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Locomotion is widely observed in life at micrometric scales and is
exhibited by many eukaryotic unicellular organisms. Motility of
such organisms can be achieved through periodic deformations of
a tail-like projection called the eukaryotic flagellum. Although the
mechanism allowing the flagellum to deform is largely understood,
questions related to the functional significance of the observed
beating patterns remain unresolved. Here, we focus our attention
on the stroke patterns of biflagellated phytoplanktons resembling
the green alga Chlamydomonas. Such organisms have been widely
observed to beat their flagella in two different ways—a breast-
stroke and an undulatory stroke—both of which are prototypical
of general beating patterns observed in eukaryotes. We develop
a general optimization procedure to determine the existence of
optimal swimming gaits and investigate their functional signifi-
cance with respect to locomotion and nutrient uptake. Both the un-
dulatory and the breaststroke represent local optima for efficient
swimming. With respect to the generation of feeding currents,
we found the breaststroke to be optimal and to enhance nutrient
uptake significantly, particularly when the organism is immersed in
a gradient of nutrients.
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The vast majority of living organisms are found in an astonish-
ing diversity at micrometric scales. Such seemingly simple uni-

cellular organisms interact with their surroundings and exhibit
complex dynamic behaviors in order to access resource-rich
environments. The ability to locate and take advantage of such
favorable environments relies on a rapid chemotactic response
(1, 2). In this paper, we investigate the motility of specific micro-
organisms to address questions related to the functional adapta-
tion, efficiency, and optimization of biolocomotion.

A dominant trait shared by many microorganisms is the preva-
lence of flagella as motility appendages. The structure of the
axoneme, which constitutes the core of the eukaryotic flagellum,
is extremely well preserved across the eukaryotic domain. This
same structure is found to propel sperm cells and, when several
of them beat collectively as cilia, to expel mucus from human
lungs. The eukaryotic flagellum has a complex internal “9þ 2”
microtubule structure (3), whose elaborate molecular machinery
allows the flagellum to induce local bending moments and
actively deform its shape. It is noteworthy that these flagella
are widely observed to beat in two significantly different ways:
undulatory traveling waves that propagate down the flagellum
(as exhibited by sperm cells), and so-called “effective recovery”
strokes commonly observed in cilia. Because it is possible for
organisms to alter and control the waveform along the flagellum,
it is of interest to investigate the functional significance of these
specific flagellar stroke patterns and their utility with respect to
swimming and feeding.

Previous investigations of nutrient transport and hydrody-
namics around microorganisms (4–7) considered model swim-
mers, neglecting the details of the propulsion mechanisms and
swimmer geometries. In contrast, we will focus our attention
on a biflagellated swimmer, such as green alga Chlamydomonas,
and consider the hydrodynamics of specific swimming strokes.

Chlamydomonas was selected as our archetypal organism because
it has been well studied and there exists an abundance of experi-
mental data related to motility. For example, recent studies show
that the stroke patterns and synchronization of the flagella of
Chlamydomonas have been associated with a diffusive “run-and-
tumble” dynamics (8). Other research indicates that the interac-
tions between the swimming dynamics of Chlamydomonas (and
other phytoplankton) and a surrounding shear flow can give rise
to thin concentrated layers of microorganisms (9).

A remarkable feature of Chlamydomonas is that its flagella are
observed to beat in both the effective recovery stroke (10, 11) and
the undulatory traveling wave (12, 13). The most common stroke,
the breaststroke, has the same effective recovery structure as the
stroke of cilia. The other stroke, observed in response to a shock
of light (12) or an electric stimulation (13), resembles the undu-
latory beating patterns of uniflagellates. Here, we elucidate the
relevance of these two different beating modes and rationalize
their function by computing optimal stroke patterns for biflagel-
lated organisms. More precisely, we will examine the relevance
of swimming gaits in relation to swimming efficiency and the
generation of feeding currents.

Results
We consider a swimmer of a given geometry, inspired by Chlamy-
domonas, which consists of a rigid spherical cell body of radius
R ¼ 5 μm and two separate flagella of length L ¼ 12 μm and
radius r ¼ 0.15 μm attached at the surface S of the cell (10)
(Fig. 1). Varying the ratio between the flagellum and head lengths
L∕R ¼ 1.5–4.0 did not affect our findings and we therefore only
present results for this particular representative geometry. The
swimmer is immersed in water of density ρ ≈ 103 kg·m−3 and
dynamic viscosity μ ≈ 10−3 kg·m−1·s−1 and performs a “stroke”
(i.e., a periodic deformation) at a frequency f ≈ 10–100 Hz
(10, 12). The nondimensional parameter governing the hydrody-
namics is the Reynolds number (Re). Here Re ¼ ρR2f∕μ ≈ 10−3

to 10−2, which is small, signifying that the flow is dominated by
viscous effects and governed by Stokes equations,

−∇ pþ μ∇2u ¼ 0;

where p is the pressure field and u is the incompressible velocity
field which satisfies ∇ · u ¼ 0.

The swimmer has two distinct flagella, i ¼ 1; 2. The kinematics
of the periodic deformations are defined by the curvature γiðt;sÞ
along each separate flagellum i at time t and arclength s along the
centerline. These stroke deformations are constrained to remain
in the (x̂, ŷ) plane (Fig. 1). We only consider stroke kinematics
that generate no net rotation of the swimmer and for which the
flagella do not intersect or penetrate the cell body. The deforma-
tions of the flagella generate a fluid flow u as the swimmer moves
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at an average velocity U in the x̂ direction. Both u and U can be
computed numerically (see Methods). In the following, we moti-
vate the definitions of a swimming and a feeding efficiency, which
are then used to optimize the stroke kinematics. Optimal swim-
ming gaits were computed via constrained nonlinear optimization
of the curvature functions γiðt;sÞ (see Methods). To explore the
space of all acceptable strokes, optimization procedures were
started from a range of initial strokes, a sample of which can be
seen in Fig. 1B. Note that these initial guesses varied significantly
in amplitude and did not resemble any experimentally observed
swimming gait.

Optimal Swimming Strokes. The swimming efficiency Es is defined
as the ratio of the rate of work required to drag the cell body at an
average velocity U, to the mechanical power ϕ exerted by the
swimmer on the viscous fluid

Es ¼
c∥0U

2

ϕ
¼ U2

U2
ϕ

; [1]

where c∥0 ¼ 6πμR is the axial drag coefficient and Uϕ the charac-
teristic velocity associated with the mechanical power ϕ, defined
such that ϕ ¼ c∥0U

2
ϕ. The definition of Es is consistent with pre-

vious investigations (14–16) and is a measure of both the speed
and energy efficiency of a given stroke. The swimming efficiency,
Es, hence quantifies the hydrodynamic adequacy of a particular
stroke for locomotion. Previous studies of optimal strokes for
uniflagellated swimmers have suggested the existence of a unique
optimal stroke maximizing Es (16, 17) consisting of an undulatory
traveling wave propagating along the flagellum. Here, we find
that the addition of a second flagellum substantially increases
the complexity of the optimization problem, resulting in multiple
local optima rather than a unique globally optimal solution.
These locally optimal strokes are represented in Fig. 2 A–D.

Strokes A and B correspond respectively to asymmetric and
symmetric undulatory traveling waves, with finite regions of
high curvature of alternating signs propagating down the flagel-
lum (Fig. 2 A and B). Their respective swimming efficiencies
are EA

s ¼ 0.0014 and EB
s ¼ 0.0024. Stroke C is symmetrical with

EC
s ¼ 0.0042; its structure consists of two regions of high curva-

ture of opposite sign forming simultaneously at the two ends of
each flagellum and propagating toward the middle of the flagel-
lum (Fig. 2C). Finally, stroke D has the distinctive effective re-
covery structure of the breaststroke with a finite region of high
curvature propagating down the flagellum (Fig. 2D). This stroke
has the highest swimming efficiency ED

s ¼ 0.0080.
It is noteworthy that strokes A, B, and D have all been ob-

served in previous experimental studies of living Chlamydomonas
(8). Fig. 3A represents the stroke kinematics of the computed
optimal undulatory stroke A, which is in remarkable agreement
with experimentally observed undulatory strokes (12) reproduced
in Fig. 3B.

Optimal Feeding Strokes. Another function of flagellar activity
is the generation of feeding currents. Such currents are only
relevant if nutrient transport occurs at scales for which advection
cannot be neglected with respect to diffusion, as characterized by
Pe≳ 1, where Pe is the Péclet number. The velocity-based Péclet
number can be expressed in terms of the swimming velocityU, the
nutrient diffusivity D, and the radius of the cell R as

PeU ¼ UR
D

; [2]

and represents the ratio of the swimming velocity to the typical
diffusion speed. For Chlamydomonas U ∼ 50–200 μm·s−1 (10, 12)
and R ∼ 5 μm. As a green alga, Chlamydomonas feeds on inor-
ganic ions (18) but has also demonstrated chemotaxis toward
larger organic biomolecules, e.g., maltose and sucrose (19). Con-
sidering that Chlamydomonas can be found in its natural habitat
near freezing temperatures, the nutrient diffusivities range from
D ∼ 10−10 to 10−9m2:s−1 and hence the Péclet number PeU varies
between ∼0.1 and 10. At these transitional values, diffusion is
still a dominant mode of transport but advection also becomes
significant and the generation of feeding currents can theoreti-
cally enhance nutrient uptake.

Previous studies have investigated the generation of feeding
currents using model swimmers with simplified geometries
(5, 7, 20), and prescribed deformations (21, 22). Here we consider
instead general stroke patterns for our model biflagellate and
address questions related to the adaptation, efficiency, and exis-
tence of optimal swimming gaits with respect to nutrient uptake.
To this end, we define a feeding efficiency Ef—which charac-
terizes how effectively the stroke enhances nutrient uptake—as
the fraction of the total energy expense used to create a favorable
advective flux of nutrients. To compute this quantity, we require a
measure of the flux of nutrients at the surface of the swimmer.
Computing the exact nutrient flux requires solving the advection–
diffusion equation for the nutrient concentration field which,
combined with the optimization procedure, has a crippling com-
putational cost.

We therefore derive an approximate representation of the
advective flux by estimating the inbound volumetric flow rate

A B

Fig. 1. (A) Schematic of the model biflagellated swimmer, relevant length
scales and notation. (B) Sample of the stroke kinematics used as initial
guesses for the optimization procedure.

Fig. 2. Representation of the five optimal strokes for biflagellated swimmers computed numerically. Plots represent the curvature γi along one flagellum as a
function of the arclength at successive times during the strokes. The corresponding stroke kinematics are illustrated by a sequence of shapes, for which all
swimmers move to the right. (A–D) Strokes A–D are optimized for the swimming efficiencyEs with initial guess given by (A) asymmetric and (B) symmetric small
amplitude oscillations, (C and D) large amplitude oscillations. (E) Stroke E is optimized for the feeding efficiency Ef and is found regardless of the initial guess.
Values of Es and Ef for each stroke A–E are indicated in the plot.
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over one cycle. Our expression for Ef relies on the derivation of a
characteristic length scale ℓ of fluid displaced by the flagella dur-
ing one stroke. Because the hydrodynamics are unsteady, the es-
timation of ℓ cannot rely on averaged flow fields. Instead, exact
particle pathlines are integrated in time and ℓ is computed as an
averaged displacement of material particles seeded around the
swimmer (see Methods). Using this length scale, we define the
feeding efficiency

Ef ¼
5πμℓðℓf Þ2

ϕ
; [3]

representing the ratio of the power required to move a spherical
blob of fluid of radius ℓ at speed ℓf to the total mechanical power
ϕ exerted by the swimmer.

Using this definition for Ef as the new objective function we
compute optimal strokes for the generation of feeding currents.
We found that regardless of the initial guess (Fig. 1B) the proce-
dure converged to a unique optimum, stroke E, represented in
Fig. 2E. Fig. 3 D and E illustrate the effective recovery structure
of stroke E and highlights the qualitative agreement between our
computed stroke E and experimental observations of the breast-
stroke (10). The feeding efficiency of stroke E isEf ¼ 0.13516 and
is significantly higher than the efficiencies of the swimming strokes
A, B, C, and D, whose respective values are EA

f ¼ 0.00354, EB
f ¼

0.00265, EC
f ¼ 0.04375, and ED

f ¼ 0.04009. The swimming effi-

ciency of stroke E on the other hand is EE
s ¼ 0.00340, which

is considerably lower than that of the optimal swimming stroke
D,ED

s ¼ 0.00801. It is noteworthy that the optimal feeding stroke
E and the optimal swimming stroke D are qualitatively similar
and have the same effective recovery structure, the main differ-
ence being the larger amplitude of the swimming stroke D.

Fig. 3 C and F represent the deformations induced by a single
stroke A and E on an initially circular material line. The ampli-
tude of deformations indicate that the breaststroke is creating a
fluid flow at a larger scale than the undulatory stroke: The larger
net volumetric flow rate toward the cell surface is consistent with
larger feeding currents.

Stroke Kinematics and Nutrient Uptake. Although the feeding
efficiency Ef is an accurate measure of the size of the feeding
currents, it is not directly related to nutrient uptake. In order to
compare the exact rates of nutrient uptake associated with the
computed strokes, we solved the advection–diffusion equation
around the cell for stroke E and, for comparison, strokes A
and D:

∂C
∂t

þ u ·∇ C ¼ D∇2C; [4]

where C is the three-dimensional time-dependent nutrient
concentration field around the swimmer. We imposed a perfect
absorption boundary condition at the surface S of the cell
Cðr ¼ RÞ ¼ 0 and a prescribed concentration distribution at infi-
nity C∞. The velocity field u around the biflagellated swimmer
depends on the specifics of the swimming gait and is computed
numerically from the known deformations of the optimal strokes
(see Methods). Nutrient uptake is characterized by the nutrient
transfer rate, or flux, at the surface S of the cell F ¼ −hRRS Dð∂C∕
∂rÞdSi, where the brackets indicate that the flux is averaged over
one stroke period. Both the concentration field C and the flux F
strongly depend on the relative size of the advection term in Eq. 4
and hence on the Péclet number Pe.

In addition to PeU (Eq. 2), which characterizes the swimming
velocity U, we define an alternative Péclet number based on the
mechanical power ϕ as

Peϕ ¼ UϕR
D

; [5]

where Uϕ is the characteristic velocity associated with the me-
chanical power defined earlier. From Eq. 1, we find Peϕ ¼ PeU∕ffiffiffiffiffiffi
Es

p
. Given that Es ∼ 0.001–0.008, Peϕ is typically 10–30 times

larger than PeU depending on the stroke considered. Strokes per-
formed at equal PeU (Eq. 2) produce the same swimming velocity
U, whereas strokes performed at equal Peϕ (Eq. 5) consume the
same mechanical power ϕ and thus have the same energetic cost.
All simulations were started from an equilibrium concentration
field at time t ¼ 0 with no advective background flow. We focused
our attention on previously computed optimal strokes which have
been observed experimentally, namely: the undulatory stroke A
and the effective recovery strokes D and E.

We first considered the case of a constant concentration field
at infinity, C∞. We computed the unsteady concentration field C
and the flux F numerically over several stroke periods. The time-
dependent concentration field C went through an initial transient
mode, during which the average nutrient flux increased from the
diffusive value FðPe ¼ 0Þ to a constant steady-state value FðPeÞ.
Fig. 4A represents snapshots of the oscillatory steady-state con-
centration fields during one period of strokes A and E. In both
cases, the effect of the advection term in Eq. 4 can be readily seen
from the deformations of the initially spherical isoconcentration
surfaces. The distortions of the concentration field are more
severe for the breaststroke than for the undulatory stroke, which
allows stroke E to generate larger concentration gradients at the
surface of the sphere leading to an increased nutrient uptake. The
advective enhancement of the nutrient transfer rate is best repre-
sented by the Sherwood number (Sh) as a function of the Péclet
number

ShðPeÞ ¼ 2
FðPeÞ

FðPe ¼ 0Þ : [6]

The Sh reflects the increase in the nutrient flux due to advection
once the flux has reached its steady-state value FðPeÞ. For each
stroke, we find Sh to increase with both PeU and Peϕ (Fig. 4 B
and C) in agreement with previous studies (5, 7). At a given swim-

A

D E F

B C

Fig. 3. Comparison between the computed optimal strokes and strokes re-
corded experimentally. A–C correspond to the undulatory stroke and D–F to
the breaststroke. A and D represent snapshots of stroke patterns recorded
experimentally and are reproduced from refs. 10 and 12. B and E correspond
to snapshots of optimal stroke patterns computed using our procedure.
C and F represent the deformation induced on a closed material line by
the undulatory and breaststroke, respectively. The gray dashed line is the
circular closed material line of radius 2R at the beginning of the stroke and
the gray solid line is the corresponding deformed material line at the end of
the stroke. The shaded area A corresponds to material points dragged closer
to the cell surface during the stroke.
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ming velocity U corresponding to PeU ¼ 1, Sh is 1.5% higher
for the breaststroke E than for the undulatory stroke A and
the increase reaches 25% at PeU ¼ 7 (Fig. 4B). Over the equiva-
lent range of Peϕ, Sh is 6% higher for stroke E and 15% higher
for stroke D compared to the undulatory stroke A at Peϕ ¼ 10.
This increase reaches 28% for stroke E and 44% for stroke D at
Peϕ ¼ 70 (Fig. 4C).

Next we examined the case of a swimmer moving in a gradient
of nutrient concentration. We solved Eq. 4 for a swimmer travel-
ing at a prescribed PeU aligned with a constant gradient of con-
centration ½∇C�∞ such that Cðx;y ¼ �∞;z ¼ �∞Þ ¼ ½∇C�∞x, with
x ¼ 0 at the initial position of the center of the cell. For each
stroke, A, D, and E, we computed the time-dependent concen-
tration field C over several stroke periods and evaluated the
nutrient flux FðxÞ as the swimmer moved in the x̂ direction.

To determine how effectively the kinematics transmit informa-
tion about the concentration field to the cell, we quantify how
closely the value of the nutrient flux follows the level of the back-
ground concentration field at infinity. Consequently, we defined a
dimensionless nutrient flux F

F
�
x
R

�
¼ FðxÞ

FðPeUÞ : [7]

The denominator FðPeUÞ is the previously computed steady-state
value of the nutrient flux for the same stroke performed at the
same PeU but in a constant uniform concentration field at infinity
C∞ ¼ ð∇CÞ∞ · R. The value of the nondimensional flux F is ex-
pected to be related to the nondimensional background concen-
tration level at infinity, which is linear in the position x along x̂
and equal to x∕R. In the diffusive case PeU ¼ 0, the nutrient flux
scales exactly with the concentration at infinity, regardless of the
stroke kinematics and Fð xRÞ ¼ x

R. In this situation, the nutrient
flux precisely reflects the concentration at infinity and provides
the organism with an exact measure of the nutrient levels as
it moves in the gradient field. For finite PeU , the effect of the
specific stroke kinematics on the advection of nutrient becomes
significant and affects how closely F follows the concentration
field (Fig. 5A). It bears emphasis that for Fðx∕RÞ ≥ x∕R, the
value of F is characteristic of a nondimensional concentration
level at a coordinate x∕R greater than the actual position of
the swimmer. In other words, the nutrient flux provides an
anticipated measure of the concentration field. Conversely if
Fðx∕RÞ ≤ x∕R, the nutrient flux carries a delayed measure of
the concentration at infinity. For swimmers advancing at equal
velocity, we found that Fðx∕RÞ ≥ x∕R for breaststrokes, whereas
Fðx∕RÞ ≤ x∕R for the undulatory stroke. Hence the breast-
stroke E enhances sensing of the nutrient concentration as the
organism moves in the gradient field, whereas the undulatory
stroke A delays transfer of information (Fig. 5A).

This result is corroborated, when considering variations in flux.
We computed ∇F as the derivative ofF with respect to x∕R. For
PeU ¼ 0, ∇F ¼ 1 and the constant gradient in flux carries exact
information of the constant gradient in concentration ð∇CÞ∞,
regardless of the stroke kinematics. At finite PeU , ∇F is no long-
er exactly equal to 1, but rather converges to the steady-state
value ∇F → 1 after a transient regime. At these transitional
values PeU ∼ 1–10, the details of the stroke kinematics become
relevant, affecting the time required for a cell sensing gradients
in nutrient flux to perceive accurately the concentration gradient
at infinity. Our results indicate that the transient is very short for
the breaststrokes D and E but much longer for the undulatory
stroke A (Fig. 5B).

Discussion
The beating patterns of biflagellated phytoplankon have been
investigated experimentally in the context of flagellar synchroni-
zation and the motile response to chemical and light signals
(8, 10–13). Recent experimental work demonstrated the effective
exploitation of microscale resource patches by marine microor-
ganisms (2) and by phytoplankton in particular (23). The ability

A

B C

Fig. 4. (A) Snapshots of the nutrient concentration fields around a model
swimmer for PeU ¼ 7 at successive times computed by solving Eq. 4 numeri-
cally. The top row corresponds to the undulatory stroke A, which we com-
puted as a local optimal for Es and the bottom row to the breaststroke E,
which is the optimal stroke found for Ef. (B) Loglog plot of Sh versus
PeU ¼ 7. The inset corresponds to a semilogarithmic plot of the ratio of Sh
computed for stroke D and E divided by Sh for stroke A as a function of
PeU ¼ 7. (C) Loglog plot of Sh versus Peϕ. The inset corresponds to a semilog
plot of Sh∕ShA versus Peϕ.

Fig. 5. (A) Nondimensional flux F as a function of the nondimensional position of the swimmer along the x̂ axis x∕R. Shaded area corresponds to
Fðx∕RÞ ≤ x∕R. (B) Derivative of F as a function of x∕R. Shaded area corresponds to ∇F < 0.9. (C) Advection of material particles induced by stroke A (Upper)
and stroke E (Lower) after the swimmer has traveled a distance x∕R ¼ 4. Inset represents the location of the material particle at the initial time.

1004 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1011185108 Tam and Hosoi



to take advantage of such microscale patches (micrometer
through millimeter) before they dissipate relies on a rapid che-
motactic response (1, 2, 23), which can be improved both through
effective locomotion and through the generation of feeding cur-
rents around the cell. We have determined—by defining relevant
swimming (Es) and feeding (Ef ) efficiencies, which we used as
objective functions to find optimal stroke patterns—that the
observed flagellar stroke patterns of unicellular phytoplanktons
are optimized for both locomotive and feeding functions.

We have found four local optima for Es and one optimum
for Ef (Fig. 2). All but one of these stroke kinematics have been
observed experimentally in living organisms (8, 10–13). In parti-
cular, the qualitative agreement between our computed optimal
undulatory and breaststrokes A, D, E, and experimentally
recorded images is striking (Fig. 3). These similarities suggest
that hydrodynamics is the dominant factor in determining the
organization of the stroke. It also bears emphasis that the only
computed kinematics not observed experimentally, stroke C, is
the only stroke for which regions of high curvature are initiated
at both ends of the flagellum (rather than solely at the base) and
travel in opposite directions simultaneously. This observation
suggests a possible physiological limitation to stroke patterns
of eukaryotic flagella, whereby bending can only be induced at
the base and travel toward the tip.

Both the undulatory and the breaststroke are found to be
locally optimal for the swimming efficiency (Fig. 2). Free swim-
ming Chlamydomonas cells have been observed to swim consid-
erably faster using the breaststroke UD ¼ 150� 50 μm·s−1 (10,
24) rather than the undulatory stroke UA ¼ 50 μm·s−1 (12). Our
theoretical results agree with these observations as the swimming
efficiency of the optimal breaststroke D, ED

s ¼ 0.0080, is signifi-
cantly higher than that of the optimal undulatory stroke
EA

s ¼ 0.0014. These values for Es also agree quantitatively with
the measured values for the swimming velocities. The velocity
ratio between stroke D and A can be expressed theoretically from
Eq. 1 as UD∕UA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED

s ϕ
D∕EA

s ϕ
A

p
. Assuming the rate of work ϕ

exerted by Chlamydomonas to be independent of the particular
stroke executed, we can predict the velocity ratio theoretically
UD∕UA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ED

s ∕EA
s

p
¼ 2.4, which compares favorably with

experimental measurements UD∕UA ¼ 3� 1. Additionally, our
computed breaststroke D travels a distance of 1.4 μm per stroke
and the undulatory stroke A travels 0.4 μm per stroke. Given the
typical beating frequencies of 40–64 Hz reported for the breast-
stroke (10) and 80Hz reported for the undulatory stroke (12), our
model predicts a swimming velocity of ≈56–90 μm·s−1 for the
breaststroke and ≈32 μm·s−1 for the undulatory stroke. These
predicted values are comparable, albeit somewhat lower, than
the velocities measured experimentally. The discrepancy is likely
to be due to our assumption of a spherical head, for which the
viscous drag is significantly higher than for a cell of aspect ratio
0.5–0.6, as it is the case in these experimental studies.

The values of Es computed for our model biflagellated swim-
mer can be compared with those computed for uniflagellated
swimmers (17), whose strokes have been optimized for swimming
efficiency. For uniflagellated swimmers with a spherical head of
diameter R ¼ 5 μm, the value of Es depends on the length of the
flagellum and reaches a maximum of 0.0140 (17) for a flagellum
of length L ¼ 120 μm. This observation indicates that the
particular biflagellated geometry investigated here does not gain
anything in swimming efficiency over uniflagellated organisms.

Consequently, we investigated optimal stroke patterns in rela-
tion to another function, namely feeding and enhancement of
nutrient uptake via the generation of feeding currents. In this
spirit, we derived the expression for the feeding efficiency Ef ,
which characterizes the magnitude of the volumetric inbound flux
toward the surface of the swimmer induced by a stroke performed
at a given rate of work. Using Ef as an objective function, our

optimization procedure always converged to a breaststroke E
(Fig. 2E), qualitatively similar to experimental observations
(Fig. 3), and which only differed from the swimming breaststroke
D in amplitude. Visualizing and comparing the deformations
induced by a single stroke on a material line confirms that the
breaststroke creates a flow around the cell on a larger scale than
the undulatory stroke and draws fluid closer to the surface of the
cell more effectively (Fig. 3).

In order to quantify precisely how the stroke kinematics impact
nutrient uptake, we solved the full advection–diffusion equation
given the optimal kinematics and compared the values of the
nutrient flux at the surface of the swimmer. We found that the
effect of the specific stroke patterns on nutrient flux becomes sig-
nificant for transitional values of the Péclet number PeU ∼ 1–10,
on the same order as the characteristic Péclet number exhibited
by Chlamydomonas. In a constant concentration field at infinity,
the swimming breaststroke D generates a nutrient flux 44%
higher than the undulatory stroke performed at equal energetic
cost Peϕ ¼ 70 and the feeding breaststroke E creates a flux 25%
higher than the undulatory stroke performed at equal swimming
velocity PeU ¼ 7. These results demonstrate the crucial role of
stroke kinematics in increasing the rate of nutrient uptake and
show that, in the transitional Péclet number regime, the breast-
stroke is better than the undulatory stroke at enhancing nutrient
uptake via the creation of feeding currents.

We also examined the effectiveness of stroke kinematics in
transmitting information about the concentration field to the cell
surface, by investigating how closely the variations in nutrient flux
follow the variations in the concentration field. For a constant
gradient at infinity, the levels of both the nutrient flux F and
its gradient ∇F indicate that the breaststroke conveys an antici-
pated measure of the concentration landscape, whereas the
undulatory stroke delays the transfer of information. This obser-
vation can be rationalized by considering the displacement of
material particles induced by the different stroke kinematics.
In Fig. 5C, it becomes apparent that, with the breaststroke, the
organism tends to pull the fluid in the front toward its surface,
providing information on the field ahead. The undulatory stroke
on the other hand, tends to push away the fluid in the front, hence
delaying the transmission of information about the upcoming
conditions. The variations of ∇F as the cell advances best char-
acterize how fast changes in the background concentration field
can be sensed at the cell surface. For all stroke kinematics, ∇F
eventually converges to a constant steady-state ∇F ¼ 1 after
going through a transient. The duration of this transient is
strongly dependent on the stroke kinematics. For PeU ¼ 7, we
found the response time at which ∇F reached 90% of its stea-
dy-state value to be x∕U ∼ R∕U for the breaststroke but up to
x∕U ∼ 10R∕U for the undulatory stroke. Hence, although the
breaststroke allows the organism to sense the concentration
gradient accurately after swimming a distance of only ∼5 μm, the
undulatory stroke requires swimming a distance of ∼50 μm to
acquire the same information. The difference between these
response lengths is significant considering that phytoplankton
have been shown to take advantage of nutrient patches a small
as 100 μm (23). In addition, it is noteworthy that during the tran-
sient ∇F > 1 for the breaststroke, which provides an amplified
measure of the concentration gradient, while ∇F < 1 for the un-
dulatory stroke, which initially damps the concentration gradient
(Fig. 5B). This improved sensing associated with the breaststroke
favorably affects the speed of the chemotactic response and may
improve the ability of an organism to detect and take advantage
of nutrient patches.

Methods
Hydrodynamics. The hydrodynamics in our system is governed by the Stokes
equations. These are solved using a singularity method, in which fundamen-
tal solutions to the Stokes equations are distributed along the centerline of
both flagella and at the center of the spherical head, such that the no-slip
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boundary condition is satisfied to first order along the surface of the deform-
ing body. The system of fundamental solutions required to represent the
head and the slender tail can be found, respectively, in refs. 25 and 26.
Hydrodynamic interactions between the head and the tail are taken into
account by using Faxén’s laws (27). In this formulation, the hydrodynamics
is governed by an integral equation in the singularity distribution. The tail
is discretized into a regular grid of N elements (typically N ≈ 100) and the
integral equation is solved numerically using a midpoint collocation scheme
to find the motion of the swimmer. Additionally, the flow field u at each
point around the swimmer can be computed by integrating the contribution
to the flow of each singularity over the entire distribution.

Optimization. Optimal strokes are computed using the MATLAB fminconðÞ
routine, which implements sequential quadratic programming to find
optimal values of a nonlinear function subject to constraints. Such nonlinear
programming algorithms require a parameterization of the stroke kine-
matics via a finite set of parameters representing the periodic time variation
of the curvature γðt;sÞ. Here, we impose the curvature at a discrete set Nγ of
nodes along the tail (typically Nγ ≈ 25). At each of these nodes, the curvature
is discretely represented by its first Fourier modes. The curvature at the N
elements of the spatial discretization of the tail is deduced by cubic spline
interpolation. This parameterization of the curvature γðs;tÞ is general and
can represent any periodical deformation of the swimmer. Strokes are
optimized subject to the constraint that the swimming path remains straight
and that it does not generate net rotation.

Feeding Efficiency. The feeding efficiency, Ef , depends on the characteristic
length scale ℓ of fluid displaced, which we define by considering the displa-
cement of material particles in the (x̂, ŷ) plane containing both flagella
(Fig. 1). Let r0ðθ;tÞ represent a closed material line in the (x̂, ŷ) plane, with
θ the polar angle from the x̂ axis and t denoting time. At t ¼ 0, the material
line corresponds to a circle of radius jr0ðθ;0Þj ¼ 2R around the cell (Fig. 3 C
and F). Following the motion of material points, we track the deformation
of this material line, which after one stroke period τ ¼ 1∕f is described
by r0ðθ;τÞ. The surface area of the domain, A, is defined as points of polar
coordinates (r, θ) in the (x̂, ŷ) plane which satisfy both r ≤ jr0ðθ;0Þj and r ≥
jr0ðθ;τÞj (Fig. 3 C and F). This area A corresponds to material points dragged
closer to the cell surface during the stroke and is a measure of the volumetric
flow rate. The characteristic length scale ℓ of displaced fluid is defined
as ℓ ¼ ffiffiffiffi

A
p

.

Numerical Solver for the Advection–Diffusion Equation. The time-dependent
advection–diffusion Eq. 4 is solved numerically using finite differences. We
used a spherical coordinate system replacing the radial distance coordinate
r with ξ ¼ ln r in order for mesh points to be more densely packed at the
surface of the sphere. The boundary condition on the concentration field
at infinity C∞ is imposed at r ¼ 300R.
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