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Purpose: To investigate the roles of activation of macrophages isolated from C3H/HeN and C3H/HeJ mice and stimulated
by lipopolysaccharide (LPS), and toll-like receptor 4-mediated signal transduction in the development of acute anterior
uveitis.
Methods: Establish animal models with acute anterior uveitis by intraperitoneal injection of vibrio cholera endotoxin into
C3H/HeN mice (wild type) and C3H/HeJ mice (toll-like receptor 4 (TLR4) gene defection type). Peritoneal macrophages
were obtained from C3H/HeN and C3H/HeJ mice. Immunofluorescence staining was used to identify the F4/80+ positive
cells (iris, peritoneal macrophages) and to observe the expression of TLR4, myeloid differentiation factor 88 (MyD88),
and nuclear factor kappa B (NF-κB), with or without LPS (1 μg/ml). To investigate the importance of TLR4 in the signal
pathway, a group, blocked by anti-TLR4 antibody before LPS stimulation, was added to theC3H/HeN mice sample.
Results: In vitro, in C3H/HeN mice, Iris posterior synechia was found 24 h later. However, an inflammation reaction was
not found in the anterior chamber of the C3H/HeJ mice. In cell culture, TLR4 expression was observed in peritoneal
macrophages of the C3H/HeN mice, both with and without LPS stimulation. TLR4 was primarily expressed in the
membrane and no significant difference in inflorescence intensity (p=0.081) was found among the groups. MyD88 was
expressed in the cytoplasm and the nucleus. There is statistical significance in the fluorescence intensity among groups
of   C3H/HeN    mice   ( p<0.0001).   NF-əB  was  primarily  expressed   in   the   cytoplasm   before    LPS    stimulation.
However, this occurred 1 h after LPS stimulation and could be observed in the nucleus. Three hours after LPS stimulation,
the expression of NF-κB could not be detected in the cytoplasm or the nucleus. The fluorescence intensity of TLR4 and
MyD88 expression showed no significant difference (p=0.113) between the anti-TLR4 antibody pretreatment group and
the other groups of C3H/HeN mice. However, in the anti-TLR4 antibody pretreatment group, 1 h to 24 h after LPS
stimulation, NF-κB only expressed in the cell membrane. Peritoneal macrophages from all groups of C3H/HeJ mice
showed no obvious changes in morphology and size after LPS stimulation (p=0.257). TLR4 was primarily expressed in
the cell membrane, and fluorescence intensity showed no statistical significance (p=0.228); MyD88 was expressed in the
cytoplasm  and  the  nucleus  and  there  was  no  significant  difference  in  fluorescence   intensity  among  the  groups
(p=0.108); NF- κB  was  expressed  in  the  cytoplasm,  without  LPS  stimulation;  however,  1 h  after  LPS stimulation,  it
appeared in the cell membrane and persisted until 24 h.
Conclusions: Acute anterior uveitis can be induced in wild-type mice, but it cannot be induced in TLR4 gene-deficient
mice. The variation of expression of TLR4, and its downstream signal transduction molecules, MyD88 and NF-κB, after
LPS stimulation in vitro, suppose the potential role of a TLR4-MyD88-dependent pathway in the pathogenesis of acute
anterior uveitis. The blockage of this pathway by anti-TLR4 may signal a new direction in the treatment of acute anterior
uveitis.

Anterior uveitis is the most common form of uveitis. The
etiology of uveitis is unclear, but it is speculated to be an
autoimmune response resulting from a breakdown in the
normal state of ocular immune privilege [1]. Extensive
clinical and experimental evidence supports the role of a
particular Gram-negative bacteria or its lipopolysaccharides
(LPS) in the pathogenesis of noninfectious, immune-mediated
acute anterior uveitis (AAU) [2]. Toll-like receptors (TLRs)
are a family of pattern-recognition receptors of innate
immunity that recognize unique molecular signatures of
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microbes, known as pathogen-associated molecular patterns
(PAMPs) [3-5]. TLRs are the first line of host defense and
TLR activation, by their respective PAMPs, result in
proinflammatory cytokine cascades and the induction of both
innate and adaptive immune responses. We have
demonstrated a higher expression of TLR4 on uvea-resident
tissue macrophages in endotoxin-induced acute anterior
uveitis than is found in normal rats and we have proposed a
pathogenic mechanism whereby LPS of Gram-negative
bacteria (GNB) could initiate uveitis by activation of
intraocular TLR4 and produce proinflammatory cytokines
and chemokines for the recruitment of leukocytes to the eye
[6]. McMenamin [7] reported that the uveal tract in mice, as
in rats, contains rich networks of resident tissue macrophages.
The networks of resident tissue macrophages in the uveal tract
of mice closely resemble those in the peritoneal cavity. To
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further study the role of TLR4 on macrophages in acute
anterior uveitis, we selected C3H/HeN mice (wild type) and
C3H/HeJ mice (TLR4 gene defect type), treated with an
intraperitoneal injection of vibrio cholera endotoxin, to
establish mice models with acute anterior uveitis. The anterior
segment was observed with a slit lamp and analyzed with
histopathologic examination. Expression of TLR4, myeloid
differentiation factor 88 (MyD88), and nuclear factor kappa
B (NF-κB), with or without LPS stimulation, was observed in
isolated peritoneal macrophages from the C3H/HeN and the
C3H/HeJ mice.

METHODS
Animals: Adult male C3H/HeN mice (6–8 weeks old) were
obtained from the Vital River Laboratory Animal Technology
Co. Ltd (Beijing, China). Adult male C3H/HeJ mice (6–8
weeks old) were obtained from the Model Animal Research
Center (Nanjing, China). All mice were housed in pathogen-
free conditions in cycle of 12 h light/12 h dark with free access
to food and water. The specimens included 60 mice; 30 were
used for the in vivo experiment (n=5/per group). Of these
specimens, 24 C3H/HeN mice and 18 C3H/HeJ mice were
used for the in vitro experiment. Throughout this study, all
procedures adhered to the Institute for Laboratory Animal
Research guidelines (Guide for the Care and Use of
Laboratory Animals).
Experimental groups: Animals were randomly divided into
six groups: control group, LPS groups (1 h, 3 h, 6 h, 12 h, and
24 h after the mice received an intraperitoneal injection of
LPS, or 1 h, 3 h, 6 h, 12 h, and 24 h after mouse peritoneal
macrophages were stimulated with LPS).
Animal model: The mice received an intraperitoneal injection
of 200 μg vibrio cholera (classical Biotype, serotype Ogawa,
kindly provided by the Lanzhou Institute of Biologic Products
Lanzhou, China) dissolved in 100 μl sterile saline (NS). The
eyes were examined using a slit microscope before injection
and after several different hours had elapsed.
Histopathology: The mice were killed by an overdose of
pentobarbital (100 mg/kg) after being immunized with LPS.
The eyes of the mice were enucleated and placed in a 10%
neutral buffered formalin solution for 24 h. After the
stationary liquid was washed out, a tissue sample was
immersed in 50%, 75%, 80%, 90%, and 100% alcohol for 1
h, respectively, to dehydrate. Next, the tissue was put into
paraffin for 1 h×3 to embed it after being treated with xylene
for 30 min. Sagittal sections (4 μm thick) were cut near the
optic nerve head and stained with hematoxylin and eosin.
Culture and LPS stimulation of peritoneal macrophages: The
mice were injected, intraperitoneally, with 2 ml of 3%
thioglycollate (Taigemei, Biotechnology, Beijing, China).
After four days, peritoneal cells were collected by lavage with
an average viability of 98%. The cell viability was evaluated
using the trypan (Sigma, St. Louis, MO) blue exclusion test

(0.4%). Cells were seeded onto 24-well plates (1×105 cells/
well) in RPMI 1640 medium (Hyclone, Logan, Utah),
supplemented with 2 mM glutamine (Hyclone), antibiotics
(100 U/ml of penicillin and 100 U/ml of streptomycin), and
10% heat-inactivated fetal bovine serum (Hyclone) for 24 h
to allow the macrophages to adhere to the plates. Nonadherent
cells were subsequently removed by washing with Hank's
balanced salt (HBSS) solution, confirmed with F4/80 stain.
The adherent macrophages were grown in pre-placed
coverslips in RPMI 1640 medium, containing 10% fetal
bovine serum, and antibiotics. Macrophages, in the presence
or absence of LPS, were used for the experiments. The anti-
TLR4 monoclonal antibody (rat monoclonal antibody; Santa
Cruz Biotechnology, Santa Cruz, CA) group, with adherent
macrophages, was pretreated with anti-TLR4 monoclonal
antibody (with a final concentration of 10 μg/ml) for 1 h, then
washed, three times, with HBSS solution. Subsequent,
identical steps were taken with the other groups.
Immunofluorescence: The adherent cells were washed with
PBS, fixed in freshly prepared 4% paraformaldehyde in PBS
for 15 min at room temperature, washed, three-times, with
PBS, permeabilized with HEPES-Triton buffer (20 mM
HEPES, 300 mM sucrose, 50 mM NaCl, 3 mM MgCl2, 0.5%
Triton X-100, pH 7.4) on crushed ice for 1 h, and then washed,
three times, with PBS. The cells were blocked with PBS
containing 10% BSA for 1 h, at room temperature, and
incubated with F4/80 (rat monoclonal antibody; Santa Cruz
Biotechnology), TLR4, MyD88 (rabbit polyclonal antibody;
Santa Cruz Biotechnology), and NF-κB (mouse monoclonal
antibody; Santa Cruz Biotechnology), respectively, in a
humidified chamber, at 4 °C overnight. (all antibodies 1:50 in
10% BSA/PBS). Excessive antibodies were removed by
washing the coverslips, three times, with PBS. The cells were
incubated with fluorescein-conjugated goat anti-rabbit IgG,
rhodamine-conjugated goat anti-rat IgG, and goat anti-mouse
IgG (1:200 in PBS; Zhongshan Goldbridge Biotechnology,
Beijing, China) for 2 h and were protected from light and room
temperature. After being washed, three times, with PBS, the
cells were mounted onto a glass slide, using a mounting
medium. Negative controls included replacing the first or
second primary antibody with species- and isotype-matched
irrelevant antibodies. Blank controls included replacing the
first or second primary antibody with PBS. Slides were
examined under a fluorescence microscope (Leica-
DM-4000B; Leica, Wetzlar, Germany). Five high power
fields were selected to analyze each stain by a single masked
observer. Images were captured using an inverted confocal
laser-scanning microscope (Leica-DM-IRE2; Leica).
Data processing and statistical analysis: Leica QWin
software was used to analyze the intensity of the fluorescence
of the cell area. Statistic analysis was performed using
SPSS17.0 (SPSS Inc., Chicago, IL) software. For multiple
comparisons, different groups were analyzed using the one-
way ANOVA technique, followed by Fisher’s Least
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Significant Difference Procedure (LSD) tests. A p-value, less
than or equal to 0.05, was considered significant.

RESULTS
Clinical manifestation of EIU: No anterior segment
inflammation was observed in the C3H/HeJ mice after LPS
injection (Figure 1A). Ocular inflammatory response was
detected in the C3H/HeN mice after LPS injection and was
consistent with manifestation of AAU. Twenty-four hours
after injection, the pupil was irregular and posterior synechia
could be seen after mydriasis (Figure 1B).

Histologic Changes: HE staining results were consistent with
clinical manifestations in the wild-type and gene-deficient
mice after LPS immunization. No inflammatory cells were
detected in the anterior chamber of the C3H/HeJ mice in HE
staining (Figure 2A), but infiltration of inflammatory cells and
fibrin exudations could be seen in the anterior and posterior
chamber of the C3H/HeN mice. The blood vessels thickened
in the dilated irises and in the iris stroma. The majority of
inflammatory cell infiltration was detected in the iris-ciliary
body (Figure 2B).

Cell Identification: Unstimulated mouse peritoneal
macrophages were marked with F4/80 staining. Cells were
approximately round (Figure 3A). The nucleus of the cells was
round, kidney-shaped, or irregular. F4/80 and TLR4 could not
be detected in the negative group (Figure 3B).

Fluorescence intensity of TLR4 and cell morphology with or
without LPS stimulation: In the unstimulated C3H/HeN
mouse peritoneal macrophages, TLR4 was expressed on the
membrane (Figure 3C). The fluorescence intensity of TLR4
in C3H/HeN mouse peritoneal macrophages was stronger
than in the C3H/HeJ mouse macrophanges (F=314.007,
p<0.0001), but no significant difference (F=1.642, p=0.155)
was noted in the areas of different mouse macrophanges. The
shape of the C3H/HeN mouse peritoneal macrophages
changed after LPS stimulation, including the enlargement of
cells, extended pseudopodia, and protrusions (Figure 4A-C).
Twelve hours after LPS stimulation, cell size reached its peak,
and then gradually became smaller (Figure 5). The cell areas
showed a statistically significant difference among all the
groups (F=216.369, p<0.0001). The results of the Least
Significant Difference Procedure (LSD) tests, used for
multiple comparisons, showed no significant difference
between the control group and the 24 h group (p=0.055);
however, for the rest of the groups, statistically significant
difference was shown between every two groups (p<0.0001).
There was no significant difference (p=0.25) in the size of the
peritoneal macrophages of the different groups of C3H/HeJ
mice after LPS stimulation.

Immunofluorescence of MyD88 and NF-κB: In unstimulated
C3H/HeN and C3H/HeJ mouse peritoneal macrophages,
MyD88 was expressed in the cytoplasm and nuclei (Figure
4D). There was no significant difference in fluorescence

Figure 1. The clinical manifestation of
C3H /HeJ and C3H /HeN mice after
injection of endotoxin. A: No anterior
segment inflammation in C3H /HeJ
mice at 24 h after injection of endotoxin.
B: Posterior synechia, kidney shaped
pupil after mydriasis with compound
tropicamide in C3H /HeN mice at 24 h
after injection of endotoxin.

Figure 2. HE staining in C3H /HeN mice
at 24 h after injection of endotoxin. A:
No inflammatory cells were observed in
the anterior chamber of C3H /HeJ mice
(bar=20 μm). B: Thickness of iris
stroma layer and a large number of
neutrophilic granulocytes were
observed in C3H /HeN mice (Arrow
indicated positive cells, bar=20 μm).
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intensity between the two types of mice (p=0.315). After LPS
stimulation, the fluorescence intensity gradually decreased
with the time past (Figure 6), a statistically significant
difference was observed in MyD88 fluorescence intensity in
C3H/HeN mouse peritoneal macrophages among all groups
(F=393.485, p<0.0001).There was statistically significant
difference between every two groups when the LSD tests were
used for multiple comparisons (comparison between 1 h and

3 h, p=0.017; other groups, p<0.0001). In all the groups of
C3H/HeJ mouse peritoneal macrophages, with LPS
stimulation, there was no significant difference (p=0.421) in
MyD88 fluorescence intensity. In C3H/HeN and C3H/HeJ
mouse peritoneal macrophages, without LPS stimulation, NF-
κB was expressed in the cytoplasm (Figure 4E). One hour after
LPS stimulation, NF-κB was expressed in the nuclei (Figure
4F), and the nuclear/cytoplasmic ratio gradually increased

Figure 3. Immunohistochemical studies for TLR4 and F4/80. A: Unstimulated C3H/HeN mouse peritoneal macrophages were marked with
F4/80 staining. Cells were approximately round. B: No staining was seen when under identical experimental conditions when the primary
antibody was replaced with normal IgG at the same concentration (negative control). C: The TLR4+ cells of C3H/HeN mice possessed round-
ovoid morphology, expressed in the membrane without LPS stimulation.

Figure 4. The shape changed after LPS stimulation. MyD88 and NF-κB were expressed differently before and after LPS stimulation of C3H/
HeN mouse peritoneal macrophages. A: Three hours after LPS stimulation, the cell elongated significantly. B: Six hours after LPS stimulation,
the cell showed extended pseudopodia and protrusions. C: Twelve hours after LPS stimulation, the cell extended a large number of pseudopodia
and protrusions and the size of cell reached its peak. D: In unstimulated C3H/HeN mouse peritoneal macrophages without LPS stimulation,
MyD88 were expressed in the cytoplasm and nuclei. E: In C3H/HeN mouse peritoneal macrophages without LPS stimulation, NF-κB was
expressed in the cytoplasm. F: One hour after LPS stimulation of C3H/HeN mouse peritoneal macrophages, NF-κB were expressed in the
nuclei. G: NF-κB was expressed in the cytoplasm after the blockage of TLR4 with MTS510.

Molecular Vision 2011; 17:170-176 <http://www.molvis.org/molvis/v17/a21> © 2011 Molecular Vision

173

http://www.molvis.org/molvis/v17/a21


until 3 h after LPS stimulation (Figure 7), but 6 h after LPS
stimulation, the expression of NF-κB in C3H/HeN mouse
peritoneal macrophages could not be detected. NF-κB was
detected in the membrane in C3H/HeJ mouse peritoneal
macrophages 1 h after LPS stimulation, and it was still
expressed in the membrane until 24 h after LPS stimulation.
The expression of TLR4, MyD88 and NF-κB in the Anti-TLR4
monoclone antibody MTS510 group: The expression of
TLR4, MyD88, and NF-κB, in the C3H/HeN mouse
peritoneal macrophages first incubated with MTS510 for 1 h
and then stimulated with LPS, were the same as the expression
of C3H/HeJ mouse peritoneal macrophages stimulated with
LPS; however, the expression of NF-κB in the cytoplasmic
and nuclear translocation could not be detected (Figure 4G).

DISCUSSION
Uveitis is a common inflammatory disease that is a potential
threat to visual loss. It primarily affects the iris, the ciliary
body, and the choroid [8]. At present, the pathogenic
mechanisms of uveitis is unclear. The majority of uveitis may
be caused by noninfectious factors. Only a small part of the
infectious uveitis is due to pathogen invasion. Acute anterior
uveitis, especially HLA-B27-associated AAU, is a common
noninfectious uveitis, but clinical and laboratory research
have proven that gram-negative bacteria species, such as
Klebsiella,Salmonella,Yersinia, and Shigella, can trigger it
[2].

Figure 5. Changes of area of C3H/HeN mouse peritoneal
macrophages after LPS stimulation. The shape of C3H/HeN mouse
peritoneal macrophages changed after LPS stimulation, primarily
with regard to the enlargement of cells. Twelve hours after LPS
stimulation, cell size reached its peak, and then gradually became
smaller. 

The variation of expression of TLR4, and its downstream
signal transduction molecules MyD88 and NF-κB after LPS
stimulation in vitro, presumed the potential role of a TLR4-
MyD88 dependent pathway in the pathogenesis of acute
anterior uveitis. Up on LPS recognition, TLR4 undergoes
oligomerization and recruit its downstream adaptors through
interactions with the TIR domains. The TIR domain of TLR4
is critical for signal transduction. MyD88 is one of the TIR
domain-containing adaptor protein, which contains a death
domain, can recruit other death domain containing molecules
through homotypic interactions [9]. In our study, we found
MyD88 decreased with times after LPS stimulation. We
suggest it was consumed by the reaction.After MyD88

Figure 6. Change of fluorescein intensity of MyD88 in C3H/HeN
mice  peritoneal  macrophages   after   stimulation  with  LPS.    The

Figure 7. Nuclear factor translocation with LPS stimulation in C3H/
HeN mouse peritoneal macrophages. Immunofluorescence staining
of nuclear/cytoplasmic ratios of NF-кB nuclear translocation in LPS
stimulated macrophages.
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activation, another adaptor protein, TRAF6 (TNF receptor-
associated factor 6), is critical for the MyD88-dependent
pathway. It leads to the phosphorylation of IκB proteins,
which leads to NF-κB/I-κB trimer complex degradation.
Subsequently, NF-κB is activated and transferred into the
nucleus [9]. Noursadeghi [10] reported that measurement of
nuclear fluorescence alone does not distinguish NF-κB
nuclear translocation from increased background levels of
NF-κB expression or artifactual differences in staining
intensity. Therefore, nuclear and cytoplasmic staining
intensities were compared to indicate the nuclear/cytoplasmic
ratio as a relative measure of nuclear localization. Therefore,
we measured the nuclear/cytoplasmic ratio to show the
nuclear translocation of NF-κB. In our study, we found that
C3H/HeN mice could be induced with EIU, but C3H/HeJ
mice could not be induced with EIU, the same as Li et al.
[11] reported. Cell culture revealed that, with LPS stimulation,
C3H/HeN mouse macrophage could be activated, cell size
was increased, and NF-κB was translocated into the nucleus.
This may be an important reason for iris congestion, anterior
chamber flare, and clinical manifestation.

Our previous study revealed that in endotoxin-induced
uveitis rat model macrophages, with shape alterations, were
only located in the stroma bordering the iris endothelial layer
[6]. In cell cultures, in vitro stimulated with LPS, we found
that the cells located in the stroma were optimally positioned
to access and respond to the LPS of invasive organisms
breaking the blood–ocular barrier. Activation of TLR4 on
macrophages, using LPS stimulation, resulted in the
activation of the transcriptional factor and nuclear factor-κB
(NF-κB), via an immunostimulatory intracellular signaling
pathway.

LPS stimulation of mammalian cells occurs through a
series of interactions with several proteins, including the LPS
binding protein (LBP), CD14, MD-2, and TLR4 [12,13]. LBP
is a soluble shuttle protein that directly binds to LPS and
facilitates the association between LPS and CD14 [14,15].
CD14 is a glycosylphosphatidylinositol-anchored protein that
also exists in a soluble form. CD14 facilitates the transfer of
LPS to the TLR4/MD-2 receptor complex and modulates LPS
recognition [16]. MD-2 is a soluble protein that non-
covalently associates with TLR4, but it can directly form a
complex with LPS in the absence TLR4 [17-19].

TLR4 is essential for LPS signaling; however,
overexpression of TLR4 does not confer LPS responsiveness.
MD-2, a small protein that lacks a transmembrane domain, is
identified to associate with the extracellular domain of TLR4.
Importantly, expression of MD-2 confers a responsiveness to
LPS. Studies have shown that cells, transfected with TLR4
alone, were unresponsive to LPS, but cells transfected with
TLR4 and MD2 were strongly activated strongly [20,21].

MTS 510, an anti-mouse TLR4 mAb, is reported to block
LPS-induced NF-κB activation [22]. Akashi et al. [22] cloned

mouse MD-2 molecularly and established a unique mAb
MTS510 which reacted selectively with mouse TLR4-MD-2,
but not with TLR4 alone. In our study, NF-κB nuclear
translocation could not be detected in C3H/HeN mouse
macrophages, pre-cultured with MTS510 for 1 h and then
stimulated by LPS. We believed that the macrophage was
unresponsive to LPS at that time.

How does MTS510 affect LPS-induced NF-κB
activation? We presume it can be attributed to either the
disrupted association of TLR4 and MD-2, shedding from the
cell surface, or to internalization. Interestingly, C3H/HeJ
mice, which have a mutant Lps allele (Lpsd/d) [23], confer
hyporesponsiveness to LPS. Poltorak [24] compared C3H/
HeN and C3H/HeJ mice and revealed that the point mutation,
in latter q32–33, resulted in the proline being replaced by
histidine, and the proline was a key component of TLR4
signaling; however, C3H/HeJ mice could express TLR4. Here
we discovered that C3H/HeJ mouse macrophages could
express TLR4, MyD88 after LPS stimulation, but the NF-κB
was translocated from the cytoplasm to the membrane. The
signal could not be transferred, and the macrophage had no
response to LPS. We thought that, because of gene defection,
the signals might change, then the IκB complex, which
combined with NF-κB to make an inactive state in the
cytoplasm, might be stimulated by an incorrect signal,
resulting in the expression of NF-κB in the membrane. As the
signal could not be conducted, the macrophages could not
response to LPS stimulation.

Conclusions: In summary, the present study presumed
that TLR4 activated its downstream signaling molecules
through a MyD88-dependent pathway and may play an
important role in the pathogenesis of AAU. The blockage of
this pathway by anti-TLR4 may result in a new direction for
the treatment of acute anterior uveitis.
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