
Cell Death and Sexual Differentiation of Behavior: Worms, Flies,
and Mammals

Nancy G. Forger1 and Geert J. de Vries
Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts,
Amherst MA 01003, USA
Nancy G. Forger: nforger@psych.umass.edu; Geert J. de Vries: devries@cns.umass.edu

Summary
Sex differences in the nervous system are found throughout the animal kingdom. Here, we discuss
three prominent genetic models: nematodes, fruit flies, and mice. In all three, differential cell
death is central to sexual differentiation and shared molecular mechanisms have been identified.
Our knowledge of the precise function of neural sex differences lags behind. One fruitful approach
to the “function” question is to contrast sexual differentiation in standard laboratory animals with
differentiation in species exhibiting unique social and reproductive organizations. Advanced
genetic strategies are also addressing this question in worms and flies, and may soon be applicable
to vertebrates.

Introduction
In many animal species, males and females live in different social worlds, or at least play
according to different social rules. Sex differences are commonly seen in courtship,
communication, copulatory behaviors, and the processing of opposite-sex sensory cues
[1,2,3]. Neural sex differences presumably allow for such behavioral differences and,
indeed, are being found throughout the animal kingdom. This review compares sexual
differentiation of the nervous system in three major genetic models of neural development:
the nematode (Caenorhabditis elegans), the fruit fly (Drosophila melanogaster), and the
laboratory mouse (Mus musculus).

In principle, neural sex differences could result from differences in any of the major
neurodevelopmental events: neurogenesis, migration, neurite outgrowth, the differentiation
of chemical phenotype, or cell death. Interestingly, however, in all three species(C.elegans,
D. melanogaster, and M. Musculus), cell death is the best-understood cellular mechanism
underlying sexual differentiation of neural tissue. This suggests that cell death may be a
highly efficient strategy for building a sex-specific nervous system. Alternatively, we may
know so much about this mechanism because differences in cell number are often easier to
detect than more subtle changes in connectivity or gene expression. In either case, as we
describe below, recent studies have provided a fine-grained molecular analysis of how sex
differences in cell number develop in worms, flies, and mice. Cell death has also been linked
to neural sex differences in other animals, such as birds and frogs [4,5], although due to the
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more limited ability for genetic manipulation, our understanding of underlying molecular
mechanisms is less complete for these species.

In contrast to the progress made in understanding the mechanisms of neuronal cell death,
much less is known about the function of sex differences in neuron number. This is
particularly true in mammals where neural circuits are extremely complex and sex
differences tend to be quantitative rather than qualitative. One strategy for circumventing
this problem is to study simpler nervous systems such as those of worms and flies, where
cells can be individually identified and circuitry is better known. Another avenue for
understanding the function of sex differences in mammals, especially those related to
sociosexual behaviors, is to expand our world-view beyond laboratory rodents to include
species with different social and reproductive strategies. A good example is recent studies
on naked mole-rats, which are highly social, cooperatively breeding rodents that forego
sexual differentiation of behavior or postpone it until well into adulthood[6,7]. Here, we first
review the basics of sex determination and differentiation in C. elegans, Drosophila and
rodents. Next, examples of sex differences in cell number in each species are discussed,
along with what is known about underlying molecular mechanisms and the role in
sociosexual behavior. We conclude with ongoing efforts to understand the meaning of
neural sex differences.

Two sexes, three mechanisms?
Although C. elegans, Drosophila and mice all come in two sexes and rely on chromosomal
sex determination, there are some important differences. The two sexes in C.elegans are
males (XO) and hermaphrodites (XX; basically, modified females that produce and store
sperm for self-fertilization), whereas fruit flies and mammals are male (XY) or female(XX).
Sex determination in C. elegans depends on the ratio of X chromosomes to autosomes. In
brief, the lower ratio in males leads to the expression of a secreted factor (her-1) that acts via
a cell surface receptor (tra-2) to repress tra-1. Tra-1 is a master sexual regulator, which is
active in hermaphrodites and blocks male cell fates (Table 1) [8].

Sex determination in Drosophila also depends on the ratio of X chromosomes to autosomes,
but there is no known role for a secreted protein. Instead, the chromosomal sex of each cell
determines the splicing within that cell of two key genes, doublesex and fruitless, which
confer maleness or femaleness (Table 1) [9]. Thus, sexual differentiation is cell-
autonomous. The alternative splicing of the fruitless gene is thought to be especially
important for sex-specific cell fates in the nervous system, and the forced expression of male
fruitless proteins can elicit male courtship behavior in otherwise normal female flies [10].

The predominant mechanism for sexual differentiation in mammals involves a gene on the Y
chromosome that triggers testis development in males. Hormones produced from the testes
(most notably, testosterone) then circulate throughout the body, differentiating the periphery
and brain in a male direction [11*,12]. This occurs around the time of birth in mice and rats;
thus, administering testosterone to genetic females perinatally masculinizes not only the
body, but also many neural and behavioral features.

Although nematodes, fruit flies, and mice use different mechanisms to generate the sexes,
there are important commonalities. In each case the sex determining molecular cascade
relies on members of the DM(Doublesex/mab-3) family of transcription factors [13].
Moreover, there is growing evidence that in addition to hormones sex chromosomal genes
exert direct effects on sexual differentiation of the brain and behavior in mammals [11*,14–
16], bringing them closer to what is seen in worms and flies. Finally, in each species
developmental cell death leads to important sex differences in neuron number. Neural
development in all animals involves the overproduction of neurons, followed by a period of
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pruning by apoptosis [17], and sexual differentiation apparently taps into this mechanism, as
detailed below.

Sex differences in neurogenesis also have been reported [e.g., 18], but one may wonder why
examples are not more common. In mammals, the answer at first appears straightforward.
Most neurons are born well before the differentiating surges of testosterone. Moreover, a
neuroblast born at a proliferative zone is not fully determined; its final destination and
phenotype will depend on environmental cues, so it would be difficult to target cells to
precise sexually dimorphic cell groups with a change in neurogenesis. These explanations
may be misleading, however, when viewed through a wider lens: species such as worms and
flies also rely on developmental cell death for neural sex differences, yet cell fate is more
strictly determined and the overlap with hormones is not a consideration. Presumably, the
sculpting of neuron number by cell death allows for more precision, or was easier to evolve,
than the tweaking of cell number by neurogenesis. Once established, the mechanism of
apoptosis was conserved, as the cell death cascades in worms, flies and mammals all
converge on the activation of caspases, cysteine proteases that cleave key cellular proteins to
cause the cell’s demise [19]. Moreover, homologues of each of the members of the
canonical cell death pathway in nematodes can be found in humans (20).

Sexual differentiation of neuron number
1. Roundworms

In C.elegans, the identity and number of cells that die is invariant between individuals.
During development of the hermaphrodite, for example, exactly 131 cells die and many of
these are neurons, or would become neurons if spared [21,22]. The adult nervous system
consists of a series of ganglia containing exactly 294 neurons shared by both sexes, 8
hermaphrodite-specific neurons and about 90 male-specific neurons [23]. Only
hermaphrodites have the so-called hermaphrodite-specific neurons (HSNs), a pair of
bilaterally symmetric motoneurons that innervate vulval muscles required for egg laying
behavior [24,25]. Other hermaphrodite-specific cells include the VC motoneurons that
inhibit the vulval muscles [24]. The cephalic companion cells (CEMs) are specific to males.
These four chemosensory neurons (together with cells of the core nervous system) are
important for chemotaxis to hermaphrodite pheromones during courtship [26*]. Most other
male-specific neurons also are implicated in sexually dimorphic functions, namely, the
pheromonal or mechanical detection of hermaphrodites, and male-specific mating postures
[23]. How sex differences in these other cells develop is less well known, however.

Painstaking visual observation of developing worms have revealed that HSNs and CEMs are
born, migrate and to some extent differentiate normally before being eliminated in one sex
by programmed cell death [22]. Subsequently four genes were identified that comprise the
core cell death pathway in C. elegans: ced-3 (a caspase), ced-4 (homologous to the apoptosis
adaptor molecule, Apaf1, in mammals), ced-9 (homologous to the mammalian pro-survival
molecule Bcl-2), and egl-1 (homologous to pro-death members of the Bcl-2 family) [27].
Mutations in any of the four genes affect most of the 131 cells that die during development,
including the sexually dimorphic HSNs. Interestingly, the pro-death egl-1 gene contains a
binding site for the sexual regulator, tra-1 [28]. When tra-1 binds, egl-1 transcription is
repressed, thereby allowing the survival of HSNs in hermaphrodites [28]. Thus, a direct link
has been established from the sex-determining pathway to sexually dimorphic cell death of
HSN neurons.

Recent work has also elucidated the molecular basis for the sex difference in CEM survival.
The mechanism again involves tra-1, but in this case may be independent of the core cell
death pathway. CEH-30 is an anti-apoptotic factor acting within CEM neurons of males
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[29*,30*]. Hermaphrodites express tra-1, which binds and transcriptionally represses
CEH-30, leading to CEM cell death. There is a mammalian homolog of CEH-30, Barhl1,
and it can substitute for CEH-30 in protecting CEMs from death [29*]. Mutations of Barhl1
lead to increased cell death in some neural regions of mice [31], but whether this gene plays
a role in sexually dimorphic mammalian cell death has not yet been examined.

2. Fruit flies
As noted above, alternative splicing of two key sex-determining genes – doublesex and
fruitless -underlies sexual differentiation in Drosophila. Until recently there was thought to
be a tidy dichotomy, with doublesex directing differentiation of the body and fruitless that of
brain and behavior. This turns out to be an oversimplification, as several recent studies have
demonstrated essential roles for the sex-specific splicing of doublesex as well as fruitless in
sexual differentiation of neuroanatomy and behavior [32*–34*]. Male-specific fruitless
proteins (FruM) are made in a few thousand neurons (about 3% of the total) of the nervous
system [35]. Most FruM producing neurons in males have counterparts in females [36,37],
but there are several important exceptions. For example, males have about 30 FruM -
expressing interneurons in the cluster fru-mAL (medial cells above the antennal lobe),
whereas females have only five [38]. This sex difference is apparently due to cell death
because when the core Drosophila cell death genes (hid, grim, and reaper) are deleted,
females have nearly as many mAL neurons as males [38]. The fru-mAL interneurons
contribute to processing pheromonal signals that drive sexual behavior, so the sex-specific
elimination of these cells may account for sex differences in the response to these cues.

Male Drosophila also have a cluster of about 20 neurons known as P1 that is completely
absent in females [33*]. Differential cell death is again implicated in this difference because
P1 cells are present in hid/grim/reaper mutant females. However, the P1 cluster still forms
in males with an inactivating fruitless mutation and not in females expressing FruM proteins,
indicating that in this case sexual differentiation is independent of fruitless. Many FruM cells
co-express doublesex [34*] and, indeed, the female splice variant of the doublesex protein
turns out to be responsible for the death of P1 cells [33*]. Importantly, mosaic females with
a masculinized P1 cluster exhibit the initial steps of male courtship behavior, indicating that
sexual differentiation of this single cell group can account for a prominent difference in
sociosexual behavior.

3. Mice (and Rats)
In contrast to the situation in nematodes, in which lineage determines which cells will die,
developmental neuronal cell death in vertebrates appears to be stochastic: a pool of
essentially equal cells competes for trophic support, and one cannot predict a priori which
will survive [17]. There are a number of well-studied sex differences in neuron number in
rodents that depend on testosterone levels during critical periods in development and are due
to cell death[Figure 1; reviewed in 39]. As in worms and flies, these have been linked to
detection of opposite sex mates, copulatory behavior and “egg laying” (in this case,
ovulation). For example, most nodes of the neural circuit from the accessory olfactory bulb
to the hypothalamus that processes pheromonal cues are larger in male than in female rats
[40].

In addition, male rats and mice have more neurons than females in the spinal nucleus of the
bulbocavernosus (SNB) and principal nucleus of the bed nucleus of the stria terminalis
(BNSTp), whereas the opposite pattern (female > male) is seen in the anteroventral
periventricular nucleus of the hypothalamus (AVPV)[39]. SNB motoneurons innervate
muscles that attach to the phallus and are active during copulation. The BNSTp, with over
20,000 cells and many cell types, is clearly multifunctional and has been linked to
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pheromone processing, male sex behavior, gonadotrophin secretion, and the response to
stressors[41]. AVPV is a region with direct projections to gonadotrophin releasing hormone
cells that control ovulation [41]. In each case, the sex difference in cell number is due to
testosterone acting during early development: testosterone treatment of females around the
time of birth increases cell number in the SNB and BNSTp but reduces it in AVPV [39].

Similar to the strategy used in worms and flies, mice with mutations in cell death genes have
been used to test the role of cell death in neural sex differences. Pro-survival and pro-death
proteins of the Bcl-2 family critically regulate the death of developing neurons in mammals.
The pro-death protein Bax, in particular, is required for most developmental neuronal cell
death and apoptosis is nearly eliminated in many neural regions of bax knockout mice [42].
In mice with a targeted deletion of bax, cell number in the SNB, BNSTp and AVPV are
increased and, importantly, sex differences in cell number are eliminated [43,44]. Sex
differences in some behaviors (e.g. female sexual behavior and olfactory preference), also
are eliminated in bax knockout mice [45; M Holmes, L Niel, D Monks, N Forger,
unpublished].

The story becomes more complex when specific subtypes of neurons are examined,
however. For example, the sex difference in vasopressin neurons in the BNSTp (male >
female) is not eliminated in bax knockout mice, apparently because in this case testosterone
directs the differentiation of neuronal phenotype [46]. Similarly, a small subset of neurons in
AVPV is dopaminergic and females have about three times as many of these cells as do
males [47]. Although this sex difference is due to the hormonal control of cell death [48], it
is independent of Bax or Bcl-2 [43,49]. Neurons within AVPV that express kisspeptin, a
peptide that stimulates GnRH secretion and regulates puberty, also are more numerous in
females than in males and this sex difference is not altered by deletion of the bax gene [50].
The bulk of neurons in AVPV are GABAergic, and recent work demonstrates that sexual
differentiation of these cells involves the tumor necrosis factor α-NF κB cell survival
pathway as well as a bax-dependent mechanism[51*]. Thus, even within a single, relatively
small nucleus such as AVPV, multiple sex differences in cell number due to different
molecular mechanisms coexist. Interestingly, work on worms and flies contributed to what
we know about bcl-2-realted and tumor necrosis factor α-NF κB cell survival pathways, and
therefore differentiation of the mammalian brain.

Function of differential developmental cell death: What naked mole-rats
have to tell us

Part of the problem in ascribing function to sex differences in the mammalian brain is that
nuclei contain thousands of cells comprising multiple cell types (Figure 1). The BNSTp
alone, for example, contains almost 100 times as many cells as in the entire C. elegans
nervous system. In addition, sex differences in mammals typically are quantitative rather
than absolute. Precisely what the “extra” cells in one sex buy the animal in terms of function
is not well understood [52]. If the purpose of neural sex differences is to generate sex
differences in behavior, then one might predict that species with minimal sex specific roles
might lack sex differences. This seems to be true for naked mole-rats(Heterocephalus
glaber). These small rodents live in underground colonies that include on average 70–90 and
in some cases over 200 individuals [6,7]. Only a single female breeds and she mates with
between one and three males. All other colony members are siblings or offspring of the
breeders and are socially subordinate to the breeders. The subordinates provide pup care,
foraging, and colony defense but never exhibit sexual behaviors. They also show no sex
differences in behavior, and the genitalia, associated muscles, and nervous system are also
remarkably monomorphic [53,54]. Even the sex difference in AVPV kisspeptin neurons, so
prominent in other rodents, is absent in naked mole-rats [S Zhou, M Holmes, N Forger, B
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Goldman, M Lovern, A Caraty, C Faulkes, CW Coen, abstract in Soc Neurosci Abstr 2010,
594:16]. Subordinates can become breeders, and this switch is accompanied by neural
changes, including an increase in volume of several brain nuclei [54] and kisspeptin cell
number [S Zhou abstract cited above]. These changes are seen in both sexes, however, so
they correlate with breeding status and not with sex.

The relative lack of sex differences in naked mole-rats presumably is related to their social
structure. Sex differences in cell number, in particular, are generally “permanent,” and may
not be a good strategy for generating the sex-specific social and reproductive behaviors
required of the very small percentage of animals that will ever become breeders. In support
of this argument, a solitary mole-rat species is more “traditionally” dimorphic [55]. Naked
mole-rat breeders may rely on more subtle neural sex differences for sex-specific roles, such
as changes in gene expression or synapse number. Indeed, the only sex difference found thus
far in the naked mole-rat brain concerns the expression of androgen receptors [56].
Analagously, in Astatotilapia burtoni, a chiclid fish with a social structure that involves
dominant and subordinate individuals with different reproductive strategies, social status
changes are associated with altered neural expression of receptors for sex steroids,
kisspeptin, and GnRH [57–59].

As in naked mole-rats, some functions that differ between male and female mice may not
depend on changes in gross neural morphology. While under normal conditions only male
mice display male sexual behavior, females exhibit high levels of this behavior if
gonadectomized in adulthood and treated with testosterone or following a single gene
deletion of a vomeronasal receptor [60–62]. The most parsimonious explanation is that the
basic circuitry does not differ much between males and females whereas sensitivity to elicit
these behaviors does. Although differential sensitivity could be based on differences in cell
number, it could also be due to the differentiation of synapse number or neuronal and glial
gene expression [12].

Future Strategies
A time-honored approach to the problem of ascribing functions to neural sex differences is
to turn to simpler systems. In mammals, it can be argued that we know more about the
function of the difference in the SNB, a simple neuromuscular system, than any other neural
sex difference [63], although even in this case the afferent inputs are not completely known.
The lower complexity of flies and worms combined with a rich arsenal of genetic methods
make their “brains” more accessible to functional analysis. Optogenetics has recently been
used to directly compare the neural circuitry in male and female flies at both functional and
anatomical levels. For example, by using light-activated ion channels to stimulate fru-
expressing neurons in the relevant ganglia, it was demonstrated that flies of both sexes have
the basic circuitry for male courtship song, although it normally lies dormant in females
[64*]. A combined genetic and optical approach also recently identified sex specific axonal
projections that may explain how the activation of a single olfactory receptor on the same set
of sensory neurons can lead to very different behavioral outcomes in male and female flies
[65*]. With these [66,67] and other [68–69] genetic tools now being developed for
mammalian behavioral systems, there is good hope that our understanding of the function of
sexually dimorphic cell types in mammals will soon increase as well.
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Figure 1.
Sexual differentiation of neuron number in worms, flies and mice. The columns represent
four different possibilities: male-specific cell groups (cells completely absent in females),
female-specific (absent in males), as well as male-or female-biased (greater cell numbers in
one sex). In worms, sex differences in neuronal cell number are absolute. Male-specific
neurons (e.g., CEMs) die in XX hermaphrodites (first column; healthy cells represented by
colored circles and dead cells by stippling) while female-specific neurons (e.g. HSNs) die in
XO males (second column). Flies provide examples of male-specific neurons (first column;
e.g. P1 cluster) as well as quantitative sex differences favoring males (third column; e.g.
mAL cluster). Compared to the vast literature on male behavior, much less is known about
the neural substrate of female behavior; we are not aware of examples of female specific or
female-biased cell groups in flies (question marks in columns two and four). In mice, sex
differences are not absolute and cell numbers are vastly greater. Mice have no known
examples of male-or female-specific neurons (columns one and two), unless one considers
the subset of spinal motoneurons in the SNB that innervate only the bulbocavernosus
muscle. There are examples of male-biased (e.g., BNSTp) and female-biased (e.g. AVPV)
sex differences (columns three and four); in both cases, cell groups are comprised of many
different phenotypes (different colored cells in columns three and four). Sex differences may
be seen in overall cell number, in specific cell types, or both. As discussed in the text, the
magnitude of the differences and the molecular mechanisms underlying sex differences in
cell number can vary for different cell phenotypes within single sexually dimorphic nuclei.
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Table 1

Sex determination mechanisms, examples of sexual dimorphisms in the nervous system, and core cell death
pathways in nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster) and mice (Mus
musculus).

C. elegans Drosophila Mus musculus

Sexes Male (XO), Hermaphrodite (XX) Male (XY), Female (XX) Male (XY), Female (XX)

Sex determining and
differentiating
mechanisms

X chromosome to autosome ratio
determines production of a
secreted protein (Her-1) that in
turn regulates the activity of Tra-2
and Tra-1.

X chromosome to autosome
ratio determines Sxl and Tra
production leading to the
alternate splicing of fruitless
and doublesex.

Testis-determining gene on the Y
chromosome causes formation of testes
leading to the secretion of hormones that
act throughout the body. Also direct sex
chromosome effects.

Neural sex differences HSN (egg-laying), CEM, RN
(chemo- and mechanosensory
detection of hermaphrodite), CP
motoneurons (male copulatoy
behavior).

fru-mAL (pheromone
processing), P1 (courtship
initiation), MIND (innervate
male-specific muscle)

SNB (innvervate male-specific muscle),
BNSTp (pheromone processing, sex
behavior, stress), AVPV (control of
ovulation).

Canonical cell death
genes

egl 1/ced 9/ced 4/ced 3 hid/grim/reaper Pro-survival and pro-death members of
the Bcl-2 family

Abbreviations: AVPV, anteroventral periventricular nucleus; BNSTp, principal nucleus of the bed nucleus of the stria terminalis; CEM, cephalic
companion neurons; fru-mAL, fruitless expressing neurons medially located above antennal lobe; HSN, hermaphrodite-specific neurons, MIND,
muscle of Lawrence-inducing motoneuron; P1, fruitless expressing neurons in posterior region-1, RN, ray sensory neurons; SNB, spinal nucleus of
the bulbocavernosus; Tra, transformer; Sxl, sex lethal.
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