
BMP Signaling Modulates Hepcidin Expression in
Zebrafish Embryos Independent of Hemojuvelin
Yann Gibert1, Victoria J. Lattanzi1, Aileen W. Zhen1, Lea Vedder1, Frédéric Brunet2, Sarah A. Faasse3,

Jodie L. Babitt3, Herbert Y. Lin3, Matthias Hammerschmidt4, Paula G. Fraenkel1*

1 Division of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America, 2 Institut de

Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure, Lyon, France, 3 Program in Membrane Biology, Division of Nephrology, Massachusetts General Hospital,

Boston, Massachusetts, United States of America, 4 Institute for Developmental Biology, University of Cologne, Koeln, Germany

Abstract

Hemojuvelin (Hjv), a member of the repulsive-guidance molecule (RGM) family, upregulates transcription of the iron
regulatory hormone hepcidin by activating the bone morphogenetic protein (BMP) signaling pathway in mammalian cells.
Mammalian models have identified furin, neogenin, and matriptase-2 as modifiers of Hjv’s function. Using the zebrafish
model, we evaluated the effects of hjv and its interacting proteins on hepcidin expression during embryonic development.
We found that hjv is strongly expressed in the notochord and somites of the zebrafish embryo and that morpholino
knockdown of hjv impaired the development of these structures. Knockdown of hjv or other hjv-related genes, including
zebrafish orthologs of furin or neogenin, however, failed to decrease hepcidin expression relative to liver size. In contrast,
overexpression of bmp2b or knockdown of matriptase-2 enhanced the intensity and extent of hepcidin expression in
zebrafish embryos, but this occurred in an hjv-independent manner. Furthermore, we demonstrated that zebrafish hjv can
activate the human hepcidin promoter and enhance BMP responsive gene expression in vitro, but is expressed at low levels
in the zebrafish embryonic liver. Taken together, these data support an alternative mechanism for hepcidin regulation
during zebrafish embryonic development, which is independent of hjv.
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Introduction

Bone morphogenetic proteins (BMPs), originally identified for their

ability to induce bone differentiation, are members of the TGF-b
superfamily. Binding of a BMP molecule to a BMP receptor complex

results in phosphorylation of Smad1, 5, and 8. These proteins then

form hetero-oligomers with Smad4, translocate to the nucleus, and

activate transcription of a target gene (reviewed in [1] and [2]). The

proteins Chordin and Noggin antagonize BMP activity by binding

BMPs and preventing their interaction with BMP receptors.

Hemojuvelin (Hjv, also known as RGMc), a protein belonging

to the repulsive-guidance molecule (RGM) family, was originally

identified as the affected gene in several families with severe early

onset iron overload and reduced levels of hepcidin.[3] Hepcidin, a

transcriptionally regulated peptide hormone, is produced in the

liver[4] and modulates intestinal iron absorption and macrophage

iron release[5–7]. The identification of Hjv linked the regulation of

hepcidin expression and iron homeostasis to the BMP pathway.

Subsequent studies revealed that membrane-bound Hjv binds

Neogenin[8], increases intracellular iron accumulation[8], and

enhances BMP-mediated induction of hepcidin expression in

vitro[9], while Neogenin deficiency decreases hepatic hjv protein

levels, impairs BMP signaling, and reduces hepcidin expression in

postnatal mice.[10]

Although hjv expression is not iron responsive[8,11], iron

deficiency induces production of soluble hjv[8], while iron loading

inhibits release of soluble hemojuvelin.[12,13] It has been proposed

that soluble Hjv, produced via a Furin-mediated proteolysis of

membrane-bound Hjv[13,14], antagonizes the function of mem-

brane-bound Hjv[12,15] resulting in low levels of hepcidin expression.

Recently another membrane-bound cell surface serine protease,

Matriptase-2 (Mtp2, also known as TMPRSS-6) has been shown to

decrease hepcidin transcription[16] and to bind and cleave Hjv[17] in

vitro.

We have been developing the zebrafish embryo (Danio rerio) as a

model to study the developmental regulation of hepcidin. We have

demonstrated that hepcidin expression begins at 36 hpf in the

zebrafish embryo and that the zebrafish ortholog of Transferrin,

transferrin-a, is required for hepcidin expression during embryonic

development.[18] While the BMP pathway has been studied for its

effect on embryonic symmetry and patterning,[19] its effect on

hepcidin regulation during embryonic development has not been

characterized previously. Furthermore, the effects of hjv and

related genes on hepcidin expression have not been evaluated

previously during embryonic development.

In this report, we demonstrate that activation of the BMP

pathway increased the intensity and extent of hepatic hepcidin

expression during embryonic development, and suppression of

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e14553



BMP signaling by the chemical inhibitor dorsomorphin eliminated

hepcidin expression. In contrast, knockdown of hjv reduced the size of the

liver, but failed to eliminate hepcidin expression. While knockdown of mtp2

increased hepcidin expression, relative to liver size, this effect was

independent of hjv. As experimental overexpression of hjv in zebrafish

embryos failed to increase hepcidin expression, we propose that the

regulation of hepcidin expression in zebrafish embryos is hjv-independent.

Results

Induction of bmp2b at 48 hpf stimulates hepcidin
expression in zebrafish embryos

BMP signaling has been shown to modulate hepcidin expression in

adult mammals[9,20] and in adult zebrafish.[21] As BMP2 has

been demonstrated to stimulate hepcidin transcription in mammalian

cell culture[20], we exploited the tg(hsp70:bmp2b) line of zebra-

fish[19] to assess whether BMP signaling regulates hepcidin

expression in the zebrafish embryo. Tg(hsp70:bmp2b) transgenic

zebrafish carry the bmp2b gene, one of two zebrafish orthologs of

BMP2, under the control of the hsp70 promoter. Transgenic

animals were incrossed to generate embryos, which were subjected

to heat shock, or no heat shock, at 48 hours post-fertilization. Pools

of embryos were harvested at 2, 6, and 24 hours post-treatment and

assayed for bmp2b expression (Figure 1A) in comparison to

nontransgenic embryos at 48 hpf, which were not subjected to

heat shock. Quantitative real-time RT-PCR revealed a 2000-fold

increase in bmp2b expression in the transgenic embryos two hours

after heat shock compared to nontransgenic embryos subjected to

heat shock (486663556 vs 1.1260.184, p,0.001) or 100-fold

increase compared to transgenic embryos not subjected to heat

shock (486663556 vs 44.85614.85, p,0.01). In the transgenic

embryos, bmp2b expression remained significantly elevated 6 hours

after heat shock, but 24 hours after heat shock bmp2b expression

declined to non heat-shock levels of expression (58.8612.2).

Induction of hepcidin expression corresponded with induction of

bmp2b expression in the tg(hsp70:bmp2b) embryos. Two hours after

the start of the heat shock, hepcidin expression levels increased ten-

fold (Figure 1B), compared to untreated WT embryos (10.163.86

vs 1.0060.03) or compared to untreated transgenic embryos

(10.163.86 vs 1.1560.398). As elevations in hepcidin expression

persisted in the transgenic embryos at 6 hours after the start of

heat shock (54 hpf) and were not associated with an increase in

hepcidin expression in WT embryos subjected to heat shock, this

time point was selected for subsequent experiments. At 24 hours

post heat shock, or 72 hpf, hepcidin transcript levels increased in

both the heat shock and non heat shock treated WT and non heat

shock treated transgenic embryos. This is consistent with a

developmental increase in hepcidin expression from 54 to 72 hpf,

which we have observed previously[18]. To confirm that heat

shock activated the BMP signaling pathway in tg(hsp70:bmp2b)

embryos, we performed whole mount immunohistochemistry

(Figure 1C–E) for phosphorylated Smad1, 5, and 8 proteins,

which revealed increased staining for these phosphoproteins in the

liver, somites, and head 6 hours after heat shock (55 hpf).

Inhibition of BMP type I receptors decreases hepcidin
expression in zebrafish embryos

To evaluate further the role of BMP signaling in hepcidin

regulation during embryogenesis we selectively inhibited BMP type

I receptors using the recently identified BMP signaling inhibitor,

dorsomorphin.[21] Dorsomorphin was previously shown to dorsa-

lize embryos, expanding structures derived from the dorsal pole,

when added before 12 hpf.[21] By delaying the addition of

dorsomorphin until 28 hpf, and then maintaining them in the

chemical until 55 hpf, we found that the embryos exhibited normal

embryonic patterning, but exhibited a dose-dependent decrease in

hepcidin expression by quantitative realtime RT-PCR from 1 to

40 mM (data not shown). We chose to use 40 mM dorsomorphin,

which produced near complete inhibition of hepcidin expression. We

then incubated pools of tg(hsp70:bmp2b) embryos in 40 mM

dorsomorphin/0.3% DMSO or in 0.3% DMSO alone from 28–

55 hpf. Half the pools were subjected to heat shock at 48 hpf to

induce bmp2b expression. The embryos were fixed at 55 hpf for

quantitative real-time RT-PCR. In the absence of dorsomorphin

(Figure 1F), heat shock significantly increased hepcidin expression

(3.1761.01 vs 0.70260.154, p,0.01). In the absence of heat shock,

dorsomorphin exposure reduced hepcidin expression 20-fold

(0.03260.012 vs 0.7026 0.154, p,0.001). In the presence of heat

shock, dorsomorphin diminished the effect of bmp2b induction on

hepcidin expression six-fold, but failed to abrogate it. Immunohisto-

chemical staining demonstrated that dorsomorphin decreased, but

did not eliminate phospho-smad1,5,8 staining, in transgenic

embryos treated with heat shock (Figure S1). Thus it appears that

the 2000-fold increase observed in BMP2b expression following

heat shock of transgenic embryos partially overcomes the inhibitory

effects of dorsomorphin on BMP signaling.

We found further support that BMP signaling regulates hepcidin

expression in zebrafish embryos, by using transgenic zebrafish that

express the BMP signaling antagonist noggin3 under the control of

the hsp70 promoter [19]. We crossed these tg(hsp70:noggin3) zebrafish

to WT fish producing progeny in which 50% of the embryos carried

the transgene. We then heat shocked these progeny at 48 hpf and

fixed at 55 hpf for quantitative realtime RT-PCR. Heat shocked

embryos exhibited a significant reduction (Figure 1G) in the hepcidin

transcript levels (1.7860.39 vs. 0.46760.126, p = 0.027), consistent

with inhibition of hepcidin expression by noggin3.

Knockdown of hjv causes notochord and somite defects
To assess whether hjv is required to induce hepcidin expression during

zebrafish embryogenesis, we injected antisense morpholinos (MOs) at

the one-cell stage to knock down the hjv gene. Hjv MO1 targets the 59

UTR of hjv and is designed to impair translation of hjv, while hjv MO2

is a non-overlapping morpholino targeting the second exon donor site

of the coding sequence. Injection of either morpholino at 0.5 mM was

associated with severe growth retardation, which impaired the ability

of the embryo to develop past 18 hpf (data not shown) to the expected

time of onset of hepcidin expression[18] (36 hpf). At a lower injection

concentration, 0.2 mM, injected embryos were able to develop past

somitogenesis. Compared to uninjected embryos (Figure 2A,F),

embryos injected with either hjv MO1 (Figure 2B,G) or hjv MO2,

(Figure 2C) exhibited undulating notochord and body axis at 15–

18 hpf, visible on light microscopy or by whole mount in situ

hybridization for the notochord specific marker, no tail (Figure 2F,G).

Co-injecting hjv MO1 and hjv MO2 exacerbated notochord

distortion (Figure 2D), however injection of a mismatch control

morpholino (hjv MMO2) did not distort the notochord (Figure 2E).

While zebrafish embryonic somites exhibited a well-delineated V-

shape at 24 hpf in uninjected or control morpholino injected embryos

(Figure 2H,I), the somites were decreased in the anterior-posterior

dimension and U-shaped in hjv morphants (Figure 2J).

Induction of bmp2b increases the intensity and extent of
hepcidin expression without affecting liver size

As Hjv has been shown to function as a BMP co-receptor in

mammalian models, we assessed the effect of BMP signaling and

hjv on hepcidin expression. In comparison to uninjected WT

embryos at 55 hpf (Figure 3A), induction of bmp2b by heat shock at

48 hpf in tg(hsp70:bmp2b) resulted in increased intensity and extent

Zebrafish Hemojuvelin
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Figure 1. The BMP pathway regulates hepcidin expression in zebrafish embryos. A–B. Time course of bmp2b and hepcidin expression
following induction of BMP2b expression. Tg(hsp70:bmp2b) is a transgenic line of zebrafish, which carries the BMP2b gene under the control of the
hsp70 promoter. At 48 hours post-fertilization (hpf), WT or tg(hsp70:bmp2b) groups of embryos (n = 20 embryos per group) were subjected either to
heat shock (+HS) at 37uC for 40 min or maintained at the usual temperature (28uC) (2HS). Pools of embryos were obtained for RNA extraction at 2, 6,
and 24 hours after the start of heat shock, corresponding to 50, 54, and 72 hpf. Quantitative real-time RT-PCR was performed to measure transcript
levels of bmp2b (A) or hepcidin (B), normalized to b-actin transcript levels and measured as fold increase over control, WT,2HS at 2 hours post-
treatment. Data shown are means 6 SE. * indicates p,0.05, compared to control. N = 2 pools per group. WT, 2HS (pink circles), WT, +HS (orange
squares), transgenic, 2HS (light green triangles), transgenic, +HS (dark green triangles). C–E. Immunohistochemistry for P-Smad1/5/8. Compared to
zebrafish embryos without BMP2b induction (C), P-Smad1/5/8 staining is increased in the liver (arrow) in tg(hsp70:BMP2b) embryos following heat
shock (D). Omitting the primary antibody (anti-P-smad1/5/8), but including the biotinylated anti-Rabbit IgG/streptavidin horseradish peroxidase
resulted in very low levels of background staining (E). N = 20 embryos per group. F,G. Inhibition of hepcidin expression by dorsomorphin (F) or
noggin3 (G). F. From 28–55 hpf, pools of tg(hsp70:BMP2b) embryos were treated with the BMP inhibitor, 40 mM dorsomorphin (+Dorso), or treated
with an equivalent amount of DMSO vehicle alone (+DMSO). Half the pools of embryos were subjected to heat shock at 48 hpf to induce bmp2b
expression, followed by fixation at 55 hpf for quantitative real-time RT-PCR. G. Pools of embryos carrying tg(hsp70:noggin3) were subjected to heat
shock or no heat shock at 48 hpf. The embryos were fixed at 55 hpf for quantitative real-time RT-PCR. Data shown are means 6 SE. N = 4–5 pools per
group. * indicates p,0.05, compared with no heat shock and no dorsomorphin treatment. # indicates p,0.05 compared with previous column.
doi:10.1371/journal.pone.0014553.g001
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of hepcidin expression in the liver and foregut (Figure 3B) by whole

mount in situ hybridization, while treatment with dorsomorphin

from 28–55 hpf (Figure 3C) abrogated hepcidin expression.

Transgenic induction of the BMP antagonist noggin3 at 48 hpf

produced an equivalent effect (data not shown). While early BMP

signaling is important for embryonic liver development[22],

induction of bmp2b at 48 hpf, which is after specification of the

liver, did not increase liver size (Figure 3D,E), as assessed by whole

mount in situ hybridization for foxa3 (forkhead box a3), a gene

expressed in zebrafish embryonic liver tissue[23]. Treatment with

the BMP signaling inhibitor dorsomorphin from 28–55 hpf, also

failed to decrease liver size (Figure 3F).

Knockdown of hjv fails to impair hepcidin expression at
55 hpf

To evaluate whether hjv is required for hepcidin expression, we

injected hjv MO1 or hjv MO2, and assessed hepcidin expression by

in situ hybridization. Compared to uninjected controls (Figure 3A),

neither hjv MO1 nor hjv MO2 (Figure 3G,H) exhibited decreased

hepcidin expression, although the liver was slightly reduced in size

(Figure 3J,K). As knockdown of hjv produced developmental

defects, we evaluated the effects of hjv deficiency on hemoglobin

production and found that hjv knockdown did not produce anemia

(Figure S2). To test whether hjv is required for the stimulatory

effect of bmp2b on hepcidin expression, we injected hjv MO2 in

tg(hsp70:bmp2b) embryos at the one cell stage, followed by heat

shock at 48 hpf and fixation at 55 hpf. Induction of bmp2b still

enhanced hepcidin expression, despite knockdown of hjv (Figure 3I).

Quantitative realtime RT-PCR (Figure 3M) revealed an 8-fold

increase in hepcidin transcript levels (84.31635.49 vs 10.4164.93,

p = 0.029) in hjv morphants following heat shock compared to

morphants without heat shock. To confirm that the hjv gene was

effectively knocked down in the hjv zebrafish morphant embryos,

we extracted RNA from hjv-MO2 injected embryos and amplified

the predicted splice site by RT-PCR. We found that the amplified

region in the hjv morphants was shorter than in uninjected controls

(Figure 3N). We cloned and sequenced the amplified product from

the morphants and uninjected controls and confirmed that the

morphant transcript bypasses the exon donor targeted by hjv-

MO2 in favor of an aberrant splice from nucleotide 25 to 104 of

the coding sequence. The predicted translation of this aberrant

spliceform lacks amino acids 9 through 35, which is the majority of

the signal peptide, as predicted by the algorithm PrediSi[24].

Neogenin and furin have been shown to interact with hjv to

regulate hepcidin transcription in mammalian models.[8,14] In

zebrafish embryos, neogenin has previously been shown to be

required for normal somite development[25], while the two

zebrafish furins, furina and furinb participate in pharyngeal cartilage

development.[26] We generated knockdowns of neogenin or of both

furina and furinb, which did not exhibit impaired hepcidin expression

or abnormal liver size at 55 hpf (Figure S3), although these knock

downs reproduced the published developmental phenotypes

(Figures S4 and S5).

Hjv is weakly expressed in the zebrafish embryonic liver
To determine why knockdown of hjv or related genes did not impair

hepcidin expression, we evaluated a time course of hjv expression in

zebrafish embryos by whole mount in situ hybridization. As previously

reported,[27] we found that hjv is strongly expressed in the notochord at

11 hpf (Figure 4A) and in the developing somites at 18 hpf (Figure 4B),

prior to the onset of liver development. We discovered that hjv was not

detectable by in situ hybridization at 50 hpf, 72 hpf, or 7 days post-

fertilization (dpf) (Figure 4C–E), in contrast to hepcidin (Figure 3) or

transferrin-a ([18] and Figure 4F), which are evident in the liver.

By bioinformatic analysis, we identified three other members of

the repulsive guidance molecule family in the zebrafish, RGMa,

RGMb, and RGMd. We found that none of these paralogs of hjv

were expressed in the zebrafish embryonic liver (Figure S6).

Knockdown of each of them failed to impair hepcidin expression at

55 hpf (Figure S7). At 72 hpf (Figure S8), hepcidin transcript levels

were normal in the RGM morphants, although liver development

was impaired in RGMb and RGMd morphants.

To verify whether there was weak hjv expression in the liver during

embryogenesis, which was undetected by in situ hybridization, we used a

fluorescence activated cell sorter to sort hepatocytes from transgenic

embryos, which expressed GFP under the control of the liver specific

liver fatty acid binding protein (LFABP) promoter. RNA was obtained from

sorted (GFP+ and GFP2) and from unsorted cells for RT-PCR. GFP+
cells strongly expressed LFABP, relative to b-actin (Figure S9A). In the

sorted cells, hjv expression was below the detection level in a quantitative

real-time PCR assay. We performed semi-quantitative RT-PCR, which

Figure 2. Morpholino knockdown of hjv results in notochord
and somite abnormalities. A–E. Light microscopy of zebrafish
embryos at 15 hpf in dorsal view Compared to uninjected embryos (A)
or embryos injected with a mismatch control morpholino (E), embryos
injected with either single hjv morpholinos (B, C) or a combination of
hjv MO1 and hjv MO2 (D) exhibited a distorted notochord (arrows).
N = 30 per group. F,G. Whole mount in situ hybridization at 18 hpf with
no tail, which stains the notochord, illustrates the bent shape in the hjv
MO1 injected morphants. N = 15 per group. H–J. Light microscopy of
the tail at 24 hpf lateral view (top) with additional 3.5x enlargement of
area labeled in red (below). Somites (arrows) in uninjected (H) and
control morpholino-injected embryos (I) appeared V-shaped, while
somites appeared U-shaped with decreased anterior-posterior dimen-
sion (distance between each pair of arrows) in hjv morphants (J). N = 20
per group.
doi:10.1371/journal.pone.0014553.g002
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revealed weak expression of hjv in both GFP+ and GFP2 cells

(Figure 4G). Comparing GFP+ to unsorted cells, the hjv expression was

diminished in a similar proportion to that for the hepcidin transcript, and

is thus consistent with hepatic expression, although at low levels. In

contrast, hepcidin expression was evident only in the GFP+ cells and

transferrin-a was detectable in both populations. In adult zebrafish, hjv

transcripts were detected by RT-PCR in both skeletal muscle and liver

(Figure 4G), similar to the adult human hjv expression pattern.[3] We

also found that neogenin and the zebrafish paralogs of hjv were expressed

in the adult zebrafish liver (Figure S9B). These data indicate that,

hemojuvelin is a developmentally regulated gene, which exhibits low

levels of expression in zebrafish embryonic hepatocytes, consistent with

the hjv-independent regulation of hepcidin that we observed in the

zebrafish embryo (Figure 3).

Overexpression of zebrafish hjv fails to increase hepcidin
expression in zebrafish embryos

To test the hypothesis that zebrafish hjv fails to regulate hepcidin

expression during embryonic development because it is only

weakly expressed in the embryonic liver, we injected zebrafish hjv

cRNA at the one-cell stage and assessed hepcidin and foxa3

expression at 55 hpf. Compared to uninjected embryos, hjv

overexpression failed to increase hepcidin expression (Figure 5A–

D). Quantitative real-time RT-PCR for hepcidin expression at

72 hpf normalized to b-actin (Figure 5E) or to LFABP (Figure 5F)

failed to show an increase in hepcidin expression in embryos

injected with hjv cRNA. To overcome concerns about potential

degradation of the cRNA during development, we also injected at

the one-cell stage a DNA construct (pHjv-CS2) containing the

zebrafish hjv gene in the pCS2 vector under the control of a

ubiquitous promoter. Similar to the results in Figure 5E, we found

no significant increase in hepcidin expression in the transgenic

embryos compared to embryos injected with the pCS2 vector

alone (Figure S10).

Zebrafish hjv induces hepcidin expression in human
hepatocytes

As overexpression of zebrafish hjv failed to increase hepcidin

expression in the zebrafish embryos, we questioned whether

zebrafish hjv functions as a BMP co-receptor. To evaluate this, we

Figure 3. Knockdown of hjv does not significantly impair hepcidin expression at 55 hpf. A–L. Whole mount in situ hybridization at 55 hpf
for hepcidin (blue arrow) (A–C, G–I) and foxa3 (D–F, J–L), as a marker for the liver (arrowhead) and intestine (black arrow). Compared to controls
(A,D), induction of bmp2b by heat shock in tg(hsp70: bmp2b) embryos (B,E) increased hepcidin expression. Treatment with dorsomorphin from 28–
55 hpf in WT embryos abrogated hepcidin expression, without affecting liver size (C,F). Knockdown of hjv by a morpholino blocking translation (G,J),
or by a non-overlapping morpholino targeting a splice acceptor site (H,K), did not significantly change hepcidin expression, but slightly reduced liver
size. Knockdown of hjv in tg(hsp70:bmp2b) embryos failed to prevent strong hepcidin expression following induction of bmp2b (I,L). N = 10–30
embryos per group. M. The effect of hjv knockdown on bmp2b-induced hepcidin transcript levels assessed by quantitative realtime RT-PCR. Embryos
were injected with hjv MO2 at the one-cell stage followed by heat shock (HS) at 48 hpf and fixation for RNA extraction at 55 hpf. N. Electrophoresis of
RT-PCR products, which were designed to amplify the targeted splice site, confirmed an 80 basepair alteration in transcript size, consistent with
aberrant splicing of the hjv transcript in the morphants.
doi:10.1371/journal.pone.0014553.g003
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cotransfected human hepatocytes (Hep3B cells) with increasing doses

of zebrafish hjv cRNA and a reporter construct containing the human

hepcidin promoter upstream of Firefly luciferase. Increasing doses of

zebrafish hjv were associated with stronger induction of the human

hepcidin promoter, which was potentiated by the addition of BMP6

(Figure 5G). Similarly, cotransfection of zebrafish hjv cRNA with a

reporter construct containing a BMP response element upstream of

luciferase, revealed a dose dependent increase in promoter activity,

which was enhanced by the addition of BMP6 (Figure 5H).

Knockdown of matriptase-2 increases hepcidin expression
in a BMP dependent manner

As zebrafish hjv functioned as a BMP co-receptor in vitro and

the message appeared to be present at a low level in embryonic

hepatocytes, we hypothesized that matriptase-2 (mtp2) may be

inhibiting the effect of hjv. Morpholino knockdown of mtp2 has

previously been shown to induce anemia in zebrafish embryos,[17]

although mtp29s effect on hepcidin expression and the genetic

interaction between mtp2 and hjv in zebrafish embryos have not

been evaluated previously. Compared to uninjected embryos

(Figure 6A), we found that mtp2 morphants exhibited decreased

hemoglobin staining (Figure 6B) at 72 hpf. We also observed a

delay in development in the mtp2 morphants, characterized by a

large yolk, decreased embryo size, and decreased melanocyte

pigmentation (Figure 6B).

To evaluate the potential interaction of mtp2 with the BMP

pathway and hjv, embryos were injected at the one cell stage with

mtp2 MO, hjv MO2, or co-injected with hjv MO2 and mtp2 MO,

and fixed at 55 hpf for whole mount in situ hybridization with

probes for hepcidin or foxa3. Compared to uninjected embryos

(Figure 6C) or hjv morphants (Figure 6D), mtp2 morphants

exhibited increased staining intensity for hepcidin in the foregut,

but a smaller area of staining in the liver (Figure 6E). Co-injection

of hjv MO1 and mtp2 MO exacerbated the growth retardation,

but the embryos exhibited similar hepcidin expression in the liver

and foregut (Figure 6F) to mtp2 MO alone. Dorsomorphin

treatment from 28–55 hpf abrogated hepcidin expression in both

uninjected embryos (Figure 6G) and in mtp2 morphants (Figure 6H)

indicating that mtp2 knockdown stimulates hepcidin expression in a

BMP-dependent manner. Staining with foxa3 revealed decreased

liver size in all the embryos injected with mtp2 MO (Figure 6I, J,

and L), compared to dorsomorphin treatment alone (Figure 6K) or

no treatment (Figure 5C).

Knockdown of mtp2 increases hepcidin expression
relative to liver size

As knockdown of hjv and mtp2 altered embryonic development,

we evaluated the effects at 72 hpf to verify if they were similar to

those observed at 55 hpf. In comparison to uninjected embryos

(Figure 7A), hjv morphants (Figure 7B) and mtp2 morphants

(Figure 7C) exhibited smaller areas of hepcidin staining at 72 hpf,

which correlated with decreased liver size in the morphants,

particularly of mtp2 (Figure 7D–F). The decrease in liver size was

supported by quantitative real-time RT-PCR for the liver specific

marker, LFABP (Figure 7G), which revealed that LFABP levels

were ,10% of normal in mtp2 morphants (0.08+0.036 vs

1.02+0.069, p = 0.025). In contrast, knockdown of furina and furinb

failed to reduce LFABP expression, while knockdown of hjv or

neogenin produced approximately 50% reduction. Quantitative

real-time RT-PCR at 72 hpf to assess hepcidin transcript levels

relative to b-actin revealed a decrease in hepcidin expression in the

mtp2 morphants (Figure 7H), consistent with the small size of the

liver. Normalizing to the liver specific gene, LFABP, however,

revealed that mtp2 morphants exhibited a significant increase in

hepcidin transcript levels compared to uninjected (Figure 7I)

(5.3162.3 vs 0.9660.04, p,0.05), consistent with increased

transcript levels of hepcidin in a smaller number of hepatocytes.

In contrast, transcript levels of hepcidin, normalized to LFABP, for

morphants of hjv, neogenin, and furina/furinb were not significantly

different from uninjected controls. Co-injection of morpholinos for

hjv and mtp2 failed to reduce hepcidin transcript levels relative to

LFABP (Figure 7I), indicating that mtp29s effect on hepcidin

expression does not require hjv.

Figure 4. The hjv transcript is weakly expressed in the zebrafish
embryonic liver at the time of hepcidin expression. A–F. Whole
mount in situ hybridization for hjv (A–E) or transferrin-a (F)
demonstrating expression in the notochord at 11 hpf (A) (dorsal view),
in the somites at 18 hpf (B) (lateral view with yolk removed), but
absence from the liver at 50 hpf (C), 72 hpf (D), and 7 days post-
fertilization (dpf) (E). In comparison, transferrin-a is strongly expressed
in the liver at 7 dpf (F). N = 10–30 embryos per group. G. Semiquan-
titative RT-PCR for hepcidin, hjv, and transferrin-a expression in
embryonic zebrafish hepatocytes (top, GFP+) and nonhepatocytes
(top, GFP-) and for hepcidin and hjv in adult zebrafish skeletal muscle
and liver (bottom). Embryonic hepatocytes were sorted by FACS from
pools of 80–100 transgenic zebrafish embryos at 72 hpf, which express
GFP under the control of the liver-specific LFABP promoter. RT- indicates
control reaction with reverse transcriptase omitted.
doi:10.1371/journal.pone.0014553.g004
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Hjv knockdown fails to increase embryonic nonheme iron
stores

Ferroportin is localized to the yolk syncytial layer in the zebrafish

embryos, where it facilitates the transfer of iron from the yolk into

the embryo.[28] We expected that if hjv has a significant effect on

zebrafish embryonic iron homeostasis, hjv morphants would

exhibit decreased hepcidin protein levels, which would result in

increased ferroportin activity at the yolk syncytial layer and

increased embryonic iron stores. Conversely, we expected hjv

overexpressing embryos or mtp2 morphants to exhibit decreased

embryonic iron stores, secondary to elevated hepcidin levels. We

performed staining for nonheme iron at 55 hpf to evaluate these

hypotheses (Figure 7J–Q) and found that knock down of hjv

resulted in a normal level of iron staining (Figure 7J,L), while

overexpressing hjv increased iron staining in the terminal gut

(proctodeum) and somites (Figure 7M), rather than decreasing iron

staining. Interestingly, we observed increased iron staining in the

Figure 5. Overexpression of zebrafish hjv fails to increase hepcidin expression in zebrafish embryos, but can cooperate with BMP6
to activate the human hepcidin promoter in vitro. A–D. Whole mount in situ hybridization for hepcidin (A,B) or foxa3 (C,D) as a marker for the
liver (arrowhead) and intestine (arrow) at 55 hpf following injection of zebrafish hjv cRNA at the one cell stage. N = 20–30 embryos per group. E,F.
Quantitative real-time RT-PCR at 72 hpf demonstrated no significant change in hepcidin expression relative to b-actin (E) or to LFABP (F) following
overexpression of hjv cRNA. N = 2 pools per group. G,H. In vitro luciferase reporter assays in Hep3B cells demonstrate the effect of increasing doses of
zebrafish hjv cRNA on the human hepcidin promoter (G) or the BMP response element (H) in the absence (black) or presence (white) of exogenous
BMP6 (5 ng/ml). Relative light units were calculated as ratios of Firefly (reporter) and Renilla (transfection control) values. Results from luciferase assay
experiments were expressed as the means 6 standard error of triplicates from representative experiments. * denotes p,0.05, compared to the
previous column.
doi:10.1371/journal.pone.0014553.g005

Zebrafish Hemojuvelin

PLoS ONE | www.plosone.org 7 January 2011 | Volume 6 | Issue 1 | e14553



somites, proctodeum, brain, and dorsal spinal cord of the mtp2

morphants (Figure 7J,N) in a pattern of iron accumulation

resembling that seen in the erythroid transferrin receptor mutant

chianti (Figure 7J,O), which has a defect in erythroid iron

assimilation. The iron accumulation in the mtp2 morphants

differed from the decreased embryonic iron staining observed in

transferrin-a deficient gavi (Figure 7J,P) and ferroportin deficient

weissherbst (Figure 7J,Q) mutants. Furthermore, treatment with

dorsomorphin to suppress hepcidin expression failed to rescue the

anemia or to reverse the intraembryonic iron accumulation

observed in the mtp2 morphants (Figure S11A–H). Whole mount

in situ hybridization for gata1, as a marker of erythroid progenitor

cells[29], revealed decreased numbers of erythroid progenitor cells

in mtp2 morphants compared to uninjected embryos (Figure

S11I,J). These data support the hypothesis that mtp2 knock down

causes anemia in the embryo by decreasing the number of

erythroid progenitor cells. Taken together, these data do not

support the hypothesis that hjv modulates intraembryonic iron

stores in zebrafish embryos via effects on hepcidin.

Discussion

We have performed the first detailed analysis of embryonic

regulation of hepcidin and the role of hjv during embryonic

development. Previously we demonstrated that hepcidin transcript

levels in zebrafish embryos increase in response to iron loading[6]

and that onset of hepcidin expression requires the function of

transferrin-a and transferrin receptor 2[18]. In this study, we found that,

as in mammalian models[9,15,20], hepcidin regulation was

responsive to BMP signaling, however, hjv (a BMP co-receptor),

and the putative hjv interacting genes, furin and neogenin, were not

required for hepcidin expression in zebrafish embryos. We

discovered that knockdown of matriptase-2 (mtp2), a protease which

cleaves membrane-bound hjv[17], produced anemia, accumulation

of intraembryonic iron, and increased hepcidin expression in

zebrafish embryos, however, surprisingly, mtp29s effect on hepcidin

expression was independent of hjv. Thus the zebrafish embryonic

model of hepcidin regulation (Figure S12) differs from the

mammalian model, which was derived from in vitro studies,

human patients, and post-natal animal models. Further studies will

be needed to determine if hepcidin regulation in mammalian

embryos resembles that observed in zebrafish embryos.

BMP signaling is required for hepcidin expression in
zebrafish embryos

Using a heat shock inducible transgenic zebrafish, we found that

induction of bmp2b increased hepcidin expression and phosphory-

Figure 6. Knockdown of mtp2 enhances expression of hepcidin at 55 hpf. A–B. O-dianisidine staining for hemoglobin at 48 hpf
demonstrated normal levels of hemoglobin in the cardiac circulation of WT embryos (A), but decreased hemoglobin in the mtp2 morphants (B). C–H.
Whole mount in situ hybridization for hepcidin at 55 hpf demonstrated normal staining in uninjected controls (C) and hjv morphants (D). Knockdown
of mtp2 (E) caused developmental delay, but increased the intensity of hepcidin staining in the liver (arrowhead) and the extent and intensity of
staining in the intestine (arrow). Co-injection of hjv MO and mtp2 MO (F) resulted in a smaller embryo, but preserved hepcidin staining in the liver and
intestine. Treatment with dorsomorphin from 28–55 hpf abrogated hepcidin expression in both uninjected embryos (G) and mtp2 morphants (H). I–
L. Whole mount in situ hybridization for foxa3 demonstrated smaller liver size (arrowhead) in embryos injected with mtp2 MO (I,J,L), compared to
dorsomorphin alone (K) or untreated embryos (compare with Figure 3D). N = 20–30 embryos per group.
doi:10.1371/journal.pone.0014553.g006
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lation of smad1,5, and 8. Dorsomorphin, which specifically

inhibits BMP type I receptors, has been previously shown to

decrease iron-induced levels of hepcidin transcripts and phospho-

Smad1,5,8 in adult zebrafish liver, without altering total Smad1

levels.[21] While human BMP4 and BMP9 have been shown to be

more potent than BMP2 in stimulating hepcidin transcription in

mammalian cell culture[20], recent studies in mouse models[30–

33] indicate that BMP6, is the most likely physiologic regulator of

hepcidin transcription in response to iron loading. Among the

thirteen BMP genes currently identified in the zebrafish, only

BMP2b[34], BMP4[35], and BMP6[36] have been demonstrated

to exhibit embryonic endodermal expression. Further studies will

be required to determine which BMP is the most critical for the

regulation of hepcidin expression during zebrafish embryonic

development.

Hjv knock down impairs notochord and somite
development in zebrafish embryos

In this study we report the first evidence that hjv plays a role in

notochord and somite development. We found that hjv displayed

early expression in the notochord and developing somites of

zebrafish embryos and knockdown of hjv distorted both structures.

The notochord provides structural support to the developing

vertebrate embryo and influences somite formation.[37] The

flattened, U-shaped somites, observed in hjv morphants resembled

those seen following knockdown of neogenin ([25] and Figure S4), a

protein which has been implicated in zebrafish cell migration

events and somitogenesis[25] and a binding partner of membrane-

bound Hjv[8]. This suggests that Hjv and Neogenin might

cooperate to regulate morphogenetic processes within the lateral

and paraxial mesoderm, which could explain the defect in liver

development observed when hjv is knocked down or overexpressed

(Figures 5D and 7E).

Although hjv is most prominently expressed in the developing

somites and skeletal muscle of the mouse embryo[38,39], hjv knock

out mouse models have not been reported to exhibit a somite or

muscle defect[40,41]. It is possible that other RGM family

members may play a compensatory role for hjv. RGMa and RGMb,

although primarily expressed in the central nervous system during

mouse embryonic development[38,39], are detectable in skeletal

muscle after birth.[39] The RGMa knockout mouse exhibits a

partially penetrant failure in cephalic neural tube closure,[39]

while an RGMb deficient mouse has not been reported.

Hjv is not required for hepcidin expression in zebrafish
embryos

As we have demonstrated a conserved role for BMP signaling in

regulating hepcidin expression, we were surprised to find that

morpholino knockdown of hjv failed to reduce hepcidin expression

or to increase intraembryonic iron stores. Further supporting an

hjv-independent regulation of zebrafish embryonic hepcidin expres-

sion, knock down of neogenin or the zebrafish paralogs of hjv, failed

to decrease hepcidin expression relative to liver size. In contrast, the

postnatal hjv knockout mouse exhibits severe iron overload and low

hepcidin expression in the liver.[40,41] The effect of hjv deficiency

on embryonic hepcidin expression and function has not been

evaluated in mammalian models.

The lack of an effect on hepcidin expression in zebrafish embryos

cannot be entirely caused by low levels of hjv expression, because

overexpression of hjv failed to increase hepcidin expression. In

contrast, overexpression of bmp2b readily increased hepcidin

expression. We cannot exclude a role for hjv in regulating hepcidin

expression in adult zebrafish, particularly as we have demonstrated

that zebrafish hjv functions as a BMP co-receptor, can activate the

human hepcidin promoter in vitro, and is expressed, together with

hepcidin in the zebrafish adult liver. We do not have a model for hjv

deficiency in adult zebrafish to test this hypothesis. The effect of a

morpholino injection dissipates after 4 days of development.

Mtp2 knockdown increases hepcidin expression
independent of hjv

We found that the zebrafish mtp2 morphant embryo exhibits

increased hepcidin transcript levels relative to the size of its liver and

that this effect on hepcidin expression is not impaired by knockdown

of hjv. This contrasts with mouse models in which crossing mice

deficient in matriptase-2 with mice deficient in hjv suppresses

elevated hepcidin (HAMP) transcript levels and the microcytic

anemia associated with matriptase-2 deficiency in mice 9–15 weeks

of age.[42]

Anemia in mtp2 morphant zebrafish embryos has been

attributed to the effect of excessive hepcidin production[17],

however we found that abrogation of hepcidin expression by

treatment with dorsomorphin failed to reverse anemia in mtp2

morphants (Figure S11A–H). Furthermore, mtp2 morphants

exhibited decreased gata1 staining, consistent with a decrease in

the number of erythroid progenitor cells (Figure S11I,J). The mtp2

morphants also displayed increased intraembryonic iron staining,

particularly in the somites, brain, and spinal cord, consistent with

the erythroid transferrin receptor deficient phenotype (Figure 7O),

which is characterized by normal iron transport from the yolk to

the embryo, but ineffective transport to the erythrocyte.[43] Thus

it seems likely that mtp2 knockdown produces anemia in zebrafish

embryos by decreasing erythroid progenitor development. This, in

turn, impairs erythroid iron assimilation, which results in

intraembryonic iron loading and an increase in hepcidin transcript

levels.

The regulation of hepcidin has clinical importance for patients

with hemochromatosis and thalassemia, who exhibit inappropri-

ately low levels of hepcidin despite the presence of iron

overload[44–46]. Improving our understanding of hepcidin regula-

tion holds promise for better therapies for these patients. The

zebrafish embryo has proved a useful tool for identifying and

characterizing the function of genes involved in iron metabo-

lism[28,47–49] and elucidating the role of transferrin and transferrin

Figure 7. Knockdown of mtp2 increases hepcidin expression and iron staining in zebrafish embryos. A–F. Whole mount in situ
hybridization at 72 hpf for hepcidin (dorsolateral) (A–C) and foxa3 (lateral) (D–F) in uninjected controls (A, D), compared to morphants of hjv (hjv
MO2) (B,E) or mtp2 (C,F). Foxa3 marking the pharynx (blue arrow), liver (arrowhead), and intestine (black arrow) revealed a smaller liver size in hjv
morphants (E) and particularly in mtp2 morphants (F). N = 40–45 embryos per group. G–I. Quantitative real-time RT-PCR for the liver specific marker,
LFABP, relative to b-actin (G), and for hepcidin relative to the ubiquitous transcript, b-actin (H) or relative to LFABP (I). N = 2–8 pools of embryos per
group. Data shown are means 6 SE. * denotes p,0.05, compared to uninjected controls. J–Q. Whole mount nonheme iron staining of zebrafish
embryos at 55 hpf with 5x additional magnification of boxed regions. We observed normal iron staining in uninjected WT (K) and hjv morphants (L),
but increased iron staining (black arrows) in the somites and proctodeum (terminal gut) of hjv cRNA injected (M), mtp2 MO injected (N), erythroid
transferrin receptor deficient mutant chianti (cia) (O), and in the dorsal spinal cord (blue arrows) of mtp2 morphants and chianti. As expected,
decreased intraembryonic iron staining was observed in the transferrin-a deficient mutant gavi (gav) (P) and in the ferroportin deficient mutant
weissherbst (weh) (Q). N = 11–20 embryos per group.
doi:10.1371/journal.pone.0014553.g007
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receptor 2 in regulating hepcidin expression and development.[18,43]

As hjv does not appear to play a role in hepcidin regulation in

zebrafish embryos, the system will be most useful in identifying hjv-

independent regulators of hepcidin transcription. Future studies will

be needed to determine if hjv regulates hepcidin expression during

mammalian development.

Materials and Methods

Ethics statement
Ethical approval was obtained from the Institutional Animal

Care and Use Committee of Beth Israel Deaconess Medical

Center (Animal Welfare Assurance #A3153-01) in accordance

with national and international guidelines. Beth Israel Deaconess

Medical Center maintains full accreditation from the Association

for Assessment and Accreditation of Laboratory Animal Care.

Zebrafish strains, maintenance and determination of genotype. Zebrafish

were maintained as described.[50] Tg(hsp70:bmp2b) and

tg(hsp70:noggin3) zebrafish are described elsewhere[19]. Heterozy-

gote carriers of tg(hsp70:bmp2b) or tg(hsp70:noggin3) were identified

by crossing with WT zebrafish, subjecting the progeny embryos at

the shield-stage to heat shock at 37uC for 40 min, and assessing the

percentage of ventralized or dorsalized embryos produced.[19]

Hypochromic anemia mutants used included chianti (ciaTu25f), gavi

(gavIT029), and weissherbst (wehTp85c) [6,18,28,43].

Bioinformatics
Alignments were generated using ClustalW and Muscle[51,52],

followed by manual refinement using SeaView[53] to remove

redundant and improperly annotated sequences. For additional

details, please see Figure S6.

Morpholino Injection, cRNA injection, and Heat Shock
Antisense morpholino oligonucleotides[54], obtained from

Gene Tools, Inc. (Philomath, OR), were designed either to

interfere with translation or to impair appropriate splicing of

transcripts. Morpholinos for hjv, RGMa, RGMb, RGMd, neo-

genin[25], furina[26], furinb[26], and matriptase-2[17] (Table S1)

were injected at the one-cell stage with 3 nL in 1x Danieau

medium, supplemented with phenol red. The aberrant splice

produced by injection of hjv MO2 was cloned by PCR

amplification with the primers (59-TCAGTGGTCCGAGCTT-

CAG-39 and 59-CCAACCTGCCGCACTATTAT-39), cloned

into the plasmid pCR2-TOPO (Invitrogen, Carlsbad, CA),

and sequenced. The predicted translation was analyzed to identify

the signal peptide with the algorithm PrediSi [24]. Full-length

zebrafish hjv was cloned into the pCS2+ vector. The vector was

digested with NotI and sense hjv cRNA was synthesized using the

SP6 mMachine Kit (Ambion, Austin, TX). The hjv cRNA was

injected at a concentration of 1000 ng/microliter, similar to the

amount of transferrin receptor 1a cRNA, which was adequate to

rescue transferrin deficiency[18]. Injecting higher concentrations

of hjv cRNA was toxic to the embryos. cDNA injections were

performed at 50 ng/microliter. For assessment of bmp2b expres-

sion, embryos at 48 hpf were incubated at 37uC (heat shock)

for 40 min and then returned to 28.5uC for 6 hours’ incubation

or for the duration specified in the time course. The embryos

were then transferred to RNAlater (Ambion) or fixed in 4%

paraformaldehyde.

Chemical treatment
Embryos were treated either with 40 mM dorsomorphin [21]

dissolved in DMSO or with DMSO only, from 28–55 hpf.

Whole mount immunohistochemistry
Embryos were fixed overnight at 4uC in 4% paraformaldehyde/

1x PBS/0.1% Tween and the staining procedure was performed

as described in [55] using Anti-phospho-Smad1/5/8 Antibody

(#1511, Cell Signaling Technologies, Danvers, MA) at a dilution

of 1:200 overnight at 4uC. Detection of the primary antibody was

performed using biotinylated anti-Rabbit IgG/streptavidin horse-

radish peroxidase (Rabbit IgG Vectastain Elite Kit #PK-

6101,Vector Laboratories, Inc., Burlingame, CA) according to

the manufacturer’s instructions. Photomicrographs of representa-

tive embryos were obtained using an SZX51 zoom stereomicro-

scope (Olympus, Center Valley, PA) at 40x magnification with a

DP-71 camera (Olympus).

Whole mount in situ hybridization
Whole mount in situ hybridizations were performed as

previously described.[56] The development of endogenous

pigments was inhibited by supplementing the embryo medium

with 1-phenyl-2-thiourea (PTU) at a final concentration of

0.2 mM. The following antisense riboprobes were generated for

use in the in situ hybridizations: hemojuvelin, hepcidin[18], transferrin-

a[18], foxa3[19], RGMa[27], RGMb[27], RGMd, no tail (gift of G.

Begemann), myoD (gift of V. Laudet) and gata1[29]. Representative

embryos were photographed at 100x magnification with a BX51

compound microscope (Olympus) and a Q-capture 5 digital

camera (QImaging, Surrey, BC, Canada). Images were processed

using Adobe Photoshop software. Scale bars represent 100

microns, unless otherwise indicated.

Whole mount embryo staining for cartilage, hemoglobin,
and iron

Staining for cartilage was performed with Alcian blue at 5 days

post-fertilization following fixation in 4% paraformaldehyde-PBS,

as described.[57] Live anesthetized embryos were stained for

hemoglobin with o-dianisidine, as described.[58] Diaminobenzi-

dine (DAB) enhanced-staining for ferric iron was performed as

described[59] following fixation in 4% paraformaldehyde-PBS.

Photomicrographs of representative embryos were obtained using

an SZX51 zoom stereomicroscope (Olympus) at 40x magnification

with a DP-71 camera (Olympus).

Quantitative analysis of gene expression
At specified time points, embryos were pooled in groups of 20,

anesthetized with tricaine, and placed in RNAlater (Ambion).

RNA extraction, generation of cDNA, and quantitative real-time

RT-PCR assay were performed as previously described.[6,60]

Detection and analysis were performed on an ABI 7000 and an

ABI 7700 (Applied Biosystems, Inc.). Data presented are the

means and standard errors. N = 2–8 pools per time point or

condition. For additional details, please see supplemental Methods

S1.

Flow cytometry
Transgenic embryos expressing green fluorescent protein (GFP)

under the control of the zebrafish liver fatty acid binding protein

(LFABP) promoter (tg(LFABP:GFP)) were a gift from W. Goessling.

The embryos were manually dissociated in 0.9% PBS and sorted

for fluorescence using a 488 nm laser with a FACSAria II (BD

Biosciences, San Jose, CA). N = 80–100 embryos for each sorting.

Biostatistical Analysis
Heterogeneity among cohorts was analyzed by ANOVA using

Prism 5 (GraphPad Software, Inc., San Diego, CA). Tests for
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heterogeneity used the natural log for assessment of transcript

levels. All estimates and standard errors presented have been

converted back to the original units. When the global P-value

obtained from the ANOVA analysis was statistically significant,

pairwise comparisons between the cohorts were performed using

two-tailed Student’s t-tests with a Bonferroni correction for

multiple comparisons. P values less than 0.05 were deemed

statistically significant and are indicated by an asterisk.

Luciferase Assays
Human hepatoma (Hep3B) cells were cultured in Dulbecco’s

Modification of Eagle’s Medium (Cellgro, Mediatech Inc.,

Virginia) supplemented with 10% Fetal Bovine Serum at 37uC
in 5% CO2. All transfections were performed with Lipofectamine-

2000 (Invitrogen Life Technologies, Carlsbad, CA). Hep3B cells

were transiently transfected with zebrafish hjv cRNA (0–5000 ng)

and pGL2-2.7 Hepc, a 2.7 kb fragment of the human hepcidin

promoter upstream of the Firefly luciferase reporter gene, or a

plasmid containing the BMP response element (BRE) upstream of

a Firefly luciferase reporter gene.[9] A control pRL-TK Renilla

luciferase reporter (Promega, Madison, NY) was also transiently

transfected simultaneously, to control for transfection efficiency.

The cells were incubated in the presence or absence of BMP6

(5 ng/ml) (R&D Systems, Minneapolis, MN) for sixteen hours and

then lysed. The luciferase activity was determined with the Dual

Reporter Assay (Promega, Madison, NY).

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0014553.s001 (0.07 MB

PDF)

Methods S1

Found at: doi:10.1371/journal.pone.0014553.s002 (0.20 MB

PDF)

Figure S1 Treatment with dorsomorphin decreases BMP2b-

induced phospho-smad1,5,8 staining in zebrafish embryos.

Tg(hsp70:bmp2b) embryos were fixed at 55 hpf for immunohis-

tochemical staining for phospho-smad1,5,8 following (A) no heat

shock and no chemical treatment (2HS, 2dorso), (B) no heat

shock, but treatment with dorsomorphin (2HS, +dorso), (C) heat

shock and no chemical treatment (+HS, 2dorso), (D) heat shock

and treatment with dorsomorphin (+HS, +dorso), representative

embryos lateral view. Heat shock was performed at 48 hpf.

Dorsomorphin treatment was performed from 28–55 hpf at a

concentration of 40 mM. For enhanced sensitivity, a fluorescently-

labeled secondary antibody was used (Alexa FluorH 488 goat anti-

rabbit IgG, Invitrogen, #A-11008). Embryos were illuminated

with an X-cite Series 120 PC microscope lamp (Exfo Life Sciences

and Industrial Division, Quebec, Canada) and emitted light was

filtered with a green fluorescent protein (GFP) filter set. N = 15–22

embryos per group.

Found at: doi:10.1371/journal.pone.0014553.s003 (2.47 MB TIF)

Figure S2 Knock down of hjv fails to produce anemia in

zebrafish embryos. O-dianisidine staining for hemoglobin in

embryos at 50 hpf, which were either uninjected (A) or injected

with hjv MO2 (B) (lateral view). N = 42 embryos per group.

Found at: doi:10.1371/journal.pone.0014553.s004 (0.87 MB TIF)

Figure S3 Knock down of hjv interacting proteins, neogenin or

furin, fails to decrease hepcidin expression. Whole mount in situ

hybridization for hepcidin (A–C, blue arrow) and foxa3 (D–F,

black arrowhead) in uninjected embryos (A,D), compared to

embryos injected with neogenin MO (B,E) or morpholinos

directed against both zebrafish furins (furina and furinb) (C,F),

dorsolateral view. N = 20 embryos per group.

Found at: doi:10.1371/journal.pone.0014553.s005 (0.98 MB TIF)

Figure S4 Neogenin knockdown reproduced the reported defect

in somitogenesis associated with neogenin deficiency. A,B. Whole

mount in situ hybridization for myoD to stain the somites in

uninjected (A) and neogenin morphants (B) at the 20 somites’ stage

of development (dorsal view) confirmed that injection of the

neogenin morpholino at 0.15 mM produced elongation of the

somites, manifest by increased distance between the two

arrowheads. This is characteristic of the neogenin deficient

phenotype, as described by [4]. Scale bar represents 100 microns.

C,D. Whole mount in situ hybridization for hepcidin at 72 hpf in

uninjected control embryos (C) and neogenin morphants (D)

(lateral view) revealed a shortened body axis with a curved tail and

flattened somites (arrowhead) in the neogenin morphants.

Hepcidin expression is present in the liver (arrow) of the neogenin

morphant, although the expression domain of hepcidin is smaller

than in the uninjected control. Scale bar represents 200 microns.

N = 20 embryos per group. Embryos were photographed at 100x

magnification with a an Axio Imager 1 compound microscope

(Carl Zeiss MicroImaging, Inc., Thornwood, NY) and an

AxioCam ICc1 digital camera (Carl Zeiss MicroImaging, Inc.)

(A,B) or a BX51 compound microscope (Olympus, Center Valley,

PA) and a Q-capture 5 digital camera (QImaging, Surrey, BC,

Canada) (C,D).

Found at: doi:10.1371/journal.pone.0014553.s006 (3.73 MB TIF)

Figure S5 Whole mount Alcian blue staining for cartilage in

zebrafish embryos at 5 days post-fertilization confirms a branchial

arch phenotype in furin morphants. Dorsolateral view of the head

of an uninjected control embryo (A) and an embryo injected with

morpholinos to knock down furina and furinb (B) reveals an open

mouth phenotype (arrow in B) in the furina/furinb morphant.

Lateral view of an uninjected control (C) and a furina/furinb

morphant showing the fused cartilage elements (arrowhead in D)

characteristic of furin morphants. N = 20 embryos per group.

Found at: doi:10.1371/journal.pone.0014553.s007 (3.46 MB TIF)

Figure S6 Phylogeny and expression of zebrafish RGM’s.

Phylogenetic tree (A) of hjv and repulsive guidance molecule

genes (RGM’s) in chordates. The four zebrafish RGM paralogs

are highlighted in red. Hjv is also known as RGMc. B–I. Whole

mount in situ hybridization of zebrafish embryos, dorsolateral

views, at 50 hpf (B,D,F,H) and 72 hpf (C,E,G,I), for RGMa (B,C),

RGMb (D,E), hjv (F,G), and RGMd (H,I) revealed that none of

the RGM genes are detectable in the developing liver. Strong

staining was detected in the mid and hindbrain for RGMa at

50 hpf (B) and 72 hpf (C, black arrows). At 50 hpf (D) and 72 hpf

(E), RGMb is faintly expressed in the mid and hindbrain (black

arrows). At 50 and 72 hpf, hemojuvelin is no longer detected in

the developing embryo by in situ hybridization (F,G). At 50 hpf,

RGMd transcripts were detected in the pharyngeal arches (H,

black arrow). RGMd expression was no longer detected at 72 hpf

(I). N = 20 embryos per group. (J) Phylogenetic tree of the RGM

gene family constructed with all available vertebrate sequences.

Note that hjv is expressed in a wide range of mammals, fish, and in

Xenopus. We have identified hjv in the genome of a bird, the

zebra finch (arrow), for the first time. RGMd has only been

identified in fish. To generate the tree shown, we downloaded the

protein sequences of the RGM gene families defined in the

Ensembl database version 52 (as of December 2008) (,http://

www.ensembl.org/.), which includes the hjv sequences. In

addition to the Ensembl data, which also includes the Uniprot
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database (,http://www.uniprot.org/.), we also screened the

NCBI database (,http://www.ncbi.nlm.nih.gov/.). Alignments

were generated using ClustalW and Muscle[5,6], followed by

manual refinement using SeaView[7] to remove redundant and

improperly annotated sequences. Phylogenetic tree reconstruction

was carried out using the maximum likelihood (ML) method. Of

note, the neighbor-joining (NJ) method[7] gives the same basal

node topology. For ML analyses, robustness of the obtained tree

topologies was assessed with 1000 bootstrap replicates; those below

50% are not shown. The NJ tree was constructed with Phylo_Win

using a Poisson correction and pairwise gap removal[7]. The ML

tree was obtained with PhyML[8] using a JTT model[9], a

discrete gamma model with 4 categories. The gamma shape

parameter was estimated by ML and the proportion of invariable

sites was also estimated by ML.

Found at: doi:10.1371/journal.pone.0014553.s008 (2.35 MB TIF)

Figure S7 Effect of morpholino knockdown of RGM genes at

55 hpf. Whole mount in situ hybridization for hepcidin (A–D) or

foxa3 (E–H), dorsolateral views. Compared to uninjected controls

(A), knockdown of RGMa (B), RGMb (C), or RGMd (D) failed to

inhibit hepcidin expression (arrow). E–H. Expression of foxa3 in

the liver (arrowhead) revealed a slight reduction of liver size in the

morphants (F–H) compared to control (E). N = 20 embryos per

group.

Found at: doi:10.1371/journal.pone.0014553.s009 (2.64 MB TIF)

Figure S8 Effect of knockdown of RGM genes at 72 hpf. Whole

mount in situ hybridization for hepcidin (A–D) or foxa3 (E–H),

dorsolateral views. Compared to uninjected controls (A), knock-

down of RGMa (B), RGMb (C), or RGMd (D) failed to inhibit

hepcidin expression. E–H. Expression of foxa3 in the liver

revealed a significant reduction of liver size in the RGMb and

RGMd morphants (G, H). N = 20 embryos per group. I.

Quantitative real-time RT-PCR revealed no significant decrease

in hepcidin transcript levels relative to liver fatty acid binding

protein (LFABP). N = 3 pools of embryos per group. Data shown

are means + SE.

Found at: doi:10.1371/journal.pone.0014553.s010 (2.43 MB TIF)

Figure S9 Additional expression data for zebrafish embryonic

hepatocytes and zebrafish adult tissues. A. Quantitative real-time

RT-PCR to assess transcript levels of LFABP (liver fatty acid

binding protein) relative to b-actin in hepatocytes sorted from

pools of 80–100 transgenic zebrafish embryos at 72 hpf. N = 2

pools per group. Data shown are means +/2 SE. * indicates

p,0.05 compared to unsorted. B. Semiquantitative RT-PCR for

hepcidin, RGMa, RGMb, hjv, RGMd, and neogenin performed

with RNA from adult zebrafish liver and skeletal muscle. Hepcidin

expression was detected in the adult liver, but not in adult skeletal

muscle. All RGM genes and neogenin were detected in the adult

liver and skeletal muscle.

Found at: doi:10.1371/journal.pone.0014553.s011 (1.21 MB TIF)

Figure S10 Effect of injecting zebrafish hjv cDNA in zebrafish

embryos. pHjv-CS2 or pCS2 vector only (50 ng/microliter) were

each injected into zebrafish embryos at the one cell stage.

Quantitative real-time RT-PCR for hepcidin transcript levels

normalized to b-actin expression revealed no significant increase

in hepcidin expression at 55 hpf in embryos injected with pHjv-

CS2 cDNA compared to pCS2 vector alone. N = 5–6 pools per

group. Data shown are means +/2 SE.

Found at: doi:10.1371/journal.pone.0014553.s012 (0.72 MB TIF)

Figure S11 Effect of dorsomorphin on anemia and iron loading

in mtp2 deficient embryos. Embryos were injected with mtp2

morpholino at the one cell stage, followed by treatment with

dorsomorphin from 28 hpf until fixation for either o-dianisidine

staining at 50 hpf (A–D) or whole mount nonheme iron staining at

55 hpf (E–H), lateral views. Uninjected controls (A) and embryos

treated with dorsomorphin (B) exhibited normal hemoglobin

staining, while mtp2 morphants (C) manifest decreased hemoglo-

bin staining, which failed to improve when mtp2 morphants were

treated with dorsomorphin (D). N = 54–99 embryos per group.

Compared to uninjected controls (E), embryos treated with

dorsomorphin (F), mtp2 morphants (G), or mtp2 morphants

treated with dorsomorphin (H) exhibited increased iron staining in

the somites, brain, and dorsal spinal cord. N = 32–45 embryos per

group. (I,J) Whole mount in situ hybridization for gata1 (lateral

views) when embryos have developed 24 somites, about 22 hpf,

demonstrated decreased numbers of gata1-staining erythroid

precursors in mtp2 morphants compared to uninjected embryos.

N = 21–36 embryos per group.

Found at: doi:10.1371/journal.pone.0014553.s013 (3.25 MB TIF)

Figure S12 Comparison of the role of hemojuvelin in the

mammalian model of hepcidin regulation with the zebrafish

embryonic model. A. In the mammalian model of hepcidin

regulation, which is based on in vitro studies, human patients, and

post-natal animal studies[10–25], hjv acts as a BMP co-receptor to

promote BMP signaling, which results in increased hepcidin

transcription. Cleavage of membrane-bound hjv by matriptase-2

or furin results in the release of soluble hjv, which acts as a

competitive inhibitor for BMP signaling. B. In the zebrafish

embryonic model, which we have developed, BMP signaling

promotes hepcidin transcription independent of hjv. Matriptase-2

exhibits a BMP-dependent, but hjv-independent effect on hepcidin

expression. Stimulatory effects are shown by arrows. Repressive

effect is shown by -|.

Found at: doi:10.1371/journal.pone.0014553.s014 (1.03 MB TIF)
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