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Abstract
We evaluated real-time myoelectric pattern recognition control of a virtual arm by transradial
amputees. Five unilateral patients performed 10 wrist and hand movements using their amputated
and intact arms. In order to demonstrate the value of information from intrinsic hand muscles, this
data was included in EMG recordings from the intact arm. With both arms, motions were selected
in approximately 0.2 s on average, and completed in less than 1.25 s. Approximately 99% of wrist
movements were completed using either arm; however, the completion rate of hand movements
was significantly lower for the amputated arm (53.9% ± 14.2%) than for the intact arm (69.4% ±
13.1%). For the amputated arm, average classification accuracy for only 6 movements—including
a single hand grasp—was 93.1% ± 4.1%, compared to 84.4% ± 7.2% for all 10 movements. Use of
6 optimally-placed electrodes only reduced this accuracy to. These results suggest that muscles in
the residual forearm produce sufficient myoelectric information for real-time wrist control, but not
for performing multiple hand grasps. The outcomes of this study could aid the development of a
practical multifunctional myoelectric prosthesis for transradial amputees, and suggest that
increased EMG information—such as made available through targeted muscle reinnervation—
could improve control of these prostheses.
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I. Introduction
People who undergo a transradial amputation are impaired in their ability to perform many
daily activities, and conventional transradial prostheses do not adequately restore the lost
function [1]–[3]. Currently, most powered transradial prostheses use the amplitudes of
surface electromyography (EMG) signals from the forearm flexors and extensors to control
hand opening and closing. If wrist rotation is desired, amputees must co-contract their
forearm muscles to switch into this mode; the same signals are then used to control the wrist
rotator [3], [4]. Switching to different modes is slow and cumbersome. Furthermore, it is not
intuitive to use the same muscle contractions to control two different functions.

A control approach using pattern recognition of EMG signals may yield a significant
improvement in control over the conventional myoelectric control strategy [4]–[21]. It is
grounded on the assumption that the patterns of EMG signals in the forearm contain
information about many desired movements of the hand and wrist [6]. Using a pattern
classification technique, the distinguishing characteristics of EMG patterns can be used to
identify a variety of different intended movements. Once a pattern has been classified, a
command is sent to a prosthesis controller to implement the movement. This control scheme
is also intuitive, as the intended movement matches the prosthesis function. Many studies
have been conducted with able-bodied subjects in order to assess the feasibility and
performance of pattern recognition algorithms using EMG signals from forearm muscles
[4]–[21]. In each case, several bipolar electrodes (from 4 to 16) were placed on the
circumference of the midportion of the forearm. Using various pattern classification
techniques—such as linear discriminant analysis (LDA) [6], [17], artificial neural networks
[17], [19], and fuzzy logic [12], [18]—high accuracies (> 93%) for classification of 6–10
wrist and hand movements were consistently achieved. This suggests that a variety of
pattern recognition algorithms can be used to predict the user’s intended movements with
high accuracy. However, it remains unclear whether transradial amputees can achieve
similar performance, as limited work has been done with this population. A recent study
included two transradial amputees (one with a trauma-induced unilateral transradial
amputation and another with a congenital unilateral transradial limb deficiency) and used 3
electrodes to collect surface EMG signals on the residual forearm [18]. Classification
accuracies for 3 wrist classes (wrist flexion/extension and either wrist pronation or
supination) ranged from 74% to 99%. Another study involved six subjects with transradial
amputations (five transradial amputees and one congenital below-elbow failure of
formation) and used 8 electrodes placed on the residual forearm for EMG recordings [20].
This study showed a low average accuracy (approximately 70%) for classification of 10 arm
classes (wrist flexion/extension plus 8 hand grasps) with an artificial neural network–based
classifier.

It is important to note that almost all of the previous studies used classification accuracy to
evaluate the performance of pattern recognition algorithms. Classification accuracy is the
ability of the algorithm to appropriately recognize the desired movements during each time
window (usually 100–200 ms) while the subject holds different movements for several
seconds [4]–[21]. This accuracy is calculated by post-processing EMG recordings and is not
a true measure of real-time function; a pilot study revealed a low correlation between
classification accuracy and real-time performance [22]. Thus, it remains unclear whether the
residual muscles of the forearm following amputation can provide stable EMG information
for accurate real-time control of multifunctional transradial prostheses. Furthermore, real-
time performance metrics are required to examine the clinical robustness and accuracy of
pattern recognition control.
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We have developed an experimental protocol to assess realtime pattern recognition control
of multifunctional myoelectric prostheses [23]. In this study, pattern recognition control was
used by transradial amputees to control a computer-generated virtual prosthesis with four
wrist functions, a hand open command, and five different hand-grasp patterns. Three
realtime control performance metrics (motion-selection time, motion-completion time and
motion-completion rate) were quantified. In addition, we performed a pilot analysis of the
electrode configuration, an important clinical issue in the development of multifunctional
myoelectric prostheses. The outcomes of this study could aid the future development of
practical multifunctional myoelectric prostheses for transradial amputees.

II. Methods
A. Subject Information and Testing Overview

Five people with unilateral transradial (TR) amputations participated in the study (Table I).
Their ages ranged from 28 to 77 years and their post-amputation times varied from 3 months
to 21 years. Three subjects used a myoelectric prosthesis, one subject used a body-powered
prosthesis and one subject (only 3 months post-amputation) had not yet received a
prosthesis. The protocol of this study was approved by the Northwestern University
Institutional Review Board. All subjects gave written informed consent and provided
permission for publication of photographs for scientific and educational purposes.

Three trials were performed on each subject. Each of the trials was composed of two
consecutive sessions: 1) EMG data acquisition to train the pattern classification algorithm
and 2) virtual prosthesis manipulation to quantify pattern recognition control. The first trial
was performed with the amputated arm. The second trial was performed with the intact arm;
this trial was intended to demonstrate how well a subject could do with a richer EMG signal
set from both forearm and intrinsic hand muscles, and provided additional training. The third
trial was performed with the amputated arm again to quantify possible performance
improvement. The time between two consecutive trials ranged from a few days to
approximately three months, depending on subject availability. All five subjects completed
the three testing trials in one to three months.

B. EMG Data Acquisition and Pattern Classification
For every subject, 12 self-adhesive Ag/AgCl snap bipolar electrodes with a 1.25-cm-
diameter circular contact (Noraxon USA, Inc.) were placed on the forearm with a center-to-
center distance of 2 cm. For amputated arms, 8 of the 12 electrodes were uniformly placed
around the proximal portion of the forearm over the apex of the muscle bulge (2–3 cm distal
to the elbow crease), and the other 4 electrodes were positioned on the distal end, as
illustrated in Fig. 1(a). The distance between electrode rings varied with the length of the
residual limb. For intact arms, the 12 electrodes were placed on the proximal forearm (6
around the apex of the muscle bulge, 2–3 cm distal to the elbow crease), the wrist (3 around,
2–3 cm proximal to the wrist crease), and the hand (the thenar, first dorsal interosseous, and
hypothenar muscles), as illustrated in Fig. 1(b). These electrodes recorded EMG signals
from muscles physiologically related to wrist and hand movements in order to demonstrate
the performance that could be achieved with enhanced EMG information. The distance
between electrode rings on the intact arm varied with the forearm length of the subjects. A
large circular electrode was placed on the elbow of the tested arm for a ground. The 12
electrodes were connected to preamplifiers (Liberating Technologies, Inc., Hollister, MA)
and then custom amplifiers. The EMG signals were amplified and band-pass filtered (5–400
Hz), sampled at a frequency of 1 kHz, and acquired with a Matlab-based custom data
acquisition and processing system [23].
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Ten classes of wrist and hand motions plus a no movement class were included in the study.
The 10 motion classes were wrist flexion and extension, wrist pronation and supination,
hand open, and 5 hand-grasp patterns including chuck grip, key grip, power grip, fine pinch
grip, and tool grip. EMG data were first acquired to train the pattern recognition classifier
and test classification accuracy. Subjects were instructed to follow demonstrations of each
movement displayed in random order on a computer screen and to perform the movements
with a comfortable and consistent level of effort. EMG data were collected in eight
consecutive trials. In each trial, all 11 motion classes were repeated twice and held for 4 s,
producing 8 s of EMG recordings per class. There was a 3 s interval between consecutive
movements in the four even-numbered trials, and a variable time interval (3 s, 2 s, 0 s, and 1
s, in turn) in the four odd-numbered trials in order to enhance the classifier’s robustness. To
avoid muscle and mental fatigue, subjects were allowed to rest for 1–5 min between trials.

EMG data from the four odd-numbered trials were concatenated, producing 32 s of EMG
recordings per movement, and used as a training set to build a classifier; data from the four
even-numbered trials were similarly combined, producing 32 s of EMG recordings per
movement, and used as a test set to evaluate the classification accuracy. EMG recordings
were segmented into a series of 150 ms analysis windows with 50 ms of overlap. Four time-
domain features (mean absolute value, number of zero crossings, waveform length, and
number of slope sign changes) [6] were extracted from each analysis window as a
representation of the EMG signal patterns [24], [25]. For each analysis window, a feature set
was extracted on each of the 12 channels, producing a four-dimensional feature vector (four
time-domain features). After concatenating the feature sets of all 12 channels, the entire 4 ×
12 feature set vector was provided to the classifier. EMG features from the training set were
used to train a linear discriminant analysis (LDA) [25] classifier for the 11 motion classes,
and EMG features from the test set were used to test the classifier’s accuracy. The
performance of the trained classifier in identifying a movement was measured by the
classification accuracy, which is defined as

The classification accuracies were averaged over all 11 movements to calculate the overall
classification accuracy.

The LDA classifier was then used to classify features extracted from EMG signals in real
time. Again, 150 ms analysis windows were used with 50 ms of overlap, producing a new
prediction of the motion class every 100 ms. The real-time classification decisions were
used to control a virtual reality arm. Computational time for each analysis window was less
than 3 ms.

C. Virtual Prosthesis Control and Performance Metrics
Experiments with the virtual prosthesis were performed immediately following classifier
training. Subjects were instructed to follow visual prompts for each movement. A virtual
arm which responded to the class decisions allowed subjects to observe the real-time results
of their movement commands (Fig. 2). Subjects were asked to maintain each muscle
contraction until the virtual arm completed the movement.

In each trial, subjects were asked to sequentially perform a series of motions. Each of the ten
motions was randomly presented three times in a trial, and trials were repeated six times for
a total of 180 movements—72 wrist movements and 108 hand movements. Subjects rested
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for 3 s between consecutive movements and for 2–5 min between trials. Dynamic data were
recorded and used to quantitatively evaluate the speed and consistency of pattern recognition
control.

Three metrics were used to quantify real-time prosthesis control performance [23]. The
motion-selection time was defined as the time taken to correctly select a target movement.
This quantity represented how quickly motor command information (here represented with
myoelectric signals) could be translated into the correct motion predictions. It was measured
as the time from the onset of movement to the first correct prediction of the movement, as
illustrated in Fig. 3. The onset of movement was identified as the time of the last no
movement classification; this corresponded to approximately a 5% increase in the mean
absolute value of the baseline EMG signals. All onset times were visually checked to avoid
miscalculations. The motion-completion time was the time taken to successfully complete a
movement through the full range of motion. It was measured as the time from the onset of
movement to the completion of the intended movement, calculated as the time of the tenth
correct classification. Ten accumulated correct classifications were required for a motion
completion. The minimum possible time to complete any motion was normalized to 1 s,
corresponding to ten consecutive correct classifications with a new classification occurring
every 100 ms (each incorrect decision added 100 ms to the completion time). The update
rate of the prosthesis control system was chosen to be 100 ms to insure a continuous
decision stream in real time, allowing for the delays caused by EMG and pattern recognition
processing (up to 25 ms) and virtual reality rendering (approximately 50 ms). This has been
found to be within the range of acceptable prosthesis controller delays [26]. The motion-
completion rate was defined as the percentage of successfully completed motions. This
metric was a measure of performance reliability. A motion trial was considered completed if
it was successfully performed through the full range of motion within the designated time
limit. The time limit was chosen as 5 s based on clinical experience: after approximately this
amount of time, prosthesis operation would be too slow and users may become frustrated
and cease attempting a movement. If the target movement was not completed within the 5 s
time limit, the movement was considered a failure and the completion time was not counted.

D. EMG Channel Reduction
Although increasing the number of electrodes increases the number of myoelectric signals
captured, it simultaneously adds more complexity, weight, and cost to a prosthesis. A pilot
analysis was performed to investigate the feasibility of using a reduced number of electrodes
without compromising classification accuracy. In a previous experiment in which the total
number of electrodes was greater than 100, we used the sequential forward selection (SFS)
method to select the suboptimal electrode combination [27]. With a total of 12 electrodes, it
is possible to use the straightforward exhaustive search algorithm to determine the ideal
number of EMG electrodes based on the 12-channel EMG recordings from all five subjects.
All possible electrode combinations for a reduced number of channels (ranging from 1 to
11) were evaluated by classification accuracy for the 10 movement classes (the no movement
class was not considered in this analysis). The EMG recordings from the channels in each
combination were selected from the 12-channel training set and used to train individual
LDA classifiers. The EMG recordings from the same channels were selected from the 12-
channel testing set and used to estimate each classifier’s accuracy. The channel
combinations that produced the highest classification accuracies for each number of
channels were considered the optimal channel configurations.

E. Statistical Analysis
Average classification accuracy and motion-completion rate are reported with mean and
standard deviation (±SD). Motion-selection and motion-completion time distributions are
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skewed; therefore, we report the average and standard deviation of the median values from
all subjects. Motion-selection time and motion-completion time are also represented with
histograms with time bins of 0.1 s and 0.5 s, respectively. The paired t-test was used to
assess the statistical difference between the means of compared data.

III. Results
A. Classification Accuracy

Classification accuracy over all 11 motion classes was calculated for all three trials with the
five subjects [Fig. 4(a)]. The average classification accuracy for the five subjects was
approximately 5% higher in the second amputated arm trial than in the first, but this
difference was not significant (p > 0.05); therefore, further analyses focused on the second
trial on the amputated arm (trial 3). Testing on amputated arms produced significantly lower
classification accuracies than testing on intact arms (p < 0.02). The average accuracy over
all five subjects was 79% ± 11% for the amputated arm and 94% ± 3% for the intact arm.
Hand-grasp classification accuracies for the amputated arm (69% ± 18%) were significantly
lower (p < 0.05) than wrist-movement classification accuracies (89% ± 7%), and were more
variable [Fig. 4(b)].

B. Virtual Prosthesis Control Performance
1) Learning Trend—Real-time performance metrics from the two trials on the amputated
arm (trials 1 and 3) were compared. Although there was a trend towards improved
performance in the later trial, performance differences were small and not statistically
significant. Subsequent analyses used the amputated arm data collected in trial 3.

2) Motion-Selection Time—The motion-selection time of a movement was counted if the
movement was successfully completed within 5 s (Table II). The average time to select a
movement was not significantly different (p =0.7) for the amputated or intact arms (0.19 ±
0.07 s and 0.18 ± 0.08 s, respectively). Although the average motion-selection time for the
hand was higher for the intact arm than for the amputated arm (Table II), this difference was
not significant. The histogram of motion-selection times for the hand shows that, in fact, a
similar percentage of hand movements were selected quickly with the amputated and intact
arms [Fig. 5(a)]. Thus, if the subjects were able to perform a given hand grasp with their
amputated arm, they were able to select it just as quickly as with their intact limb. The
histogram of wrist motion-selection times for the amputated arm was also similar to that for
the intact arm [Fig. 5(a)]. These histograms demonstrate that subjects could select a correct
motion class using their amputated arms as quickly as they could with their intact arms.
There was no significant difference between wrist and hand motion-selection times on either
arm.

3) Motion-Completion Time—The motion-completion times were only counted for those
movements completed in 5 s or less. The average time to complete an arm movement was
1.24 ± 0.27 s for amputated arms and 1.14 ± 0.17 for intact arms (p = 0.2) (Table II). On
average, wrist movements were completed 20% faster than hand movements with the
amputated arm and 38% faster with the intact arm, though only the former difference was
statistically significant (p = 0.04 and p = 0.2, respectively). Subjects had perfect motion-
completion times (1 s) in less than 30% of the attempts; however, the majority of intended
movements were completed in 2 s [Fig. 5(b)].

4) Motion-Completion Rate—At 5 s, the motion-completion rate for the amputated arm
(72.1% ± 8.8%) was significantly lower than that for the intact arm (81.2% ± 8.1%) (p =
0.04). The motion-completion rates for wrist movements for both the amputated and intact
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arms were near 100% at 5 s. Motion-completion rates for hand grasps were much lower for
both arms. For the amputated arm, the motion-completion rate for the hand was nearly half
that of the wrist [Fig. 6(b)], and for the intact arm, the average motion-completion rate for
the hand was 29.5% lower than that for the wrist. These differences were statistically
significant (p ≤ 0.01).

Further analysis was performed on the number of attempts needed to successfully select a
grasp. There was no significant difference between the amputated and intact arms for trials
successfully completed by the 5 s limit; 81.4% of hand grasps were selected on the first
attempt, 18% were selected on the second attempt, and 0.5% were selected on the third
attempt.

C. Channel Reduction—Use of 6–8 optimally placed bipolar electrodes produced
comparable accuracy to the use of all 12 electrodes for classification of the 10 motion
classes (Fig. 7). Reducing EMG channels from 12 to 8 only decreased classification
accuracy by 1%–3% in the subjects. When the motion classes were reduced to six basic
motion classes (wrist flexion/extension, wrist pronation/supination, hand open, and power
grip), the classification accuracy plateaued at 4–6 electrodes. Using 4 or 6 optimally selected
electrodes with 6 motion classes produced an average accuracy of 88.5% ± .6% and 91.5% ±
4.9%, respectively, compared to 93.1% ± 4.1% with all 12 electrodes. Furthermore, optimal
placement was not necessary to achieve relatively high accuracy. For the six motion classes,
4 suboptimal channels (4 electrodes spaced evenly around the proximal forearm) produced a
classification accuracy of 83% ± 7%. Adding a fifth electrode on either side of the distal
forearm increased accuracy by 2%–3%.

IV. Discussion
It is a challenge to evaluate the performance of upper-limb prostheses. Historically,
investigators have used able-bodied subjects to quantify EMG–pattern recognition
performance with the simple goal of comparing the classification accuracy of different
pattern recognition algorithms. We found high pattern recognition accuracies on the intact
limbs—in which EMG data was collected from both forearm and intrinsic hand muscles—
and significantly lower accuracies on the amputated limb. These results were comparable to
accuracies found in other investigations using EMG pattern recognition for classification of
wrist and hand movements in able-bodied and transradial subjects [4]–[21]. However,
classification accuracy is calculated offline and is not a reliable measure of real-time
performance. We have developed real-time performance measures to assess important
control parameters and gain insight into the feasibility of clinically implementing EMG–
pattern recognition–based controllers for transradial amputees. These metrics could also be
used for comparing conventional myoelectric control with any neural–machine control
systems developed in the future.

Two of the real-time performance metrics (motion-selection time and motion-completion
time) were associated with speed, and the third (motion-completion rate) measured the
robustness of prosthesis use, offering different means of assessing a user’s functional ability.
Comparison of motion-selection and motion-completion times revealed that wrist
movements could be selected and completed quickly with both the amputated and intact
limbs, with no difference between arms. Similarly, the motion-completion rates for wrist
movements with both arms were close to 100%. Interestingly, there was also no difference
in motion-selection or motion-completion times for hand grasp patterns between the
amputated and intact arms. However, the motion-completion rates for hand grasps were
significantly higher on the intact arm. Therefore, when hand grasps were successfully
performed in 5 s or less with the amputated arm, they were selected and completed just as
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quickly as with the intact arm, but fewer hand grasps were successfully performed with the
amputated limb. The most probable cause of this difference was the EMG data from intrinsic
hand muscles collected on the intact arm. In light of these findings, it appears that motion-
completion rate was the most telling performance metric. A high completion rate is needed
for adequate prosthesis function and to prevent user frustration. Although the motion-
completion rates were high for wrist movements, the motion-completion rates for hand
grasps were much lower for the amputated and intact arms (54% and 71%, respectively).
These values are perhaps lower than might be expected based on the pattern recognition
accuracies of 79% and 94% calculated for the amputated and intact arms, respectively.
Clearly the subjects had to struggle as they tried to perform the various hand grasps.

It is noteworthy that the pattern recognition accuracy for the transradial arms was 79%, a
lower rate than was found for transhumeral and shoulder disarticulation amputees with
targeted muscle reinnervation (88%) [23]. This may be due to the reinnervation of the target
muscles by the motoneurons of the intrinsic hand muscles, which takes place following
targeted reinnervation and provides important EMG data about grasping patterns. No EMG
data from intrinsic hand muscles was available on the amputated arms of the transradial
amputees to contribute to the control of hand-grasp patterns. Thus, performing targeted
reinnervation with the residual nerves of transradial amputees may increase the EMG
information content and result in more robust control of multifunctional prosthetic hands. It
is also noteworthy that the targeted reinnervation patients who participated in the previous
study had more laboratory experience with pattern recognition control than the transradial
patients tested in this study; therefore, learning may have played a part in the relative
performance of the two groups.

Additional practice with the system is one way in which transradial patients might improve
hand-grasp control. In this study, an initial trial with the amputated arm was carried out in
order to familiarize the subjects with the experimental routine and with pattern recognition
control. The results from the three experiments demonstrated that performance improved
from the first to the third experiments and that the amputated arm did not perform as well as
the intact arm. However, this is far from a comprehensive analysis of important learning
parameters such as user experience, user education, learning within a session, issues of how
to best train both the pattern recognition classifier and the patient, and recall from day to day
or week to week. Additional research is required to quantify learning with pattern
recognition control.

Using fewer hand grasp patterns would also improve pattern recognition of the remaining
hand grasps. In this study we saw that reducing the number of hand grasps from five to one
greatly increased the pattern recognition accuracy for the amputated arm. The number of
hand grasp patterns a transradial amputee might be able to effectively control remains to be
studied.

In general, pattern recognition control would benefit from better EMG interfaces. In
particular, intramuscular EMG systems offer the possibility of more stable EMG recording
and opportunities to refine the selectivity of each EMG channel. There is also a need to
develop more robust pattern recognition algorithms to improve prosthesis control.

To be clinically relevant, the number of EMG channels used to provide robust pattern
recognition control must be kept to a minimum. In this study, 6 to 8 electrode channels were
able to achieve comparable levels of classification accuracy for the 10 classes of wrist and
hand movements as 12 electrode channels [Fig. 7(a)]. We also performed an analysis that
excluded variations in hand grasp movements, as the performance metrics for multiple hand
grasps were low and as no multifunctional hands are currently available. We found that only

Li et al. Page 8

IEEE Trans Neural Syst Rehabil Eng. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4 electrode channels were needed to provide good pattern recognition classification accuracy
for the 6 basic movements (wrist flexion/extension, wrist pronation/supination, and hand
open/close).

A virtual arm was used in these experiments instead of a physical prosthesis, since prosthetic
hands with many hand grasp capabilities are not yet available commercially or to our lab.
There are many differences between using a virtual arm and a physical device that should be
considered, including differences in visual feedback, the effect of the weight of a physical
prosthesis on the EMG recording interface, and the system dynamics of a physical
prosthesis. However, a virtual arm allows us to perform real-time experiments with visual
feedback and measure new and relevant performance parameters, and mitigates the
challenge of keeping complex multifunctional prostheses in an operable condition. Use of a
virtual arm also reduces the testing time required of the subjects, as a physical prosthesis
would require casting and fitting of an appropriate socket, and any additional time needed to
address mechanical issues arising during testing.

The clinical implementation of a pattern recognition control system with wrist movements
and one hand grasp looks promising for people with transradial amputations, based on the
results of this study. Such a system could provide the ability to control powered wrist
flexion in addition to wrist rotation and control of the terminal device. Furthermore, pattern
recognition control would be more intuitive and faster than conventional switching
techniques.
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Fig. 1.
Placement of 12 bipolar electrodes for EMG recordings on (a) an amputated arm and (b) an
intact arm.
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Fig. 2.
The graphical user interface used for real-time testing. The prompted movement is shown on
the right and the virtual arm is shown on the left.
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Fig. 3.
Calculation of real-time performance metrics. Movement onset, motion-selection time, and
motion-completion time were measured with respect to classifier decisions. Movement onset
was also related to the magnitude of the mean absolute (abs.) value of the recorded EMG
signals. Each target movement started from a state of rest (no movement). The classifier
made a motion prediction every 100 ms.
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Fig. 4.
Classification accuracy for 11 movement classes. (a) The classification accuracies for five
transradial subjects from three trials. (b) Classification accuracies for wrist and hand
movements for the amputated (amp.) arm (trial 3). Error bars denote standard deviation.
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Fig. 5.
Time histograms for (a) motion-selection time and (b) motion-completion time for the
amputated arms (left panels) and intact arms (right panels). The vertical axes represent the
percentage of attempted movements selected or completed within times bins of 0.1 s and 0.5
s, respectively.
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Fig. 6.
Motion-completion rate versus time for (a) amputated and intact arms and (b) wrist and hand
of amputated arms.
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Fig. 7.
Classification accuracy versus number of surface electrodes for 6 or 10 movement classes as
measured on (a) the amputated arms and (b) the intact arms.
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