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Abstract

Background: Lung adenocarcinom (AC) is the most common form of lung cancer. Currently, the number of medical options
to deal with lung cancer is very limited. In this study, we aimed to investigate potential therapeutic compounds for lung
adenocarcinoma based on integrative analysis.

Methodology/Principal Findings: The candidate therapeutic compounds were identified in a two-step process. First, a
meta-analysis of two published microarray data was conducted to obtain a list of 343 differentially expressed genes specific
to lung AC. In the next step, expression profiles of these genes were used to query the Connectivity-Map (C-MAP) database
to identify a list of compounds whose treatment reverse expression direction in various cancer cells. Several compounds in
the categories of HSP90 inhibitor, HDAC inhibitor, PPAR agonist, PI3K inhibitor, passed our screening to be the leading
candidates. On top of the list, three HSP90 inhibitors, i.e. 17-AAG (also known as tanespimycin), monorden, and
alvespimycin, showed significant negative enrichment scores. Cytotoxicity as well as effects on cell cycle regulation and
apoptosis were evaluated experimentally in lung adenocarcinoma cell line (A549 or GLC-82) with or without treatment with
17-AAG. In vitro study demonstrated that 17-AAG alone or in combination with cisplatin (DDP) can significantly inhibit lung
adenocarcinoma cell growth by inducing cell cycle arrest and apoptosis.

Conclusions/Significance: We have used an in silico screening to identify compounds for treating lung cancer. One such
compound 17-AAG demonstrated its anti-lung AC activity by inhibiting cell growth and promoting apoptosis and cell cycle
arrest.
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Introduction

Lung cancer, including small cell lung cancer (SCLC) and non-

small cell lung cancer (NSCLC), is the leading cause of cancer

deaths for both men and women worldwide, particularly in China

[1],[2],[3],[4]. Lung adenocarcinoma is the predominant histo-

logical subtype of NSCLC and accounts for about 20,30% of

primary lung cancer cases for people under the age of 45

regardless of smoking history [5]. Clinically, surgical resection

remains the most effective treatment for early-stage NSCLC

patients (stage I–II), with 30%–60% of survival 5 years after

intervention [6]. However, five-year survival rate drops to about

10,15% for most NSCLC patients due to late diagnosis, when the

tumor has become unresectable. Chemotherapy using cisplatin

(DDP) in combination with other antitumor agents (e.g.,

paclitaxel, gemcitabine, vinorelbine, etc.) remains the first

treatment plan for advanced NSCLC. In recent years, the use of

some small molecular agents targeting specific tyrosine kinases of

cancer cells shows favorable results, but the improvement is often

insignificant to extend the lives of NSCLC patients. Thus, there is

a need for finding new and effective therapeutic agents for lung

adenocarcinoma.

Gene expression profiling is used as a powerful tool for

elucidating disease-specific molecular mechanism, biological

pathway [7], as well as for predicting drug response or

resistance [8], disease outcome [9], and for discovering new

targets [10]. Recently, Lamb and his coworkers [11] created a

searchable database (‘‘Connectivity Map’’, C-MAP) containing

thousands of gene-expression signatures of various cultured

cancer cells exposed to a large collection of small molecule

compounds. C-MAP represents a useful tool for the discovery

of unexplored connections among small molecules, diseases,

and the biological pathways that join them. By comparing

expression signatures, C-MAP serves as a proxy to search for

new indications of all compounds surveyed, and has seen its

success in drug re-discovery. Using C-MAP, Guo et al identified

rapamycin as a potential glucocorticoid resistance reversal

agent [12]. Two new hsp90 inhibitors, celastrol and gedunin,

were discovered using this approach [13]. In another study,

new therapeutic compounds for treating neuroblastoma were
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similarly identified [14]. More researches have demonstrated its

potential [15],[16].

In the present study, we set out to discover agents not known for

targeting lung adenocarcinoma by an expression-based in silico

screening. We screened and ranked for genes differentially

expressed in lung adenocarcinoma versus normal lung tissue.

The ranked gene list (denoted as signature) was then submitted to

the C-Map database for the identification of compounds or drugs

reversing the expression direction of the signature. Among the

candidate compounds found, 17-AAG (also known as Tanespi-

mycin) was selected as a potential therapeutic agent for lung

adenomcarcinoma. In subsequent validation experiments, 17-

AAG alone or in combination with cisplatin inhibited lung

adenocarcinoma cell proliferation and induced both cell cycle

arrest and apoptosis.

Results

Genes differentially expressed between lung
adenocarcinoma and normal lung tissue

C-MAP can be used to query gene expression signature against

a collection of microarray expression signatures from cultured

disease-borne human cell lines treated with bioactive small

molecule compounds. Here, we tested whether C-MAP could be

used to identify compounds reversing the expression signature of

lung adenocarcinoma.

The workflow of the meta-analysis of multiple microarray data

sets is shown in Supplementary Figure. S1. In brief, we first

defined a gene expression signature of lung adenocarcinoma by

identifying differentially-expressed genes common to the two data

sets used. 343 such differentially expressed genes with at least a 2-

fold change found by the meta-analysis were used to define a lung

AC signature (Supplementary Figure. S2). This signature includes

93 up-regulated and 250 down-regulated genes. A detailed gene

list can be found in Supplementary Table S2. Gene Set

Enrichment Analysis (GSEA) suggested that several pathways

related to CELL_CYCLE, AKT, PPARA and TIGHT_JUNC-

TION regulation were dysfunctional in lung AC (unpublished

result).

Identification of compounds reverting expression
signature of lung adenocarcinoma

Using a simple pattern-matching algorithm, C-MAP links drugs,

genes and diseases by measuring similarity or dissimilarity in gene-

expression. To identify drugs exerting antitumor effects by causing

a reversal of the gene expression signature of lung adenocarcinoma

to a favorable one, we performed C-MAP analysis by searching for

negatively-correlated gene expression patterns associated with

drug-treated cancer cells [11]. The expression signature of lung

adenocarcinoma described above was used as input query to

compare with those produced from drug treatments in the C-MAP

database. Multiple drugs were identified for having expression

signatures inverse-correlated with that of lung adenocarcinoma

beyond chance. The results were summarized in Table 1. On top

of the list, three HSP90 inhibitors, i.e. 17-AAG, monorden, and

alvespimycin, showed significant negative enrichment.

17-AAG inhibited lung adenocarcinoma cell growth and
enhanced cisplatin cytotoxicity in vitro

To investigate the biological effects of HSP90 inhibition, A549

or GLC-82 cells were cultured in medium containing various

concentration of 17-AAG (0–3.2 mmol/L) or drug-free medium

containing DMSO (0.1% final concentration) and cell viability was

determined by the MTT assay. As shown in Figure 1A and 1B, it

was evident that increasing concentrations of 17-AAG in the

culture medium inhibited the growth of A549 or GLC-82 cells in a

dose dependent manner. The IC50 of 17-AAG and cisplatin for

A549 at 48 h was 0.454 and 69.63 mmol/L, for GLC-82 was

0.273 and 41.32 mmol/L, respectively. The combination of the

two compounds was tested at fixed ratio based on their IC50s for

assessment of their synergy.

To evaluate the cytotoxic effects of combining 17-AAG and

cisplatin in A549 or GLC-82 cells, we compared the growth

inhibition resulted from single or combined treatment by the two

compounds. As shown in Figure.1C and 1D, either 17-AAG or

cisplatin alone inhibited the growth of A549 and GLC-82 cells in a

concentration-dependent manner. The effect was greater when the

two agents were combined, even at the lowest dosage combina-

tion. To determine whether the combination of cisplatin and 17-

AAG in A549 or GLC-82 cells resulted in synergistic effects, the

median effect method analysis of Chou and Talalay was used [17].

The combination index (CI) values are summarized in Table 2, all

of which were below 1, indicating that there exists a synergistic

antiproliferative effects between 17-AAG and cisplatin in A549 or

GLC-82 cells.

17-AAG caused cell cycle arrest and induced cell
apoptosis in lung adenocarcinoma cells

HSP90 is known to be a chaperone for a variety of proteins that

regulate cell cycle and apoptosis [18],[19]. Thus, we asked

whether the antiproliferative activity of 17-AAG was due to cell

cycle arrest, apoptosis, or both. As compared to untreated cells,

A549 cells treated with 17-AAG showed a signifiantly increased

arrest in G2/M phase (p,0.05) and a marginal decrease in S

phase at 24 h (Figure 2 panel A). This suggested that 17-AAG

induced cell cycle arrest by preventing A549 cells from entering

Table 1. Results of Connectivity Map analysis.

Rank
Compound
name n Enrichment p

Drug
category

1 vorinostat 7 20.83 0 HDAC inhibitor

2 trichostatin A 92 20.327 0 HDAC inhibitor

3 tanespimycin 36 20.395 0.00006 hsp90
inhibitor

4 LY-294002 34 20.31 0.00204 PI3K inhibitor

5 alvespimycin 7 20.617 0.00443 hsp90
inhibitor

6 resveratrol 6 20.655 0.00467 phytoalexin

7 thioridazine 4 20.773 0.00539 antipsychotic

8 monorden 12 20.469 0.00615 hsp90
inhibitor

9 15-delta prostaglandin J2 8 20.552 0.00784 PPAR agonist

10 troglitazone 4 20.675 0.02487 PPAR agonist

11 CP-690334-01 4 20.673 0.02558 Not assessed

12 geldanamycin 10 20.43 0.03386 hsp90
inhibitor

13 carbamazepine 5 20.585 0.03609 anticonvulsant

14 pioglitazone 5 20.571 0.04348 PPAR agonist

15 0173570-0000 4 20.632 0.04492 Not assessed

NOTE: The compounds tested in at least four experiments were ranked based
on p value.
doi:10.1371/journal.pone.0014573.t001
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mitosis. However, the combination of 17-AAG and cisplatin

produce modest to marginal change in S or G2/M arrest as

compared to the respective control groups (Figure 2 panel A).

Annexin-V/PI (propidium iodide) flow cytometric experiments

were performed to determine if 17-AAG alone or in combination

with cisplatin could induce A549 cell apoptosis. Viable cells with

intact membranes exclude PI, whereas dead and damaged cells with

broken membranes are permeable to PI. As shown in Figure.2 panel

B, upto 32% of cells treated with 17-AAG became apoptotic

(including early and late apoptosis) as compared to about 12%

apoptotic cells in control (p,0.05) (Figure.2 panel B). When 17-

AAG combined with cisplatin, the percentage of late apoptotic cells,

notably total apoptotic cells, increased as compared to those treated

with 17-AAG alone (p,0.05) (Figure 2 panel B).

Figure 1. Cytotoxic effect of cisplatin (DDP), 17-AAG alone or together in lung adenocarcinoma cell lines. A549 or GLC-82 cells were
incubated with 10,320 mM cisplatin (A), 0.2,3.2 mM 17-AAG (B), or various concentrations of cisplatin in combination with 17-AAG (C, D) at fixed
ratio for 48 h. Cell viability was determined by the MTT assay and expressed as relative viability to control cells. Each bar represents results from
triplicate experiments.
doi:10.1371/journal.pone.0014573.g001

Table 2. Synergy of 17-AAG with cisplatin in growth inhibition of A549 or GLC-82 cells.

A549 cell line GLC-82 cell line

17-AAG( mmol/L) Cisplatin( mmol/L) C I 17-AAG( mmol/L) Cisplatin( mmol/L) C I

0.025 4.4 0.321 0.018 2.5 0.423

0.05 8.7 0.339 0.035 5 0.482

0.1 17.5 0.420 0.07 10 0.597

0.2 35 0.570 0.14 20 0.684

0.4 70 0.697 0.28 40 0.855

NOTE: Combination Index (CI) values for 17-AAG with cisplatin at a constant ratio (1:175) as determined using the method of Chou and Talalay. CI = 1: additive effect;
CI,1: synergy; CI.1: antagonism.
doi:10.1371/journal.pone.0014573.t002
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Effects of 17-AAG on the expression of EGFR, HIF 1A, AKT1
and RAF-1 mRNA

Many factors including EGFR, HIF-1A, AKT1 and RAF-1 are

known to be regulated by Hsp90 and their abnormal expression level

is often associated with lung cancers [20],[21],[22],[23],[24]. We

assessed the transcription levels of EGFR, HIF-1A, AKT1 and RAF-1

by real-time RT-PCR after A549 or GLC-82 cells were treated with

17-AAG or DMSO for 24 h. Results showed that the mRNA levels of

EGFR, HIF-1A, AKT1 and RAF-1 in 17-AAG-treated A549 or GLC-

82 cells decreased over control (Figure 3A and 3B). 17-AAG down-

regulated expression of EGFR and HIF1A in GLC-82 cells by as

much as 1.81 and 1.54-fold respectively as compared to those in A549

cells. However, the levels of Raf1 and AKT1 mRNA down-regulated

by 17-AAG was similar in both cell lines.

Figure 2. Effect of 17-AAG on cell cycle assessed using propidium iodide (PI) staining (A) and effect of 17-AAG on cell apoptosis
quantitated using Annexin-V/PI detection (B). The A549 cells were exposed to various concentrations of 17-AAG or various concentrations of
cisplatin in combination with 17-AAG at fixed ratio for 24 h. The cells were harvested and analyzed by flow cytometry. Each bar represents the means
6 S.D (n = 3). Groups with significant change as compared to the respective control group were marked with asterisks (* p,0.05). Comparison of 17-
AAG+cisplatin at their highest dosage was made against 17-AAG2treated groups and was found to be significant (# p,0.05) in terms of late/total
apoptosis. G1: G1 phase; S: S phase; G2/M: G2/M phase.
doi:10.1371/journal.pone.0014573.g002

Figure 3. Expression of EGFR, HIF1A, AKT1 and RAF1 mRNA was determined by real time RT-PCR after A549 (A) or GLC-82 (B) cells
were treated with 17-AAG or DMSO for 24 h.
doi:10.1371/journal.pone.0014573.g003
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Discussion

Using an expression signature specific to lung adenocarcinoma, a

number of compounds from C-MAP analysis were identified for

having negatively-correlated effects on expression of query

signature. These include HSP90 inhibitors, HDAC inhibitors,

PPAR agonists, PI3K inhibitors, etc (Table 1). Some of the top hits

in our initial screening, including histone deacetylase inhibitor

trichostatin A [25], peroxisome proliferator-activated receptor

agonist 15-delta prostaglandin J2, and PI3K inhibitor LY-294002,

all have been shown to possess promising therapeutic activity for

treating many cancer types inluding lung cancer [26],[27],[28],[29].

17-AAG, one of the three top-ranked HSP90 inhibitors (17-AAG,

monorden and alvespimycin), prevented proliferation of lung AC,

induced G2/M cell cycle arrest and apoptosis in subsequent

validation experiments as expected. When combined with the

commonly-prescribed cisplatin, 17-AAG also showed synergistic

interaction in inhibiting cell proliferation. These results agree with

the rational behind our approach in finding new uses of existing

compounds for unexplored medical conditions. In fact, this

approach has been proved to be valuable in the area of drug

discovery by others [12],[13],[14].

The constitutively action of PI3K/Akt signal transduction

pathway has been reported to promote survival and proliferation

of NSCLCs [23],[30],[31]. Akt, a downstream target of PI3k, is often

mutated and amplified in a variety of human tumors including

about 50% of NSCLC tissues [30]. C-RAF (Raf-1), which is a

component of the RAS/RAF/MEK/ERK pathway, also overex-

pressed in NSCLCs [32]. The alterations of some transmembrane

receptors or signaling factors may result in the activation of PI3K/

Akt signal pathway. For example, EGFR, which overexpressed in

40–80% of NSCLC, is an important up-stream regulator of PI3K/

Akt [23] and RAS/RAF/MEK/ERK pathway in lung cancers

[32]. In addition, the stabilization and activation of hypoxia-

inducible transcription factor-1 (HIF-1), which contributed to the

promotion of angiogenesis and the therapeutic resistance of tumor

cells, can be affected by RAS/RAF/MEK/ERK and PI3K/Akt

signal transduction pathways [21].

Hsp90 is a highly conserved molecular chaperone important for

regulating a subset of cellular proteins. For example, it is critical

for the maturation and conformational stabilization of proteins of

normal cellular functions and those implicated in oncogenesis (e.g.,

Akt, HER2, Raf-1, HIF-1A, EGFR and Cdk4) [22],[33]. We

speculate that 17-AAG exercises its inhibitory effect by reducing

Hsp90 proteins activity and thereby destabilizing proteins

important for cancer cell growth. Correlated with the observed

growth inhibition, 17-AAG caused down-regulation of EGFR,

HIF-1A, AKT1 and RAF1, with a much deeper inhibition of EGFR

and HIF-1A expression in GLC-82 than that in A549. Previous

studies have demonstrated that various Hsp90 inhibitors (e.g.17-

AAG, 17DMAG) caused the inhibition and interference of

oncogenic signaling cascades in other advanced cancers by

degrading EGFR, Akt, Raf-1 and HIF-1A, or by decreasing their

expression [21],[23],[30],[32]. Here, we demonstrated that 17-

AAG has similar effect in lung AC cells (Fig. 3A and B), which may

result in growth inhibition, cell cycle arrest and apoptosis.

As shown in this study, A549 cells were found to arrest in G2/M

after exposure to 17-AAG. The overall effect of 17-AAG on cell

cycle regulation depends on cancer type or even cell lines, a

reminiscence of G1 or G2/M arrest or both seen in different types

of cancer cell lines [34]. In prostate cancer cell line, 17-AAG

induced G1 arrest by degradating HER2, Akt, and androgen

receptor [24]. In two different hepatoma cell lines, 17-AAG

induced G1 and G2/M arrest in HuH7 and arrest only in G2/M in

Hep3B cell lines, which owed to the difference of Akt expression in

these cells [35]. However, 17-AAG and cisplatin have no synergy

on cell cycle inhibition, which might be resulted from 17-AAG’s

effect being masked by cisplatin’s effect in the preceding S phase.

Identifying new compounds for medical conditions is generally

time-consuming and very expensive. We explore an in silico

strategy to discover new uses of existing compounds for unmet

clinical needs. A pre-requisite for the success of this approach is the

availability of a high quality expression signature. This signature

should mirror the changes between normal and diseased states to a

reasonably good degree. To reduce the risk of bias, we selected our

signature through meta-analysis. Meta-analysis provides more

analytical power for us to generate such a more representative

signature. Another major hurdle is the coverage of C-Map which

currently contains over 7000 expression signatures with about

1300 compounds tested for four cell types. This may not be

enough to deal with the complexity of many human diseases. In

addition, only limited number of genes are allowed as input. This

may distort pattern matching process if bias is present. When

evaluating screening result, one needs to bear in mind that the

connectivity score is merely a statistical measure of similarity or

dissimilarity, as it is easier to obtain higher connectivity scores in a

relatively low number of experimental instances. To be on the safe

side, we initially filtered the compounds tested less than four times,

and prioritized candidate compounds based on both p-value and

the number of compounds in each class (Table 1).

In summary, our study demonstrated that gene expression

signature-based in silico drug discovery is potentially valuable for

the identification of new indications of existing compounds, which

is critical for translational research and clinical applications. One

major advantage of such approach is that the time-to-market is

much shorter and cost-saving is significant as compared to new

drug development since many compounds assayed in C-Map are

approved by the Food and Drug Administration. Any promising

drug(s) from such screen could be particularly beneficial to patients

whose medical conditions have no effective treatment. 17-AAG is

currently being evaluated for the treatment of multiple cancer

indications in Phase I and Phase II clinical trials. Its anti-tumor

activity in lung cancer has not been included in on-going trials but

could be verified in subsequent trials, subjecting to more in-depth

studies and structural optimization.

Materials and Methods

Compounds and Cell culture
17-AAG (17-Allylamino-17-demethoxygeldanamycin), obtained

from Sigma- Aldrich (St. Louis, MO), was dissolved in dimethyl-

sulfoxide (DMSO) to a 10 mMol/L stock concentration and stored

at 220uC. The maximum volume (%) of DMSO in the

experiment was less than 0.1%, and equal concentrations of

DMSO alone served as a control in all experiments. Water-soluble

cisplatin (DDP), also from Sigma-Aldrich (St. Louis, MO), was

dissolved in PBS to a concentration of 0.1 mol/L and stored at

220uC. Two human lung adenocarcinoma cell lines A549 and

GLC-82 (see Table S3 for more details) were obtained from

GuangZhou Medical College cell repository and SUN YAT-SEN

University cell repository, respectively. Cells were cultured in

RPMI1640 medium supplemented with 10% fetal bovine serum

(Invitrogen-Life Technologies, Inc.) at 37uC in the presence of 5%

CO2.

Acquisition and analysis of public microarray data
Raw data (.Cel files) of two published microarray data

(GSE7670 and GSE10072) used in this study were obtained from

Drug Discovery for Lung Cancer
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the National Center for Biotechnology Information (NCBI) Gene

Expression Omnibus (GEO) web site (http://www.ncbi.nlm.nih.

gov/geo).

Details of the two microarray datasets are summarized in

Supplementary Table S1. Microarray analysis was done with the

BRB Array Tools (Version: 3.7.0), developed by the Biometric

Research Branch of the US National Cancer Institute (http://

linus.nci.nih.gov/BRB-ArrayTools.html). Two-sample T-test was

used to identify differential genes. To control type I error, a total of

2,000 permutations were performed to set an upper limit of false

discovery rate (FDR) to ,1% at 95% confidence level. Differential

expression was considered significant using a 2-fold change cutoff.

Finally, differential probe IDs common to the two data sets were

obtained as the lung AC signature for further C-MAP analysis.

Connectivity Map analysis
C-Map (build02, http://www.broad.mit.edu/cmap/) contains

more than 7,000 expression signatures representing 1,309

compounds. Up and down-regulated gene groups were submitted

simultaneously to C-MAP for analysis. Enrichment scores for each

and every compound in the database were computed using the

gene set enrichment analysis algorithm [11]. Compounds with

negative connectivity scores, which imply a mode of action by the

matched compounds to reverse the expression direction of query

genes in lung adenocarcinoma, were recorded as potential

therapeutic agents for lung adenocarcinoma.

Cell viability and toxicity assay
To evaluate cytotoxic effects of 17-AAG on lung adenocarci-

noma cells, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo-

lium bromide assay (MTT) was performed as previously described

[12]. In brief, A549 cells or GLC-82 (46104 cells/ml) were seeded

in triplicate into 96-well plates (Costar, Corning, NY). After

overnight incubation, cells were incubated in drug-free medium,

or medium containing various concentrations of 17-AAG, or 17-

AAG in combination with cisplatin for 48 h at 37uC. After drug

exposure for the indicated concentrations and times, cells were

incubated at 37uC for 4 h with the addition of 10 ml of MTT

labeling reagent. Following MTT incubation, the absorbance of

the samples was determined by a microplate reader at 490 nm

(Tecan Sunrise, Switzerland). All experiments were performed at

least three times for each experimental condition, and results were

shown as relative ratios of viability in the treated over control

groups. To confirm the synergistic cytotoxic interaction effect of

cisplatin and 17-AAG, the combination index (CI) was calculated

by Calcusyn Software (Biososoft, Ferguson, MO) according to the

Chou-Talala method [12],[13]. Combination index values less

than 1, equal to 1, or more than 1 indicate synergistic, additive, or

antagonistic cytotoxic drug interactions, respectively.

Cell cycle and cell apoptosis assays
Cell cycle and apoptosis assays were done as previously

described [35]. In brief, cells were plated in duplicate into 6-well

microplates at 56106 cells/well, and incubated in drug-free

medium or medium containing 17-AAG, or 17-AAG plus cisplatin

of varying concentrations at 37uC for 24 h. For cellular DNA

content assay, cells were collected and washed with ice-cold PBS,

fixed with 70% ethanol at 4uC for 1 h. After washing, cells were

treated with RNase (0.25 mg/mL) for 30 min and stained with

50 g/mL of propidium iodide (PI). Stained cells were kept on ice

and protected from light. Cell cycle analysis was performed with

FACScan flow cytometer (Becton Dickinson, USA) and the

percentage of cells in the G1, S and G2/M phases of the cell

cycle was determined using the ModfitLT software program

(Becton Dickinson). For Annexin V staining, cells were washed

once with PBS and then 10 mL of Annexin V-FITC solution and

5 mL of PI solution were added. After 15 minutes of incubation

away from light, cells were directly analyzed by FACScan and

evaluated by the CellQuest program.

Real-Time reverse transcription-PCR
A549 or GLC-82 cells were treated with 0.45 mM 17-AAG or

DMSO for 24 h and total RNAs were isolated with Trizol

(Invitrogen, Karlsruhe, Germany), 18S rRNA gene was used as

the internal normalization control. Real-time RT-PCR(qRT-

PCR) was performed on an ABI Prism 7300 Sequence Detection

System (Applied Biosystems) in a 96-well reaction plate according

to the manufacturer’s recommendations. The PCR amplification

protocol was as follows: 95uC for 5 min, followed by 40 cycles of

95uC for 15 s, 60uC for 15 s and 72uC for 30 s. Each PCR

reaction was performed in triplicate and the experiments were

repeated three times. PCR product quality was monitored using

post-PCR melt curve analysis. Fold inductions were calculated

using the formula 2-(ggct), where ggCt is gCt(treatment)

2gCt(control), gCt is Ct(target gene) 2Ct(18sRNA) and Ct is the cycle

at which the threshold is crossed [36]. The primers used for real-

time PCR are as follows:

EGFR: 5-ACTACAGGTCAAGTGGTAGC-3(forward) and

5- GAGGAGGAGTATGTGTGAAGGA -3 (reverse)

HIF 1A: 5- GTGGATTACCACAGCTGA -3 (forward) and

5- GCTCAGTTAACTTGATCCA -3(reverse)

AKT1: 5- TCTGTCACCAGCTATCTG -3(forward) and

5-GACAGTCACCAAGAACTG-3(reverse);

RAF-1: 5- CTGCTTTGGTACTATGGAAC-3 (forward) and

5- TTCAGCATGATGGAAGACTG -3 (reverse)

18srRNA: 5- CCTGGATACCGCAGCTAGGA-3 (forward)

and

5- GCGGCGCAATACGAATGCCCC -3 (reverse)

Statistical analysis
The statistical significance of cell cycle distributions and

apoptosis between groups were assessed with one-way ANOVA

followed by post-hoc LSD and Dunnett T3 test using the SPSS

software (version 13.0). p values of ,0.05 were considered to be

significant.

Supporting Information

Figure S1 The workflow of the meta-analysis of microarray data

sets. Meta-analysis was done with the BRB Array Tools. Intensity

filtering was used in individual arrays for quality-control purposes

before arrays are normalized. Signal intensity threshold was set to

1 by default. The median-normalization was used for data

normalization. Class comparison between groups of arrays was

used to find genes that are differentially expressed between two

phenotype classes, whereas two-sample T-test was used as type of

univariate test.

Found at: doi:10.1371/journal.pone.0014573.s001 (1.61 MB TIF)

Figure S2 Venn diagram for the resultant genes. Analysis of

GSE7670 produced 434 differential genes (125 up and 309 down),

and analysis of GSE10072 identified 530 differential genes (180 up

and 350 down). 343 genes (A) were found common from the two

result sets, including 93 up-regulated (B) and 250 down-regulated

genes (C).

Found at: doi:10.1371/journal.pone.0014573.s002 (1.51 MB TIF)

Table S1 Summary of the two microarray datasets, GSE7670

and GSE10072. There are 66 samples in dataset GSE7670, 107
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samples in dataset GSE10072. We selected 54 paired samples from

27 patients in dataset GSE7670, 62 paired samples from 31

patients in dataset GSE10072.

Found at: doi:10.1371/journal.pone.0014573.s003 (0.03 MB

XLS)

Table S2 Lung adenocarcinoma signature genes. This signature

includes 93 up-regulated and 250 down-regulated genes.

Found at: doi:10.1371/journal.pone.0014573.s004 (0.05 MB

XLS)

Table S3 Cytogenetic information of two human lung adeno-

carcinoma cell lines, GLC-82 and A549.

Found at: doi:10.1371/journal.pone.0014573.s005 (0.03 MB

DOC)
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