(αik / a) or −(βik / a), respectively, and SD = σm / K.
Parameter a sets a stationary distribution for αik and βik in the
absence of selection (see SI Methods; we used a = 750 in the
results presented). New values of βik are chosen by sampling
from this distribution. Mutations in the cryptic sequence of locus
k also change the value of Bik to 0 or to 1 with respective prob-
abilities pdel and p−del. Assimilation of cryptic sequences occurs
with probability μa, in which case αik increases by βik if Bik = 1,
whereas the fitness of the mutant is set to 0 if Bik = 0.
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Fig. 1. Evolutionary dynamics of the read-through error rate ρ. (A) Coevolution of ρ and of the number of cryptic sequences that are deleterious, Ldel. The
optimal value of ρ as a function of Ldel, calculated as the value maximizing Eq. 2 (Methods), is represented by a thick gray line, and ρ evolves toward this line
when Ldel isfixed. The equilibrium values of Ldel as functions of log10(ρ) are represented by thin lines, for population sizesN = 103 andN = 105. Ldel evolves toward
these lines when ρ is fixed. The values of ρ and Ldel obtained by simulation are represented by solid crosses (centered on the mean, ±2 SD across replicate
populations), eachmatching the intersection of the thick and one thin line. Movie S1 shows the simulated coevolutionary dynamics. (B) The evolved error rate ρ
is low in small populations, high in large populations, and bistable for intermediate populations. Solid and open symbols (error bars±2 SD; x values were slightly
changed to avoid superposition) represent the results of simulations startingwith (log10(ρ), Ldel) = (−5, 400) and (−2, 0), respectively. (C) The ranges ofN atwhich
ρ is low or bistable increasewith the total number of loci, Ltot. Bistable outcomeswere identified by comparing the results of simulations obtainedwith the same
initial conditions as in B, using a t test with critical value 0.005. Parameter values: γ = 0.01, pdel = 0.4, p−del = 0.1, δ = 10−2.5, μ = 10−8, and Ltot = 500 (A and B).
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Fitness associated with the trait value is assumed to be
Gaussian with a maximum at the environmental optimum,
denoted oe,

ωeðxðiÞÞ ¼ 1ffiffiffiffiffiffi
2Π

p
σf

e
�
− ððxi − oeÞ2=ð2× σ2f ÞÞ

�
; [8]

where σf = 0.5. Fitness of an individual with genotype i
now equals

ωðiÞ ¼ ωmðρðiÞ;LdelðiÞÞ×ωaðLdelðiÞÞ×ωsðρðiÞÞ×ωeðxðiÞÞ: [9]

We compared the ability to adapt after an environmental change
for populations representing the two attractors expected when
N = 105 (Fig. 2): Populations with the higher error rate adapt
much more rapidly to the new environment. The time to adap-
tation was consistently lower for the high error rate attractor in
our simulations, as long as the number of loci coding for the trait
was larger than five (Fig. 2B and Fig. S7). This result agrees with
previous work showing that cryptic genetic variation promotes
evolvability most strongly when adaptations have a complex ge-
netic basis (20, 23–25).
Modifications to all other parameter values preserved our

result. High values of σm and large population sizes both increase
the speed of adaptation for both attractors, with a stronger effect
when ρ is high (Figs. S8 and S9). Parameter a sets the genetic
variability of cryptic sequences, and accordingly adaptation in
populations with a high ρ is quicker for higher values of this
parameter (Fig. S10). Indeed, populations with a low ρ are less
affected by the increase in a and adapt more slowly for all values
taken by this parameter.
Evolvability (26, 27), when considered as a by-product of the

evolution of the error rate, is thus higher when molecular errors
are common. It is even conceivable that a changing environment
would favor the evolution of an increased error rate, as a con-
sequence of its evolvability properties, when bistability exists.

Application to Read-Through Errors
We predict that the rate of read-through should be very different
in very small (e.g., N ≤ 104.3 in Fig. 1 B and C) and very large
populations (e.g., N ≥ 106 in Fig. 1 B and C). Read-through
frequency in wild-type S. cerevisae (28) for a typical stop-codon

context is ∼3 × 10−3 to 5 × 10−3, which is compatible with our
prediction of a high error rate in a species with large population
sizes. We are not aware of measures of this rate in species with
very small population sizes. At intermediate population sizes, the
read-through error rate should depend on the history of the
species and of the population studied. For example, if a species
comes from an ancestor with very large population sizes, hence
with a high error rate and few deleterious cryptic sequences,
these characteristics should be conserved as the population size
decreases toward intermediate values. Similarly, a low error rate
and a majority of cryptic sequences being deleterious are expec-
ted features for a species that increased in size compared with its
small-population ancestor. Moreover, a prolonged bottleneck in
a population of a species with a high error rate could initiate the
accumulation of deleterious cryptic sequences and the evolution
of a low error rate, which may persist after the population size
increases back to intermediate. Measures of read-through rates in
various species with different population sizes and known histo-
ries could be interpreted in the light of these considerations and
provide a test of our theory.
Our prediction of selection eliminating deleterious cryptic

sequences in large populations is compatible with the evidence of
a prevalence of backup stop codons in yeast (29, 30). We do not
expect such signatures of purging selection in species with lower
population sizes, such as endosymbiotic bacteria (31).
Assimilations of 3′-UTR sequences into coding regions have

been observed in both rodents and Saccharomyces (32). Accord-
ing to our predictions, such events might have been facilitated by
a high error rate, which should evolve only in large populations.
Testing this prediction will require both more experimental
studies measuring the rate of read-through in species with diverse
population sizes and an estimation in these same species of the
frequency of 3′-UTR assimilation events.

Other Applications of the Model
Although this model was parameterized for the specific case of
stop codon read-through, our qualitative conclusions remain
unchanged for a wide range of parameter values (Figs. 1 and 2
and Figs. S1–S10). They may therefore be valid for other re-
producible errors in gene expression that reveal discrete cryptic
sequences at many loci (Table 1). This is not the case for amino
acid misincorporations, where a vast diversity of cryptic se-
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same K > 5 condition for high-ρ attractor advantage. The error bars represent the first and third quartiles in the distribution of the time to adaptation,
calculated from 20 simulations for each set of parameter values. The two attractors are those shown in Fig. 1 A and B for N = 105. Parameter values: N = 105,
σm = 0.5, a = 750; other values are the same as in Fig. 1 A and B.
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quences exist per locus. However, our model may describe the
evolution of novel alternative splice sites via splicing errors (23,
33, 34). The first part of our model may also describe the evolu-
tion of chaperones (9, 35). In this case, the probability of a fold-
ing error is affected both locally by particular coding sequences
and globally by chaperones. Evolvability considerations are im-
portant but slightly different in the case of chaperones, as
evolvability does not involve a local increase in ρ (37). A similar
model has also been used to describe redundancy at the global
level, e.g., via polyploidy (8). In the case of ploidy, an ideal model
would allow ρ to increase globally but to decrease locally, unlike
the global evolution of ρ modeled both here and elsewhere (8).
Our core result is that a solution acting at many sites at once

evolves in small populations, and local solutions at each in-
dependent site evolve in large populations, whereas either out-
come is possible in populations of intermediate size. Local
solutions, associated with large populations, have both higher
mean fitness and greater evolvability.

Methods
Simulation Procedures. The population is replaced each generation by sam-
pling according to a Wright–Fisher process without recombination. The
probability that a given new individual has genotype i equals

niωðiÞ
∑j

�
njωðjÞ

�; [10]

where ni denotes the number of individuals with genotype i and the sum is
made over all of the genotypes in the population. Changes in Ldel(i), which
occur with probability μnhpdel ðLtot − LdelÞ (increase) and μnhp−delLdel (de-
crease), lead to new genotypes, as do changes in ρ(i) occurring with prob-
ability μρ = 10−5 per individual per generation. Such mutations increase
log10(ρ) by an amount sampled from a normal distribution with mean = 0

and SD = 0.2. For each set of parameter values, 20 simulations were run for 5
× 107 generations, starting from a monomorphic population with log10(ρ)
either −5 or −2 and Ldel either Ldel (neutral) or 0. During an initial period of
106 generations, μρ is set to 0. The equilibrium values of Ldel in Fig. 1 were
obtained by keeping μρ = 0 all along each simulation and initializing ρ with
the desired values.

We assumed clonal reproduction to reduce simulation times. The summary
statistic Ldel would have to be replaced by a specific tracking of each locus in
a model with sex and recombination, which would be very computatio-
nally expensive.

Estimation of γ and s. We estimated the cost of expressing deleterious cryptic
sequences from the fitness of heterozygotes for a lethal allele. Szafraniec and
collaborators (19) estimated the dominance coefficient h ≈ 0.0034 for lethal
mutations in Saccharomyces by comparing fitness of heterozygotes vs.
haploids. The comparison between haploids and heterozygotes may not be
ideal, for instance because certain genes can be lethal in haploids and not in
homozygote diploids (19), so h is probably underestimated in this study. In
Drosophila populations, h ranges from 0.0057 to 0.025 (18). We thus used
h = 0.007, so the fitness associated with the expression of a lethal sequence
with frequency 0.5, f(0.5), equals 1 − h = 0.993.

In the multiplicative fitness scenario, fitness associated with the expression
of a deleterious sequence in the 3′-UTR of a single locus coding for an es-
sential protein is assumed to take the form

f ðρÞ ¼ ð1− ρÞγ: [11]

This is the first term of Eq. 3, corresponding to Ldel = 1. From Eq. 11 with
ρ = 0.5, we calculate γ as

γ ¼ logðf ð0:5ÞÞ
logð1− 0:5Þ ¼ logð0:993Þ

logð0:5Þ ≈ 0:01: [12]

We used this value of γ in the main text and studied the effect of this pa-
rameter in Fig. S6.

Table 1. Applications for this model

Type of error
Local solution(s) (low

Ldel)
Global solution(s)

(low ρ) Assimilation Remarks
Selected

refs.

Stop codon read-
through

Read-through of 3′-UTR
is benign

Accurate ribosome
and release
factors

Stop codon disappears (29, 30, 32)

Splicing error Erroneous splice site
yields benign
product

Accurate
spliceosome

New alternative splice
site appears

ρ may not reach 1 after
assimilation

(33, 34)

Failure to fold,
misfolding

Chaperone-
independent
folding

Chaperones — Excess folding stability
increases
evolvability by
facilitating the
evolution of proteins
with similar
fold but alternative
sequences and
functions

(9)

Mistranslation-
induced folding
errors

Optimal codon use Chaperones — (35)

Failure to fold Excess stability
(thermodynamic)

AT-biased DNA
repair

— Selection strengths
differ, so AT bias
is selected at
low Ne, then GC at
intermediate Ne,
and then balance
between the two at
high Ne

(36, 37)

Misfolding Canalized folding
process (kinetic)

CG-biased DNA
repair

— (36)

Mutational loss of
function

Purging of loss-of-
function mutants,
gene duplication

Low mutation rate,
genome
duplication (e.g.,
high ploidy),
other tolerance of
loss
of function

Subfunctionalization or
neofunctionalization

(8, 38)
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We used the same approach to estimate s in the additive fitness sce-
nario. For the purpose of comparison with the multiplicative scenario,
we assume the same fitness effect for ρ = 0.5, Ldel = 1. Eq. 11
then becomes

f ðρÞ ¼ 1− sρ
1

Ltot
: [13]

The value of s depends on Ltot, which we take to be 1,000. From Eq. 13 with
ρ = 0.5, we calculate s as

s ¼ ð1− f ð0:5ÞÞLtot

ρ
¼ 0:007× 1000

0:5
≈ 14: [14]

We used this value for s in the additive fitness scenario (Figs. S1 and S2), and
we studied the effect of this parameter in Fig. S3.
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