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Abstract
Several lines of evidence suggest the existence of multiple progestin receptors that may account
for rapid and delayed effects of progesterone in the central nervous system. The delayed effects
have been long attributed to activation of the classical progestin receptor (Pgr). Recent studies
have discovered novel progestin signaling molecules that may be responsible for rapid effects.
These include, and progesterone receptor membrane component 1 (Pgrmc1), Pgrmc2, progestin
and adipoQ receptor 7 (Paqr7) and Paqr8. The functions of these molecules have been investigated
extensively in non-neural, but not in neural tissues, partly because it is unclear which are
expressed in the brain and where they are expressed. To address these issues, we compared the
distributions of mRNAs encoding Pgr, Pgrmc1, Pgrmc2, Paqr7 and Paqr8 using in situ
hybridization with radiolabeled oligodeoxynucleotidyl probes in forebrain tissues of estradiol-
treated female rats. We also examined the distribution of serpine mRNA binding protein 1
(Serbp1), a putative binding partner of Pgrmc1. Analysis of adjacent brain sections showed that
the highest expression of mRNAs encoding Pgr, Pgrmc1, Pgrmc2 and Serbp1 was detected in
several hypothalamic nuclei important for female reproduction. In contrast, expression patterns of
Paqr7 and Paqr8 were low and homogeneous in the hypothalamus, and more abundant in
thalamic nuclei. The neuroanatomical distributions of these putative progestin signaling molecules
suggest that Pgrmc1 and Pgrmc2 may play a role in neuroendocrine functions while Paqr7 and
Paqr8 are more likely to regulate sensory and cognitive functions.
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Introduction
Progesterone (P4) is widely recognized for its ability to regulate neural functions related to
reproduction, but it also affects diverse processes such as cognition and neurogenesis
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(Berman et al., 1997, Giachino et al., 2003). The traditional tenet of P4 action is that it binds
the cognate progestin receptor (Pgr), and functions as a ligand-activated transcription factor
to regulate gene expression. However, rapid non-genomic effects have also been reported
(Meyerson, 1972, Parsons et al., 1980, Mani et al., 1994), and P4 can act in the absence of
Pgr (Frye et al., 2006). These data support the emerging concept that P4 actions in the brain
may be through the classical Pgr and also through non-classical mechanisms.

Current research suggests that there are several possible candidates for mediating the non-
classical effects of P4. One such protein is progesterone receptor membrane component 1
(Pgrmc1), but it does not appear to function as a traditional receptor because it requires a
binding partner known as serpine mRNA binding protein 1 (Serbp1) (Peluso et al., 2005,
Peluso et al., 2006). Moreover, the structure of Pgrmc1 does not share homology with either
classical steroid receptors or G-coupled protein receptors (Mifsud and Bateman, 2002).
Nonetheless, Pgrmc1 mediates several important Pgr-independent effects. For example, P4
acts through Pgrmc1 to activate phosphoinositide-dependent protein kinase 1 and
phosphorylate Akt (Hand and Craven, 2003). In the ovary, Pgrmc1 and Serbp1 form a
receptor complex required for the antiapoptotic effects of P4 in granulosa cells (Peluso et al.,
2006, Zhang et al., 2008). Pgrmc2 is a closely related isoform of Pgrmc1, differing mainly
in its N-terminus, but there is virtually no information regarding Pgrmc2 function
(Falkenstein et al., 1999, Peluso et al., 2005). Pgrmc1 has been localized to several brain
regions (Krebs et al., 2000, Sakamoto et al., 2004, Meffre et al., 2005), but no studies have
systematically mapped its distribution and the role of this protein in the brain remains
unknown. Likewise, no studies have mapped neural expression of Serbp1 or Pgrmc2.
Despite these limitations, several lines of evidence indicate that Pgrmc1/Serbp1, and
possibly Pgrmc2, may be important for non-classical P4 actions in the brain.

Two other candidates for mediating the non-genomic effects of P4 are progestin and adipoQ
receptor 7 (Paqr7) and Paqr8. These are G-protein coupled receptors first discovered in
spotted sea trout, and subsequently in mammalian tissues (Zhu et al., 2003a, Zhu et al.,
2003b). Although activation of these receptors by P4 regulates cAMP levels and MAPK
activity in fish (Hanna et al., 2006), there is some debate about whether they function as
bona fide P4 receptors in mammals (Fernandes et al., 2008). Recent reports detected Paqr7
and Paqr8 mRNAs in hypothalamic tissue of mice, but the exact anatomical localization is
unknown (Sleiter et al., 2009). Collectively, these findings raise the possibility that Paqr7
and Paqr8 also mediate P4 neural actions.

Although there is abundant evidence that these signaling molecules participate in P4
signaling, it is unclear which are important in the nervous system. Moreover, while many
neural functions are modulated by P4, there is little information about which functions
require Pgr, non-nuclear receptors or both. One obstacle to resolving this question is that
neither the classical Pgr nor any of the non-classical P4 receptor candidates have been
systematically mapped in the brain. To address this issue, we used in situ hybridization
histochemistry (ISHH) to map the expression of mRNAs encoding Pgr, Pgrmc1, Pgrmc2,
Serbp1, Paqr7 and Paqr8. In these studies, we used female rats because of the important role
P4 plays in regulation of female-specific physiological functions.

Materials and Methods
Animals and tissue preparation

All protocols were approved by the Institutional Animal Care and Use Committee of the
University of Massachusetts and all animals were housed in accordance with the National
Institutes of Health Guidelines for the Care and Use of Laboratory Animals. Six adult
female Sprague-Dawley rats (225–250 g; approximately 95 days of age; Harlan Sprague-
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Dawley, Madison WI) were individually housed in the Animal Care Facility on a 14:10
light:dark cycle with food and water provided ad libitum. To achieve a similar hormonal
milieu among rats, we ovariectomized them and implanted two Silastic capsules containing
E2 (150 μg/ml 17β-estradiol in sesame oil) a week later as described previously (Petersen
and LaFlamme, 1997). Twenty-four hours later, we collected brains and rapidly froze and
stored them at −80 °C until they were cryosectioned (Leica CM3000, Nussloch, Germany).

For three animals, 14-μm coronal forebrain sections were obtained and thaw-mounted onto
gelatin-coated slides and stored at −80 °C until ISHH was performed. The remaining three
animals were used for RNA isolation in validation studies described below.

Oligodeoxynucleotidyl probe preparation
In these studies, we used oligodeoxynucleotidyl probes of the same length and specific
activity. Antisense oligodeoxynucleotide sequences used for end-tailing are provided in
Table 1. Both sense and antisense sequences were produced by an automated DNA
synthesizer and purified by reverse-phase HPLC by Integrated DNA Technologies
(Coralville, IA). Oligodeoxynucleotides were 3'-end labeled with [α33P]-dATP
(PerkinElmer, Waltham, MA) using terminal deoxynucleotidyl transferase (Roche,
Indianapolis, IN) as described previously (Petersen et al., 1989). Incubation was halted by
addition of TE (10mM Tris-HCL; pH 8.0, 1 mM EDTA), and the probe was purified by
phenol-chloroform extraction and ethanol precipitation. The resulting pellet was washed
with 70% ethanol and resuspended in 25 μl TE.

ISHH
The distribution pattern for each mRNA was determined in separate ISHH runs, and tissue
sections were prehybridized as previously described (Ottem et al., 2004). Radioisotopic
probes (0.5 × 106 cpm) were applied directly to brain tissue in 20 μl hybridization buffer.
This buffer contained 4XSSC (1XSSC = 0.15 M NaCl/0.015 M sodium citrate, pH 7.2),
50% (v/v) formamide, 10% (w/v) dextran sulfate, 250 μg/ml yeast tRNA, 1X Denhardt's
solution, 500 μg/ml heparin sodium salt, 0.1% sodium pyrophosphate and 0.05 M
dithiothreitol added freshly before use. Sections were covered with glass coverslips and
hybridized overnight at 37 °C in humidified plastic boxes. Slides were removed from 37 °C
and allowed to cool, and coverslips were floated off in 1XSSC. They were washed four
times for 15 minutes each in 2XSSC-50% formamide solution at 40 °C, followed by four
washes, 15 minutes each, in 1XSSC. Finally, slides were rinsed in water and briefly
dehydrated in 70% ethanol. The slides were air-dried and apposed to Kodak BioMax MR
film (Rochester, NY) for signal detection. In order to acquire optimum signal,
autoradiograms were developed at 1, 3 and 6 weeks by an X-ray film processor and images
were acquired using BioQuant Imaging Software (Bio-Quant Inc, Nashville, TN,) and a
CCD videocamera (QImaging QICAM FAST color).

Validation of probe specificity
To determine the specificity of the hybridization signal, sense strand probes to each target of
interest were hybridized to representative sections. To verify specificity of each antisense
probe, subsets of adjacent slides were treated with RNAse A solution (100 μg/ml RNAse A
in 0.5 M NaCl, 0.05 M EDTA and 0.01 M Tris-HCl) for one hour at 37 °C following
prehybridization. An additional set of slides was used for Nissl staining in order to provide
reference material for identification of specific brain regions.

Regardless of exposure time, Paqr7 and Paqr8 antisense probes produced diffuse and
homogeneous signal, therefore multiple probes (Table 2) were used for each gene to verify
signal specificity. To ensure specificity in regions that displayed low ISHH signal for Paqr7,
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quantitative polymerase chain reaction (QPCR) was performed using cDNA derived from
RNA of the diagonal band of Broca and striatum, regions with two different signal
intensities. RNA was isolated from tissue punches using the RNeasy Lipid Tissue Kit
(Qiagen, Valencia, CA) and reverse transcribed into cDNA using Quantitect Reverse
Transcription Kit (Qiagen) and manufacturer's protocol. Reactions were performed in a
Stratagene Mx3000P instrument programmed as follows: 95 °C, 10 min, and 40 cycles of 95
°C for 15 sec and 60 °C for 60 sec. Reactions contained reagents from QuantiTect SYBR
Green Kit and manufacturer's protocols were used (Roche Diagnostics, Indianapolis, IN).
Specific primer sets were obtained from Integrated DNA Technologies, and the forward and
reverse primers used to detect Paqr7 mRNA were TGCACCGCATCATAGTGTC and
TGATAGTCCAGCGTCACAGC. Resulting cycle thresholds were normalized using
forward and reverse primers for beta-actin: GGGAAATCGTGCGTGACATT and
GCGGCAGTGGCCATCTC. Samples with no cDNA were used as negative controls.
Products were resolved using 2% agarose gel electrophoresis.

Data Analysis
Neuroanatomic mapping of Pgrmc1, Pgrmc2, Paqr7, Paqr8, Serbp1 and Pgr was performed
with the aid of a rat brain atlas (Swanson, 1998) and Nissl-stained adjacent sections.
Relative levels of mRNA were determined by optical densitometric measurements of the
autoradiographic signals across different brain regions. Results of this semiquantitative
ISHH were obtained by digitizing all autoradiographic images and four ranges of density of
labeling were used to determine relative intensities across brain regions and across probes.
Signal strength intensity was determined using arbitrary optical density units and denoted by
– (background; 0–51), + (low; 52–102), ++ (moderate; 103–153), +++ (154–204), and ++++
(highest signal intensity; 205–255). Digitized images were imported into Adobe Photoshop
8.0 CS (Adobe Systems Inc., San Jose CA) and all figures were cropped to the same size for
display.

For QPCR studies, relative levels of Paqr7 mRNA were analyzed using the 2-ΔΔCt method
(Livak and Schmittgen, 2001).

Results
Probe specificity

We verified the specificity of the probes used in these studies in several ways. All four
oligodeoxynucleotidyl probes for each target produced the same labeling pattern. In
addition, neither sense strand controls nor RNAse A-treated sections showed specific signal
with the exception of the sense probe for Paqr7. Although Paqr7 sense strand control probes
showed signal above background, the signal for antisense probes was abolished by tissue
pretreatment with RNAse A (Fig. 1, D3). Moreover, QPCR detected a single band of
expected size using primers to Paqr7. Consistent with our ISHH findings, QPCR detected
higher mRNA levels in the diagonal band of Broca than in the striatum (data not shown).

Distribution of Pgrmc1, Serbp1, Pgrmc2, Paqr7, Paqr8 and Pgr mRNAs
The neuroanatomical distributions of mRNAs encoding Pgrmc1, Serbp1, Pgrmc2, Paqr7,
Paqr8 and Pgr are presented in Table 3. The distributions of mRNAs encoding Pgrmc1,
Pgrmc2 and Serbp1 overlapped extensively throughout the brain, and some of these regions
displayed high levels of the classical Pgr, most notably in ventral structures. Paqr7 and
Paqr8 mRNAs were not highly expressed in these structures, but showed expression patterns
similar to one another. Unlike signals for probes to Pgrmc1, Pgrmc2, Serbp1 and Pgr,
signals for Paqr7 and Paqr8 probes were characterized by diffuse labeling found
predominantly in the thalamus.
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Diencephalon
In the rostral diencephalon, high signal intensities for Pgrmc1 mRNA were detected in
several olfactory nuclei as indicated in Fig. 1, A1. We found moderate signal for mRNAs
encoding Pgrmc1, Paqr7 and Paqr8 in the diagonal band of Broca (Fig. 1; A2, D2 and D4,
respectively). In the preoptic area (POA), the AVPV nucleus displayed very high levels of
mRNAs encoding Pgrmc1 and Pgr (Fig. 2, A1 and F1). Serbp1 and Pgrmc2 also showed
elevated signal intensities in this nucleus (Fig. 2, B1 and C1). Although Paqr7 and Paqr8
mRNAs were found in the POA, clearly defined signal within the AVPV was not apparent
(Fig. 2, D1 and E3). The bed nucleus of the stria terminalis contained dense labeling for
Pgrmc1, Serbp1 and Pgr (Fig. 2, A2, B2 and F2). Moderate levels of mRNAs encoding
Pgrmc1 and Paqr8 were found in the rostral portion of the lateral septal nucleus (Fig. 2, A1
and E1).

The paraventricular nucleus (PVN) and supraoptic nucleus (SON) showed abundant labeling
for Pgrmc1, Serbp1, and Pgrmc2 (Fig. 2, A3, B3 and C3). High signal for probes encoding
these mRNAs was also detected in the zona incerta, ventromedial nucleus (VMH) and
arcuate nucleus (Arc), a finding consistent with the distribution of Pgr (Fig. 3, column 1).
The reunions nucleus of the thalamus showed moderate levels of mRNAs encoding Pgrmc1,
Serbp1, Pgrmc2 and Pgr mRNAs (Fig. 3, A1, B1, C1 and F1). In contrast, probes for these
mRNAs showed low levels of signal intensity in the ventromedial thalamic nuclei while
those encoding Paqr7 and Paqr8 were somewhat prominent (Fig. 3, column 1). The
anterodorsal and anteroventral thalamic nuclei displayed similarly elevated levels of Serbp1
and Paqr8 gene expression (Fig. 3, B1 and E1).

Telencephalon
The hippocampus showed intense hybridization signals for Pgrmc1, Serbp1, Pgrmc2 and Pgr
probes as shown in Fig. 3, columns 1 and 2. Within this region, signal intensities were
highest in the CA2 and CA3 for all four mRNAs. In the dentate gyrus, stronger signal was
detected for mRNAs encoding Pgrmc1, Serbp1 and Pgrmc2 (Fig. 3, A2, B2 and C2) than for
those encoding Pgr (Fig. 3, F2). Paqr8 displayed low to moderate signal intensity within the
hippocampus (Fig. 3, E2). In contrast, mRNAs encoding Paqr7 were undetectable in CA1,
CA2, CA3 and dentate gyrus (Fig. 3, D1 and D2).

In the cortex, moderate levels of mRNAs were observed for Pgrmc1, Serbp1, Pgrmc2, Paqr8
and Pgr as shown in column 2 of Fig. 1. High signal intensity was detected in cortical
regions for Pgrmc1, Serbp1 and Pgr mRNA (Fig. 3, row A, B and F). The medial amygdala
showed moderate expression of Pgrmc1, Serbp1, Pgrmc2 and Pgr (Fig. 3, columns 1 and 2).
Alternatively, Paqr7 and Paqr8 signals in the amygdala were low overall (Fig. 3, D2 and E2)

The highest levels of mRNAs encoding Pgrmc1, Serbp1 and Pgr in the caudal forebrain
were detected in the periaqueductal gray (PAG) (Fig. 3, A3, B3 and F3). Pgrmc2 mRNA
levels were moderately high within this region (Fig. 3, C3), but Paqr7 and Paqr8 mRNAs
were very low (Fig. 3, D3 and E3). Interestingly, Paqr8 mRNA levels were highest in the
nucleus of the oculomotor tract (Fig. 3, E3). Finally, within the substantia nigra and
interpeduncular nucleus, we detected moderately high levels of mRNAs encoding Pgrmc1,
Serbp1 and Pgr (Fig. 3, A3, B3 and F3).

Discussion
Collectively, these neuroanatomical mapping data provide important clues as to functions of
putative progestin signaling molecules. The high levels of Pgrmc1 and Pgrmc2 mRNAs
within virtually all hypothalamic nuclei suggest that these molecules are likely candidates
for mediating rapid neuroendocrine effects. Moreover, signals for Pgrmc1 and Pgrmc2
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mRNAs were strongest in regions that also contained Pgr and regulate reproductive
functions, consistent with the idea that these functions require both rapid and delayed
actions of P4. Pgrmc1 and Serbp1 mRNAs displayed strongly overlapping distribution
patterns supporting the idea that these molecules interact to form a functional receptor
(Peluso et al., 2004). Our data indicate that Paqr7 and Paqr8 may be important in sensory
relay systems and other less well understood P4 functions regulated by thalamic and cortical
brain regions. Our findings suggest that P4 may act through a number of signaling molecules
to influence a much broader array of physiological effects than previously recognized.

The specific neural mechanisms underlying the role of Pgrmc1 have not yet been delineated,
but the distinctive and overlapping patterns of Pgrmc1 and Serbp1 mRNAs suggest that
these molecules may interact in neurons as they do in other cells. In granulosa cells, P4
activation of the Pgrmc1/Serbp1 complex stimulates phosphorylation cascades through
activation of protein kinase G (Peluso et al., 2007). Protein kinase G can activate additional
kinases such as phosphoinositide 3-kinase, resulting in phosphorylation of Akt (Kandel and
Hay, 1999, Brazil and Hemmings, 2001). The rapid phosphorylation of Akt in response to
P4 has been observed in cells from cortex and hippocampus (Singh, 2001, Hwang et al.,
2009), and our study shows that both brain regions contain Pgrmc1 and Serbp1. Taken
together, these observations suggest that phosphorylation events initiated by P4 may involve
the Pgrmc1/Serbp1 complex.

Brain regions rich in Pgrmc1 and Serbp1, as well as Pgrmc2 and Pgr, include the AVPV,
medial preoptic (MPN), Arc and suprachiasmatic nuclei (SCN). These findings are in
agreement with previous immunocytochemical and ISHH studies of Pgr and Pgrmc1
(Parsons et al., 1982, Krebs et al., 2000, Curran-Rauhut and Petersen, 2002, Meffre et al.,
2005). Each of these nuclei contribute to the timing and magnitude of the preovulatory
luteinizing hormone (LH) surge, a process in which P4 exerts rapid and delayed effects. For
example, estrogen induction of the LH surge requires Pgr expression in the AVPV/MPN
(Chappell and Levine, 2000), and P4 rapidly advances and augments the LH surge in
estradiol-primed female rats (Krey et al., 1973, DePaolo and Barraclough, 1979, Levine and
Ramirez, 1980). Our findings that the AVPV/MPN displayed high levels of Pgrmc1, Serbp1
and Pgrmc2 support the idea that these signaling molecules mediate rapid P4 effects in the
LH surge mechanism. P4 also rapidly represses basal LH levels, and this action may involve
the Arc (Banks and Freeman, 1978, Goodman et al., 1981, Richter et al., 2005), where
Pgrmc1, Pgrmc2 and Serbp1 mRNA levels were also high. Finally, levels of these mRNAs
were elevated in the SCN, and while not directly linked to reproduction, this nucleus sends
projections to the AVPV and is critical for the temporal regulation of the LH surge (Paxinos
and Watson, 1982, Watts and Swanson, 1987, de la Iglesia et al., 1995). Although the rapid
effects of P4 on LH surge release may be mediated by membrane-associated Pgr (Hammes
and Levin, 2007), the current observations suggest that Pgrmc1, Pgrmc2 and Serbp1 may
also play a role.

We found high levels of mRNAs encoding Pgrmc1, Pgrmc2, Serbp1 and Pgr in the VMH
and in PAG, brain regions important for P4-dependent female sex behaviors (Pfaff and
Sakuma, 1979, Rubin and Barfield, 1983). This confirms a previous report of Pgrmc1 in the
VMH (Krebs et al., 2000). Rat copulatory behavior requires activation of the Pgr within the
VMH (Pollio et al., 1993, Ogawa et al., 1994), a nucleus that sends projections to many
brain regions including the PAG (Saper et al., 1976). In the PAG, P4 rapidly elicits female
sexual receptivity (Gorski, 1974), an effect originally attributed to Pgr expression in this
region. However, work in Pgr-null mice shows that sexual receptivity can be rapidly induced
by midbrain injection of P4, indicating a role for other signaling mechanisms (Beyer et al.,
1988, Frye and Vongher, 1999). One such mechanism involves P4 metabolism to
allopregnanolone, a molecule that induces feminine sex behaviors when injected into the
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midbrain (Beyer et al., 1988, Pfaff et al., 1994). The present work suggests another
possibility, namely that Pgrmc1 contributes to elicitation of sexual receptivity by mediating
rapid P4 signaling through phosphorylation events as described above. Alternatively,
Pgrmc1 may influence sex behavior through actions on neurosteroid production in the
midbrain, a process that may be required for feminine sex behavior (Akesson et al., 1988,
Frye et al., 2007). Consistent with this idea, Pgrmc1 interacts with key regulators of
cholesterol homeostasis (Suchanek et al., 2005) and enhances steroidogenesis in diverse cell
types (Laird et al., 1988, Min et al., 2004).

The present study identified high levels of Pgrmc1, Pgrmc2 and Serbp1 mRNAs in regions
not directly linked to reproduction. For example, we confirmed previous findings that
Pgrmc1 is expressed in the PVN and SON (Krebs et al., 2000, Meffre et al., 2005), and
extend these findings to show that Pgrmc2 and Serbp1 mRNAs were also found in these
nuclei. The physiological significance of these findings are unclear, but Meffre et al. found
that Pgrmc1 protein was expressed specifically within vasopressinergic neurons of the PVN
and SON, suggesting that Pgrmc1 may play a role in regulation of water and ion
homeostasis (Meffre et al., 2005). We also found Pgrmc1, Pgrmc2 and Serbp1 mRNAs in
CA1, CA2, CA3 and dentate gyrus. These findings may be relevant to the observation that
P4 enhances hippocampal-dependent cognitive performance (Hoshina et al., 1994,
Sandstrom and Williams, 2001). Our data also compliment previous findings of Pgrmc1 and
Pgrmc2 mRNAs in neuroprogenitor cells derived from adult hippocampus (Liu et al., 2009).
In these cells, the authors showed that P4 induces neurogenesis through Pgrmc1-dependent
phosphorylation cascades that do not require Pgr. These findings suggest that non-genomic
signaling events involving Pgrmc1, and possibly Pgrmc2 and Serbp1, underlie P4 actions in
diverse neural functions.

Neither Paqr7 nor Paqr8 genes were strongly expressed in neural regions that control
gonadotropin release and contain abundant Pgrmc1 mRNA. This was somewhat surprising
because these genes are colocalized in other parts of the reproductive system. For example,
Paqr7, Paqr8 and Pgrmc1 have been detected in cells of the ovary, uterus, and placenta in
rats, sheep, and humans (Zhu et al., 2003a, Cai and Stocco, 2005, Peluso et al., 2006, Zhang
et al., 2008, Ashley et al., 2009). Moreover, in the rat corpus luteum, the expression of each
of these genes changes during pregnancy, and the patterns of change for Paqr7 and Pgrmc1
expression are strikingly similar (Cai and Stocco, 2005). In contrast to Pgrmc1, neither
Paqr7 nor Paqr8 mRNA levels are found at levels much above background in AVPV/MPN.
However, the AVPV provides afferent projections to GnRH neurons and results of recent
studies show that Paqr7 and Paqr8 are functional in GT1-7 immortalized GnRH neurons
(Sleiter et al., 2009). Thus, it is possible that Paqr7 and Paqr8 impact the neural control of
reproduction, but through GnRH neurons scattered in the rostral preoptic area that also
receive signals from Pgrmc1-containing neurons of the AVPV.

Though we did not find strong evidence for Paqr7 or Paqr8 gene expression in
neuroendocrine nuclei, their expression was high in thalamic and cortical brain regions
suggesting that these may participate in less well-studied actions of P4. The thalamus is
known primarily as a sensory relay system but few studies have examined P4 actions within
this brain region. However, P4 binding occurs in the lateral septal nucleus of the thalamus
(Shughrue et al., 1992) where we found high levels of mRNA encoding Paqr8. This is
important because present and previous studies have found that the Pgr is absent in this brain
region (Parsons et al., 1982). P4 binding within the lateral septum decreases anxiety and
depression-like behaviors (Pesold and Treit, 1992, Estrada-Camarena et al., 2002), and these
effects have been presumed to be mediated by P4 metabolites acting on GABAA receptors
(Majewska et al., 1986). Similarly, GABAA receptors are implicated in the neuroprotective
effects of P4 in the cortex, a region in which we observed high levels of Paqr7, Paqr8 and
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Pgr mRNAs. In light of the present findings, it is also possible that Paqr8 mediates P4
actions in the lateral septum and cortex. This idea is supported by findings that in the cortex,
maximal neuroprotective effects of P4 require activation of MAPK and phosphoinositide 3-
kinase pathways (Kaur et al., 2007), suggesting a role for membrane-initiated P4 signaling,
possibly involving Paqr7 and Paqr8.

In summary, we found that genes encoding Pgrmc1, Serbp1, Pgrmc2 and Pgr, but not Paqr7
and Paqr8, were highly expressed in many preoptic and hypothalamic nuclei and their
projection sites. In contrast, Paqr7 and Paqr8 mRNA levels were most robust in thalamic
nuclei and cortex. In view of these neuroanatomical findings, it is tempting to speculate that
Pgrmc1 and Pgrmc2 control neuroendocrine functions, while Paqr7 and Paqr8 regulate
affect and cognition. Additionally, the extensive overlap of Pgrmc1, Pgrmc2 and the
classical Pgr mRNAs raise the intriguing possibility that these molecules interact within the
same cells to regulate rapid and delayed P4 effects in the brain. However, there were some
regions in which Pgrmc1 and Pgrmc2 may exert effects independently of the Pgr. Together,
these data provide anatomical information that will be important for determining the
functional roles of these novel P4 signaling molecules.
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Figure 1.
Photomicrographs of film autoradiograms of hybridized rat brain sections to 33P-labeled
oligodeoxynucleotidyl probes for A) Pgrmc1 B) Serbp1 C) Pgrmc2 D) Paqr7 E) Paqr8 and
F) Pgr. For Pgrmc1, Serbp1, Pgrmc2, Paqr8 and Pgr, the sense (S) strand probe is shown in
the third image of each series. For Paqr7, the section was hybridized to the antisense probe
and then treated with RNAse A. Scale bar = 200 μm

Intlekofer and Petersen Page 12

Neuroscience. Author manuscript; available in PMC 2012 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Rostral to caudal arrangement of photomicrographs showing film autoradiograms of
hybridized rat forebrain sections to 33P-labeled oligodeoxynucleotidyl probes for A)
Pgrmc1, B) Serbp1, C) Pgrmc2, D) Paqr7, E) Paqr8, and F) Pgr. Scale bar = 200 μm
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Figure 3.
Rostral to caudal arrangement of photomicrographs showing film autoradiograms of
hybridized rat forebrain sections to 33P-labeled oligodeoxynucleotidyl probes for A)
Pgrmc1, B) Serbp1, C) Pgrmc2, D) Paqr7, E) Paqr8, and F) Pgr. Scale bar = 200 μm

Intlekofer and Petersen Page 14

Neuroscience. Author manuscript; available in PMC 2012 January 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Intlekofer and Petersen Page 15

Table 1

Sequences for Oligodeoxynucleotidyl Probes Used in ISHH Studies

NCBI Gene Name and
Accession # Oligodeoxynucleotide Sequences 5'- 3' Antisense to bases:

Pgrmc1 NM_021766 TGTAGTTCCAACCCAATTACCAGGTGTGTGAGAGTTACTGTGTGTGGG 1354-1305

Pgrmc2 NM_001008374 CAAAGTTCAGTCCTGTTTACTGTGATCCTTGGTGTCCTCCTCGTCTGT 667-619

Serbp1 NM_145086 AAGGAACCAGTGTTGTATTATGGCATCCAGTTAGGCCAGAGCGGGGAA 1274-1227

Paqr7 NM_001034081 ATAGTCCAGCGTCACAGCTTCTAGCTGGGCTAAAGTGCACAGCACC 888-843

Paqr8 NM_001014099 GCCAGCCCCGCTGGTACCACTTGACAGATCTTCCGCATAACTGGATAA 1112-1065

PgR NM_022847 CACATGGTAAGGCACAGCGAGTAGAATGACAACTCCTTCATCCTCTGC 2375-2328
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Table 2

Sequences for Additional Oligodeoxynucleotidyl Probes Used in ISHH Validation Studies

NCBI Gene Name and
Accession # Oligodeoxynucleotide sequences 5'- 3' Antisense to bases:

PAQR7 NM_001034081

GGTACACGGCCACACCCACATAGTCCAAGAAGAAGAAGCTGTAATGCC 445-398

GGGGCCAACGGGCGTGCAGAGGCTTATAGATGGCTCCCCGAGCCTGAT 934-887

CAGGCTGGACAGCAGGTGGCTGAACTTCTGGGCTACTGCCATCGCCAT 48-1

PAQR8 NM_001014099

TTCTGGGACGGTGCATGGCATCTTGGGAAGCCCTTCTTCCAGAATCTT 570-523

GAGCCAGGCCGGTGGTGAGTTTGAGGCCAGCCTGCTCTATAGAGTGAG 238-191

GTGAGCCAAGGCGCTGCCATACTGGTAGACACTGACCCCGACGTAGTC 486-439
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