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A theory for an non-equilibrium phase transition in a driven biochemical network is pre-
sented. The theory is based on the chemical master equation (CME) formulation of
mesoscopic biochemical reactions and the mathematical method of large deviations. The
large deviations theory provides an analytical tool connecting the macroscopic multi-stab-
ility of an open chemical system with the multi-scale dynamics of its mesoscopic
counterpart. It shows a corresponding non-equilibrium phase transition among multiple sto-
chastic attractors. As an example, in the canonical phosphorylation–dephosphorylation
system with feedback that exhibits bistability, we show that the non-equilibrium steady-
state (NESS) phase transition has all the characteristics of classic equilibrium phase tran-
sition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’,
Lee–Yang’s zero for a generating function and a critical point that matches the cusp in
nonlinear bifurcation theory. To the biochemical system, the mathematical analysis
suggests three distinct timescales and needed levels of description. They are (i) molecular
signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For
finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic
while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic
biochemical network.

Keywords: non-equilibrium phase transition; bistability; chemical master
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1. INTRODUCTION

The theory of equilibrium phase transitions is one
of the deepest branches of the physics of matters
[1]. The physics of living matters, however, has to
deal with molecular systems under driven non-equi-
librium conditions [2–4]. One of the challenging
questions in biological physics is whether non-equili-
brium phase transitions play an important role in
living systems.

In the theory of matters, microscopic, stochastic mol-
ecular fluctuations disappear in the thermodynamic
limit in which deterministic nonlinear behaviour
arises. However, in the mesoscopic world of cellular
biology, complex dynamics with multiple timescales
makes the meaning of thermodynamic limit only rela-
tive to one level of description with respect to
another. More specifically, we shall show in the present
paper that there are three biologically significant time-
scales, with related levels of mathematical description:
(i) stochastic molecular signalling, (ii) deterministic,
orrespondence (gehao@fudan.edu.cn).
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nonlinear biochemical network dynamics, and finally
(iii) stochastic (again!) cellular evolution. In other
words, there is stochastic behaviour beyond the deter-
ministic dynamics; all three levels are contained in a
mesoscopic living (driven) system. Current cellular mol-
ecular biology chiefly focuses on (i) while increasingly
interested in (ii); however, it is the (iii), we believe,
that is most relevant to major cellular biological issues
such as differentiation, apoptosis, cancer immunoediting,
and epi-genetics.

Our conclusion is reached through a general math-
ematical theory, together with an application in terms
of a detailed analysis of a simple cellular signalling
module: a phosphorylation–dephosphorylation cycle
(PdPC) with feedback [5–7]. The PdPC is one of the
most important components in cellular biology. Fur-
thermore, the GTPase together with guanine
nucleotide exchange factor and GTPase activating
protein, another important cellular system, is
kinetically isomorphic to the PdPC.

We formulate our theory starting with the chemi-
cal master equation (CME) description of
This journal is q 2010 The Royal Society
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biochemical reaction systems in a spatially homo-
geneous mesoscopic volume. In recent years, CME
has emerged as one of the physiochemical foundations
of cellular biochemistry [8–11]. The theory had begun
in 1940 and went through a major development in
1960s and 1970s [12–14]. In particular, the Brussels
school has used this theory as a mathematical basis
of non-equilibrium steady state (NESS), a term first
proposed by Gaspard [15], Lax [16] and Klein [17].
It is now widely accepted that both concepts of
CME and NESS are appropriate for studying isother-
mal, homeostatic cellular biochemistry [2–4]. The
mathematical theory of NESS is an irreversible, but
stationary stochastic processes, associated with
which the concepts of entropy production and
stationary distribution naturally arise [18–22].

It is known that the deterministic nonlinear
dynamics, derived from the CME in the limit of the
reaction system volume V!1 according to Kurtz
[23]’s theory, is the macroscopic counterpart, in terms
of the Law of Mass Action, of the chemical reaction
system [8–11]. While this is certainly true, here we
refine this notion by studying the large-deviation prop-
erties of V! 1, i.e. the thermodynamic limit. We shall
show that in the case of a nonlinear dynamical system
with multiple dynamic attractors, there is a unique
macroscopic thermodynamic state; all the other macro-
scopic attractors are in fact metastable, with an
infinitesimal stationary probability /e2bV but also
exponential small exit rate /e2aV(a, b . 0).

The mathematical theory of large deviations (LDT;
[24]) is the natural device for understanding the ther-
modynamic limit of systems with multistability, i.e.
phase transition(s) [25,26]. Our result based on the
LDT rigorously establishes the stochastic dynamics
with bi(multi)-modal distribution as the mesoscopic
signature of a nonlinear dynamics with bi(multi)-stab-
ility. While our specific example below is a simple
one-dimensional model, the analysis based on the
LDT is general for systems with high dimensions, and
without detailed balance.

We have recently re-examined the nonlinear bistabil-
ity in the context of the biochemical signalling module
[27,28]. In the thermodynamic limit when V tends to
infinity, there is a phase transition associated with the
conventional nonlinear dynamic approach based on
the Law of Mass Action, which is the macroscopic
limit, in some sense, of the CME [23]. A Maxwell-type
construction is an integral part of a complete theory
of the CME [27,28]. This phase transition cannot be
predicted by the deterministic nonlinear dynamics. Sto-
chastic dynamics provides relative significance, i.e.
probability, of different deterministic attractors.

In equilibrium phase transition, the Lee–Yang theo-
rem for grand canonical partition function is widely
considered to be a deep and elegant result [29–31].
We shall show non-differentiability of a function c(l),
the NESS counterpart of the free energy function, is
the origin of multi-phase behaviour, and it is because
a zero of G(l), the NESS counterpart of a partition
function, reaches the real axis. Different generalization
of the Lee–Yang theory to NESS and to bimodalities
can be found in [32,33] and [34].
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While this study focuses on spatially homogeneous
systems, the stochastic theory of non-equilibrium tran-
sitions in space and time has also been used, quite
successfully, to describe spontaneous phase separation
in biological systems [35,36].
2. THE BIOCHEMICAL SYSTEM AND ITS
NESS PHASE TRANSITION

We shall present the mathematical theory through a
concrete example. It should be noted, however, that
the mathematical theory can be applied to more com-
plex biochemical systems with the CME. We consider
a simple biochemical signalling system, the PdPC
with positive feedback, which exhibits nonlinear
bistability [5–7,27]:

E þK �O E� þK �; K þ 2E�O K�;

E� þ P O E þ P;
ð2:1Þ

in which K and K* are inactive and active forms of a
kinase, P is a phosphatase. E* is the phosphorylated
E, a signalling molecule. Usually E* is functionally
active, i.e. ‘turned-on’, and the reversible binding
K þ 2E�O K � is rapid. The dynamics of the fraction
of phosphorylated E, x, thus satisfies

dx
dt
¼ ux2 ð1� xÞ � ex½ � þ mð1� xÞ � x½ �

¼ rðx; u; eÞ; ð2:2Þ

in which the parameter u represents the ratio of the
activity of the kinase to that of the phosphatase; 1 rep-
resents the ADP to ATP concentration ratio, and m

represents the strength of phosphorolysis. 2kB ln(me)¼
DG represents the ATP hydrolysis energy. In a living
cell, both m and e are small; hence g ¼ 1/(me)�1.
2.1. Large deviations theory, Maxwell
construction and first-order phase
transition in a NESS

The CME for the chemical reaction system in equation
(2.1) gives the probability of NV, the random variable
representing the activated signalling molecule E*, V
being the volume of the system [27]. Let pV(n) be its
stationary distribution. According to the classic result
of LDT [24–26], especially ([24], § 4.5.2), it is concluded
that if NV/V satisfies the LDT with a good ‘rate func-
tion’ f(x), i.e. pV(n) � e2Vf(x), the concentration x ¼
NV/V � 0, then

— For each l, the ‘free energy function’ c(l) ¼ limV!1

1/V lnkelNVl exists, and it is finite and non-decreas-
ing. Moreover it satisfies

cðlÞ ¼ sup
x�0
flx � fðxÞg: ð2:3Þ

Please see appendix for large deviations theory in
equilibrium phase transition. It clearly illustrates
the meaning and definition of free energy c(l) and
f (x) introduced in our non-equilibrium studies.



1We observe that if f(x) has three minima, and the middle one is the
highest, it seems that the c(l) will be insensitive to the middle
minimum! It only depends on the two low ones! However, if the middle
one is the lowest, then c(l) will have two non-analytical points.
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— If f(x) is convex, then it is the Fenchel–Legendre
transform of c(l), namely,

fðxÞ ¼ c�ðxÞ W sup
l[R
flx � cðlÞg: ð2:4Þ

— If f(x) is not convex, then c*(x) is the affine regulariz-
ation of f(x), i.e. c*(.) � f(.), and for any convex rate
function f such that f(.)� f(.) implies f(.) � c*(.).

The most important feature of the LDT property
pV(n) � e2Vf(x) is that the function f(x) is indepen-
dent of V, provided that V is sufficiently large.
Therefore, even though f(x) could exhibit bi- or
multi-minima, when V!1 only one of the two
minima (i.e. stable fixed points) is relevant in the ther-
modynamic limit, and it is the one with smaller f(x).
A Maxwell-like construction, therefore, is necessary at
the critical parameter value when the two minima are
equal [27].

Consequently, according to the well-known Gärt-
ner–Ellis theorem [25,26], we know that when f(x) is
bimodal with two local minima, then they are at differ-
ent heights if and only if the c(l) is differentiable at l ¼
0, and dc(0)/dl is simply the position of the lower mini-
mum. This implies that the Maxwell-type construction
where the two minima are at the same height [27] cor-
responds to the function c(l) being non-analytic at l ¼
0. Further, if the rate function f(x) is analytic, then
c(l) is continuous and

cðlÞ ¼ sup
f
0ðxÞ¼l
flx � fðxÞg: ð2:5Þ

In classical equilibrium phase transition theory, a
first-order phase transition has a discontinuity in the
first derivative of the free energy, and a second-order
phase transition has a discontinuity in the second deriva-
tive. According to this classification, the present (non-
equilibrium) phase transition can be considered as first
order. Another classification in engineering has been
the ‘soft-’ and ‘hard-mode’ of instability. Transcritical
and supercritical Hopf bifurcations are soft since their
bifurcation diagrams are continuous; the saddle-node
and subcritical Hopf bifurcations are hard since a pair
of stable and unstable attractors appear ‘out of the blue’.

Moreover, if a non-convex f(x) has two local minima
of f(x) with equal height, for sufficiently small l , 0,
c(l) ¼ lx 2 f(x) for the x near the left minima satisfy-
ing f0(x) ¼ l; and when l . 0, also c(l) ¼ lx 2 f(x)
for the x near the right minima satisfying f0(x) ¼ l.
Therefore, the left and right derivatives of the function
c(l) at l ¼ 0 both exist but are equal to the left and
right local minima, respectively.

If f(x) has two local minima x1 and x2 with different
heights, one can rewrite l x 2 f(x)¼ l0x 2 c(x) where c

(x)¼ f(x) 2 l*x such that c(x) has two minima with
equal heights and l0 ¼ l2 l*. Hence, the non-analytic
point of c(l) moves tol*, and also the left and right deriva-
tives at l¼ l* both exist and are equal to the left and right
local minima ofc(x), respectively. In other words, l* is just
the slope of the tangent line of f(x) with exactly two tan-
gent points. More generally, if the non-convex f(x) has k
tangent lines with more than one tangent points, then
J. R. Soc. Interface (2011)
the function c(l) has k non-analytical points, and vice
versa. So it is a ‘higher level’ of convexity!1

The above LDT results are summarized in figure 1. It
shows that, as in Lee–Yang’s theory [29–31], c(l) is
continuous but non-differentiable at l ¼ l*.

Now let us consider another parameter u of the
system. Let it be a bifurcation parameter in the non-
linear dynamics according to the Law of Mass Action
[5–7]. It is easy to verify [27] that the stable and
unstable fixed points of the nonlinear dynamics corre-
spond precisely with the minima and maxima of the
f(x), and bistability corresponds to double-wells in
f(x), and bimodality of 2f(x).

Here, consider the function (1/V )lnkelNVl¼ cV(l, u).
As V tends to infinity, the limit c(l,u) exists, and it is con-
tinuous and a non-decreasing function of l. Furthermore,
there is a line in the (l,u) plane at which the c is non-dif-
ferentiable with respect to l. The line passes through
(0,u*), where u* is the critical value of Maxwell construc-
tion with which the function f(x) has two minima with
equal heights. Such a ‘singularity line’ in the (l 2 u)
space divides the space into upper left and lower right
parts. They represent two phases. See figure 2.

In our theory, the derivative at l ¼ 0 is particularly
meaningful: it is the mean concentration of molecules in
the system (property of a generating function). In the
thermodynamic limit, the mean and the highest peak
position of e2Vf(x) are the same, the macroscopic
value. Thus, we understand that the Maxwell construc-
tion implies the mean concentration is not continuous.

The above LDT is not limited to one-dimensional
systems, nor systems with detailed balance. Thus, it
provides a heuristic derivation of the phase transition
behaviour in any stochastic system with non-convex
f(x). Stochastic CME with deterministic multi-stability
has non-convex f(x) [37–39]. The present work estab-
lishes the correspondence between macroscopic, open
chemical systems with multi-stability and the meso-
scopic, multi-scale dynamics with non-equilibrium
phase transitions [27].
2.2. Mean dynamics of the CME with bistability

The thermodynamic, or V!1 limit of a CME is well
understood following the work of [10,23], together
with a Maxwell construction. The significance of the
Maxwell construction is that in the thermodynamic
limit, there is only one fixed point of a bistable
system, not two, except at a critical value of the par-
ameter—the phase transition point. However, it is
important to point out that the mean, deterministic
dynamics of a CME with finite V can be significantly
different from that of the thermodynamic limit, with
or without Maxwell construction. We shall now discuss
this aspect of the CME with bistability.

From the CME, one can see that the locations of the two
‘fixed points’ of a bistable system are independent of the
system’s size. With increasing V, the system’s fluctuations
diminish because the probability associated with one of
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the fixed points tends to zero. If it had been otherwise, the
systems fluctuations would not become zero in the thermo-
dynamic limit. For a system with finite V, the correct mean
dynamics has a slow component that is absent in the ther-
modynamic limit: that of Markovian jumping between the
two attractors, ‘back and forth’, and establishing a steady-
state distribution between them. When V!1, this slow
component disappears.

Now consider this scenario: let x0 be in the basin of
attraction of the less stable steady state, say x1*.
Then according to Kurtz’s theorem, in the limit of V
!1, the macroscopic x(t) with x(0) ¼ x0 approaches
to the x1*. However, consider the mean dynamics for
finite V: x̄V(t) ¼ kX(t)l/V with the same initial
J. R. Soc. Interface (2011)
condition. Then we have the following manifestation
of Keizer’s paradox [27]:

x�2 ¼ lim
V!1

lim
t!1

xV ðtÞ= lim
t!1

lim
V!1

xV ðtÞ ¼ x�1 : ð2:6Þ

To obtain the mean dynamics from the CME, one can
write the differential equations for the mean dynamics
based on the CME. Except for linear systems, however,
the equation is coupled to the variance and higher order
moments of the distribution. A widely used treatment
at this point is the ‘moment closure’ which either assumes
fluctuations to be small, or certain relationships between
its high-order moments and the variance [40,41]. Assum-
ing small fluctuations, however, is an operation on the
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order of 1/V, the same order approximation as linear
Gaussian treatment.2 To device relationships between
high-order moments and the variance requires certain
a priori assumption on the nature of the distribution.
Knowing the number of attractors, combining with
Gaussian approximation within each attractor, gives a
useful method of attack.

2.3. Generalizing Lee–Yang’s theory

In equilibrium phase transition, according to Yang &
Lee [29], Lee & Yang [30] and Zimm [31], the non-ana-
lyticity in the free energy function c(l) is due to a zero
in the partition function GV(l) ¼ kelNVl approaching
the real axis from the complex plane of l. Is the non-
analyticity in our c(l) also due to the zero of G(l) ¼
limV!1 GV (l)? This is indeed the case.

Our probability distribution for NV has a finite sup-
port. So the generating function is a finite-order
polynomial of z, (use z ¼ el). Then consider a region
of the complex plane of z, which contains a section of
the z-axis. According to Yang & Lee [29], theorem 2
and Zimm [31] which is a pure mathematical result,
the zero of the generating function must be ‘pinched’
onto real z-axis at the non-analytic point of the free
energy function c(l) when V tends to infinity. There-
fore, our theory generalizes the Lee–Yang theory to
NESS phase transition.

Several previous works have generalized the Lee–
Yang theory in NESS [32–34] through specific
examples. It has been suggested that the bimodal distri-
bution could imply the Lee–Yang theory, but not vice
versa. This is consistent with our result.

2.4. Cusp catastrophe and critical point in a
PdPC with feedback

For large system’s volume V, the CME gives the station-
ary probability pness(x)/ e2Vf(x). For the system in
equation (2.1), the LDT rate function f(x) satisfies [27]

dfðxÞ
dx

¼ � ln
ð1� xÞðux2 þ mÞ

xðuex2 þ 1Þ : ð2:7Þ

One sees that the extrema of f(x) match exactly with
the roots of r(x;u,e) ¼ 0 in equation (2.2).

Equation (2.2) exhibits saddle-node bifurcations.
Figure 3a shows the steady states of equation (2.2),
2For a CME with finite V, its mean dynamics starts at x0 differs from the
deterministic solution to the ODE based on the Lawof MassAction in two
respects: one is the stochastic fluctuations, which is defined with respect to
the mean, and the difference between the exact mean and the solution to
the ODE. Both terms diminish as O(V21). There is no obvious reason
when one can neglect the former but meaningfully keeps the latter. To
illustrate this, consider a simple example: 2X!k . The CME is dp(n,t)/
dt¼ k(nþ 2)(nþ 1)p(n þ 2,t) 2 kn(n 2 1)p(n,t). Then, the mean
dynamics dknl/dt¼ 22kkn(n 2 1)l¼ 22kknl2 þ 2kknl 2 2kk(Dn)2l. We
see that the right-hand side has two additional terms than the ODE: a
term proportional the fluctuation, and a term having to do with the
difference between n(n 2 1) and n2. Even when the fluctuation is small,
the mean dynamics for finite V is not identical to that of
thermodynamics limit. If we let mean concentration x̄V¼ knl/V, and
rate constant k̂¼ kV then we have for finite V system with small
fluctuations: dx̄V/dt¼ 22k̂x̄V

2 þ 2(k̂/V )x̄V. This equation might
improve the accuracy of mean dynamics somewhat; but it will not be
able to deal with bistability, which is a phenomenon on a completely
different timescale.

J. R. Soc. Interface (2011)
xss, as a function of u with various e. We see for the
range of e � 1.33 the system has three fixed points,
i.e. bistability. After introducing the Maxwell construc-
tion for each and every curve xss(u), we obtain a set of
monotonic xss(u). This corresponds to the ‘PV-iso-
therm’ in the van der Waals theory of phase transition.

Equation (2.2) also exhibits cusp catastrophe. The
boundary of the region of bistability in (u,e) space is
given by a parametric curve [27]:

u ¼ 2ð1þ mÞ
z

� 3m
z2

and e ¼ 2m� ðmþ 1Þz
3mz � 2ðmþ 1Þz2 � 1:

ð2:8Þ

According to the cusp catastrophe theory [41,42],
one of the most important features of this region is
that it has a cusp, at ucusp ¼ (1 þ m)2/3 m, ecusp ¼

(1 2 8m)/9m, when zcusp ¼ 3m/(1 þ m), as shown in
figure 3b.

For a given e, the critical u* at which the Maxwell
construction is performed satisfies u1 � u* � u2. Thus,
the critical line u*(e) abruptly terminates at the cusp.
In equilibrium phase transition, the cusp is also
known as critical point [44].

We also note that bistability implies that the xss, as a
function of the u, or e, is not monotonic (it is S-shaped
as in figure 2a). However, after the Maxwell construc-
tion, the resulting xss(u) is monotonic in the ‘true’
thermodynamic limit, shown in figures 2d and 3a.
This is precisely the same situation as the PV isotherm
in gas–liquid phase transition. The word ‘true’ means
one has to wait sufficiently long to allow the jumps
back and forth between attractors. The biochemical sig-
nificance of monotonicity remains to be elucidated.
3. DISCUSSION

While the CME as a fundamental theory of studying cel-
lular biochemistry remains to be validated experimentally,
it is certainly an acceptable mathematical model for
studying mesoscopic complexity and emergent organiz-
ation, as referred to by Laughlin et al. [45] and Qian
et al. [46]. Chemical reactions are marvellous systems for
understanding complexity. The present work shows that
while Kurtz’s theorem is correct for finite time, the
stationary solution with V tending to infinity is not the
solution to the law of mass action, but rather requires
an LDT treatment. From the CME point of view, the
LDT treatment we present is a small but significant
step beyond the [23] theory towards the macroscopic non-
linear dynamics. Analysing the CME is a much more
challenging problem than analysing the partition function
since the former offers a dynamic theory.

Furthermore, the present paper shows that many
classical concepts from equilibrium phase transition
can be applied to the bifurcation problem in nonlinear
chemical dynamics that has a mesoscopic stochastic
basis in terms of the CME. The celebrated Maxwell con-
struction is a natural consequence of the general theory
we propose, and the well-known Lee–Yang theorem is
in fact a special case of it. Most importantly, the general
theory is applicable to driven systems with NESS.
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On the mathematical side, the general theory provides
a framework to study nonlinear bifurcations in terms of
mathematical non-analyticity of a certain function, a
vision long being held by some investigators [47]. The
large deviation function f(x) can be in fact considered
as some type of stochastic landscape (potential or Lya-
punov function in a not rigorous sense) for systems
without gradient, or detailed balance [38,39,48–50],
which was first established by Nicolis & Lefever [51].

3.1. Stationary distribution of CME

We shall again emphasize that our theory is general,
applicable to any CME with multistability. For the
simple example, this type of model of one-variable
birth and death process, the master equation can be
solved exactly and thus all the results discussed in the
paper can be obtained quite straightforwardly from
the explicit solution [52]. And also in the case of systems
with several variables, it has been shown with particu-
lar examples that the master equation has always a
unique stationary solution for any realistic finite size
chemical system, despite the fact that the associated
deterministic equations may have multiple stationary
or non-stationary (such as time periodic or even
chaotic) solutions [53–56].

Furthermore, the fact that the stationary probability
density of the intensive variable x ¼ X/V can be
expressed in terms of the exponential of ‘Vf(x)’(f(x)
is also called ‘stochastic potential’ or adaptive land-
scape) has been considered by [37], who succeeded in
casting the original master equation into a Hamilton–
Jacobi formulation based on the Kramer–Moyal expan-
sion for an arbitrary number of variables. The same
results could also be rigorously derived from the large
deviations theory [57].

The existence of ‘nice’ f(x) in the asymptotic form of
e2Vf(x) might not be always true for the CME; note
that there is chaotic behaviour involved as well. If one
J. R. Soc. Interface (2011)
considers a CME whose corresponding ODE is a
three-dimensional chaotic dynamics with a strange
attractor, what will be the stationary distribution in
the limit of V!1? This problem has been discussed
in the past [38,39]. The general feeling is that f(x) is
not smooth itself. So one does not have a ‘nice’ f(x).
For a very ‘rugged f(x)’, we believe that its Fenchel–
Legendre transform c(l) might be a very powerful
way to ‘find the key feature’ of the f(x). The number
of non-differentiable points is definitely much smaller
than the number of peaks.

3.2. Diffusion approximation for the CME

Kurtz [57,58] has proved a second theorem. It basically
stated that, in the thermodynamic limit, the solution of
the master equation converges with probability one to
that of the corresponding Fokker–Planck equation (dif-
fusion process) for some finite time. Shortly after, it was
again established that the coexistence line based on the
master equation differs from the one based on the diffu-
sion process, even if the noise in the latter is nonlinear.
This important result implies that there exists a domain
in the parameter space where the most probable state,
for the master equation approach, is the least probable
one for the diffusion process modelling [60].

The obvious question is: which state is actually rea-
lized in nature? It has then been shown that a
sufficient condition for the validity of the Kurtz theo-
rem in the limit of infinitely long time (i.e. stationary
state) is the uniqueness of the macroscopic attractor,
which thus includes systems exhibiting sustained oscil-
latory regimes (limit cycle; [61]). Molecular dynamic
simulations based on Newtonian hard spheres have
shown that it is the master equation that provides the
correct answer [62]. We believe that for the dynamics
of a bistable chemical systems, this diffusion approxi-
mation could only correctly describe it around each
steady state, and if we would like to include the
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Figure 4. Schematics showing the mathematical hierarchy of cellular dynamics based on the chemical master equation (CME)
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stochastic transition between the two stable steady
states, this approximation is not at the correct time-
scale. For instance, it has already been shown that it
is impossible to derive from a jump Markov process
(master equation) a diffusion process (Fokker–Planck
equation) that correctly describes the statistical behav-
iour of the system in the multiple steady-state regime in
the multiplicative noise case [63].
3.3. Keizer’s paradox

The disagreement for the deterministic trajectory and
the peaks of the stationary distribution of master
equations and diffusion processes is also called Kei-
zer’s paradox, which was addressed nearly four
decades ago. According to Kurtz’s theorems, we
know that the most probable trajectories for the
master equation and its corresponding diffusion pro-
cesses accord well with the deterministic trajectory,
and also it can easily be shown that the most prob-
able states (local probability maximums) of both
the master equation and the Fokker–Planck equation
coincide very precisely with the solutions of the corre-
sponding macroscopic (deterministic) equation as long
as the volume is large.

However, this coincidence is only within the time-
scale of deterministic trajectory. Is there anything
neglected beyond it? The answer is yes; it is in fact
the stochastic transitions between the multiple steady
states. It will give rise to their relative probabilities
and become the origin of Keizer’s paradox. Further, it
is also the reason why the mean dynamics described
above have those inconsistencies.
J. R. Soc. Interface (2011)
3.4. Beyond deterministic dynamics

It is generally believed that when a system’s size
increases, the stochastic behaviour at a mesoscopic
level averages out, and a deterministic behaviour
emerges. However, our present analysis clearly show
that the emerging deterministic behaviour in the
CME is a metastable system’s dynamics. Beyond that
timescale, another ‘macroscopic’ stochastic behaviour
exists! This multi-attractor stochastic system is a true
emerging phenomenon that one cannot naively expect
from the deterministic dynamics (e.g. based on the rela-
tive area of the attractive basins) without detailed
stochastic mechanistic modelling. The Maxwell con-
struction is the consequence of the steady state on
this ‘beyond-deterministic-infinite’ timescale.

There are three timescales in this mathematical hier-
archy of cellular dynamics (see figure 4); a molecular
signalling timescale (i.e. the rate constant for molecular
interactions), a biochemical network timescale (i.e. the
deterministic relaxation times to attractors), and a cel-
lular evolutionary timescale). We believe it is at the last
level of stochastic dynamics that is most relevant to
major cellular biological issues such as differentiation,
apoptosis, cancer immunoediting and epi-genetics.
APPENDIX A. LARGE DEVIATIONS
THEORY IN EQUILIBRIUM PHASE
TRANSITION AND LEE–YANG THEOREM

The materials in this section are mainly based on the
works of R. S. Ellis, Ellis [25], Touchette [26] and
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Huang [64]. The generic equilibrium problem starts
with a Hamiltonian Hn(v), where n is the number of
identical, interacting particles (atoms, spins, molecules,
etc.) in a system. v ¼ (v1, v2, . . . ,vn) denotes the
microstate of the system. One task of classical statistical
mechanics is to understand a certain discontinuity in
the thermodynamic limit of n!1, when a phase tran-
sition can be rigorously defined. For finite n, all the
thermodynamic functions are continuous and smooth.

The free energy of the system is the minus logarithm
of the partition function

ZnðbÞ ¼
X
v

e�bHnðvÞ: ðA 1Þ

Therefore, the free energy per particle in the thermo-
dynamic limit is

cðbÞ ¼ � lim
n!1

1
n

ln ZnðbÞ: ðA 2Þ

Gibbsian statistical mechanics is related to the
theory of probability as follows. With system’s configur-
ation v fluctuating, its energy Hn(v) is a random
variable. However, the mean energy, i.e. energy per par-
ticle, hn(v) ¼ Hn(v)/n tends to a constant h̄ when n
tends to infinity regardless of v. This is the Law of
Large Numbers in the theory of probability. Without
loss of generality, we set energy reference h̄ ¼ 0.

The large deviations theory (LDT) computes the
rate of this convergence. Note that jhn(v)j tends to
zero when n! 1. In fact, the convergence is exponen-
tially fast in the sense its probability density function
fhn

( j) � e2nf( j). Hence, one defines the rate of
convergence

fðjÞ ¼ � lim
n!1

1
n

ln
Prfj � jhnj , jþ djg

dj
: ðA 3Þ

Note in statistical mechanics, f( j) is just the micro-
canonical density of the state, i.e. entropy function.
Therefore, a key result in LDT, and in Gibbs’ theory,
is that f( j) and c(b) are related via a Legendre
transform:

ZnðbÞ ¼
X
v

e�bHnðvÞ �
ð

e�bnje�nfðjÞ dj: ðA 4Þ

That is, in the limit of n!1 according to Laplace’s
method, also known as the maximum term method,

cðbÞ ¼ inf
j.0
fjbþ fðjÞg: ðA 5Þ

Thermodynamic quantities are obtained from
derivatives of free energy c(b). The equilibrium phase
transition problem is to show that c(b) can be non-dif-
ferentiable at a certain b value, thus giving rise to
discontinuity in the @c(b)/@b. As shown in the text,
one such situation is when f( j) is non-convex, e.g.
bimodal. The Lee–Yang theorem indicates that this
corresponds to Zn(b) having a zero, in the complex
plane of b, that approaches the real axis b*. Therefore,
in the limit of infinite n, c(b) is non-analytic at b*.
J. R. Soc. Interface (2011)
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