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Abstract
Rate remapping is a recently revealed neural code in which sensory information modulates the
firing rate of hippocampal place cells. The mechanism underlying rate remapping is unknown. Its
characteristic modulation, however, must arise from the interaction of the two major inputs to the
hippocampus, the medial entorhinal cortex (MEC), in which grid cells represent the spatial
position of the rat, and the lateral entorhinal cortex (LEC), in which cells represent the sensory
properties of the environment. We have used computational methods to elucidate the mechanism
by which this interaction produces rate remapping. We show that the convergence of LEC and
MEC inputs, in conjunction with a competitive network process mediated by feedback inhibition,
can account quantitatively for this phenomenon. The same principle accounts for why different
place fields of the same cell vary independently as sensory information is altered. Our results show
that rate remapping can be explained in terms of known mechanisms.

Introduction
Early work on the receptive field properties of rat hippocampal cells showed that their firing
depends strongly on the rat's location (O'Keefe et al. 1971). Indeed, their activity is
generally restricted to one or several small regions of the environment called place fields.
However, the hippocampus is also a storage site for non-spatial information (Wood et al.
1999; Rolls et al. 2005) so such information must somehow be represented. The fact that the
spatial properties of hippocampal firing is modulated by manipulations of sensory cues
(O'Keefe et al. 1978, Muller et al, 1991) and behavioral context (Wood et al. 2000) indicates
that both spatial and non-spatial information are sharing the same neural structures and are
likely to use a single common coding scheme. Recent work explored this question using a
procedure in which the shape of the environment's walls were slowly morphed from square
to round (or vice versa), thereby changing their sensory qualities. It was found that such
morphing changed the rate of firing of individual place cells, either upwards or downwards,
a phenomenon called “rate remapping” (Leutgeb et al. 2005; Leutgeb et al. 2007).
Moreover, different place fields of the same cell can change upwards and downward
independently. Thus, coding is not a cellular property, but the property of individual fields,
each of which represents a separate conjunction of spatial and sensory information. This
form of coding has not been previously observed in the brain and is very different from how
sensory information is encoded in inferotemporal cortex, where cells represent specific
sensory constructs, largely independent of their spatial position (Hung et al. 2005). Rate
remapping, in contrast, permits the distinct representation of sensory events while
maintaining the integrity of a code for spatial location. The mechanism underlying rate
remapping has not been previously addressed.
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The hippocampus receives inputs from two regions of the entorhinal cortex (EC). One input
is the medial entorhinal cortex (MEC), a region that contains grid cells of varying spatial
frequency, orientation and phase (Hafting et al. 2005). The axons of many such cells
converge on the dendrites of the granule cells of the dentate gyrus (DG), the first-order
processing stage of the hippocampus. These granule cells show one or more place fields
(Leutgeb et al. 2007). A previous computational study indicates that the summation of
excitatory input from MEC grid cells, in conjunction with feedback inhibition from the
dentate network, is sufficient to account for the spatially specific firing pattern of granule
cells (de Almeida et al. 2009a). Moreover, this study showed that the realignment of the
MEC grid cell population automatically makes the granule cells globally remap, as observed
experimentally (Leutgeb et al. 2005, 2007). However, this mechanism alone cannot account
for rate remapping because the MEC input itself does not change during environmental
morphing (Leutgeb et al. 2007, Fyhn et al. 2007). Several lines of evidence indicate that
sensory information about the environment is brought to the hippocampus by input from the
lateral entorhinal cortex (LEC): in rodents, this region is itself driven by sensory related
areas including almost exclusive direct inputs from the ventral visual processing pathways
of the occipitotemporal cortex (Mcdonald et al. 1996), the olfactory bulb (Carlsen et al.
1982) and indirect sensory input from area 35 of the perirhinal cortex (Burwell et al. 1998;
Burwell 2000). Consistent with the sensory role of LEC, lesion of this region produces
decreased investigation of novel objects (Myhrer 1988). Furthermore, direct recordings from
the LEC exhibit a spatial response with low selectivity, indicating the influence of the
sensory (non-spatial) drive (Hargreaves et al. 2005). The inputs from the LEC converge with
those from the MEC onto all granule cells of the DG. Since the LEC and MEC constitute the
main source of the extra hippocampal input to the DG, it is this convergence that must
somehow account for the rate remapping of DG cells. We have used computational methods
to study the effects of these inputs from the EC onto the DG and have sought to answer two
main questions: (1) What is the mechanism of rate remapping? (2) Why do different place
fields of the same DG cell display independent rate remapping?

Results
We simulated the response of DG cells to inputs from MEC and LEC in the following way.
The spatial response (rate maps) of the grid cells were modeled as previously described
(Blair et al. 2007; de Almeida et al. 2009) and, in accord with data (Leutgeb et al. 2007),
were made insensitive to morphing. 10 examples of such cells are shown in Fig 1a. LEC
cells were modeled to be consistent with the finding (Hargreaves et al. 2005) that the firing
rate of these cells carries little, but not zero, information about the position of the rat (Fig 1c,
t = 0.9957, P = 2e-07). To account for the sensory consequences of morphing on LEC, we
assumed that the spatial response of each cell is switched from one map to an independently
generated one at some random point during morphing (different assumptions are examined
in Supplemental Text, Fig S1). The resulting receptive fields are shown for 10 LEC cells in
Fig 1b. In order to approximate the response dynamics of the EC during environment
morphing we generated the rate maps for both LEC and MEC (10,000 neurons each). To
compute the excitatory input to each individual DG neuron we used a realistic number of
inputs (1200 from the MEC and 1500 from LEC; see Methods) and summed them. Each
synaptic input to the DG was taken from a population of randomly chosen entorhinal
neurons, with the synaptic weight randomly assigned according to the synaptic weight
distribution derived from the distribution of synapse sizes (de Almeida et al. 2009a) as
determined by serial EM (Trommald et al. 1997). The spatial distribution of firing of 10,000
DG granule cells was computed by applying, at each position, a winner-take-all interaction
over the sum of excitation input. This winner-take-all process is governed by the so called, E
%-max principle (de Almeida et al. 2009b) derived from the interaction of excitation with
gamma frequency feedback inhibition, a form of inhibition known to exist in this brain
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(Bragin et al. 1995; Towers et al. 2002; Pöschel et al. 2002) and that synchronizes the firing
of DG cells (reviewed by Bartos et al. 2007). According to this principle, the level of
inhibition is set such that cells will fire provided their excitation is within 10% of the cell
with maximum excitation. For these cells, their rate is proportional to where they fall in this
10% range. The value of 10% is computed from d/τm (de Almeida et al. 2009b), where d =
delay of feedback inhibition and τm = membrane time constant, both of which have been
experimentally determined. A previous study showed that the interaction of MEC input with
this form of inhibition is able to quantitatively account for the size and number of place
fields exhibited by active DG cells (de Almeida et al. 2009a). In our simulations, we also
take into consideration the LEC. The interaction of the two inputs depends on the ratio (α) of
the mean drive of MEC and LEC onto EC. No data is available that would allow us to
directly estimate α. However, our results provide for a quantitative estimate of its value (see
below).

With this simulation framework in place, we investigated whether the cumulative
decorrelation of population output from the dentate gyrus observed during progressive
morphing of the arena shape (Leutgeb et al. 2007, PV correlation curve, Figure 3a) could be
explained by the changes of the LEC spatial response. We computed the correlation between
composite population vectors (see Methods) as a function of morphing stage throughout
over a range of α and compared this with the correlations reported by Leutgeb et al. (2007)
(Fig1d). To account for the variability of the firing rate in consecutive recordings under the
same conditions (Hardgreaves et al. 2005, Leutgeb et al. 2007, Fyhn et al. 2007), we
emulated the effect of under-sampling of the space, an unavoidable condition given the
experimental protocols. To account for the effect of under-sampling, we introduced a
stochastic factor in every comparison with a variance dependent on the rate (see Methods).
The level of the correction was obtained by fitting to the experimental data (PV correlation)
of two subsequent recordings obtained under the same condition (Fig S3). We observed an
exponential-like decay shape for the correlation curves with the global level of decorrelation
monotonically and positively affected by the level of influence of the LEC input (regulated
by α). A value of (α=0.32, Fig 1d) gave the best fit. With the value of α determined, we
could then examine how morphing affected rate remapping.

First, we investigated whether the simulated place fields have properties that match those
experimentally observed. We found that simulated granule cells have multiple place fields
(average of 2.2 place fields) and have a mean place field size of 943 cm2. The distribution of
the number of place fields in each active cell was similar to experimental measurements (Fig
1e, t = 0.98, P < 0.0005). The place field size is also in accord with data (analysis of
(Leutgeb et al. 2007) by de Almeida et al. (2009a)). We also tested whether the observed
restricted diversity of grid cell activity (Barry et al. 2007) affects the results of our
simulation. When the grid cell proprieties were limited to one orientation and three grades of
spacing, no significant difference in the distribution of the number of place fields
(Wilcoxon, p = 0.65) or the PV correlation (Student t-test two-tailed, p = 0.31) was found.
These results are not unexpected given previous work showing that MEC input alone can
account for these properties; what is added here is the demonstration that the LEC inputs,
when included in the model, do not interfere with place cell formation in the DG by the
MEC inputs.

We next directly compared the remapping of individual place fields of our simulation of
morphing with the results obtained by Leutgeb et al. (2007) (Fig 2a). The experimental
results show that all place fields of the same cell remap and do so independently; thus one
field may increase its firing rate during morphing while the other decreases its rate. Fig 2b
shows this to be similarly true in our simulated place fields. Moreover, the relative
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proportion of remapping patterns (linear, quadratic and sigmoidal) could not be
distinguished from the experimental observations (Fig 2c, t = 0.93, not significant (n.s.)).

To obtain insight into why remapping is independent for different place fields of the same
cell, we analyzed the changes during morphing (Fig 3). We identified two processes that
cause independent place field rate remapping: (A) the effect of morphing on LEC cells
changes the direct excitation of the granule cells (Fig 3a). Since the rate change of LEC cells
due to morphing is a function of position, the variation on the integration of the LEC
excitatory input is independent for each place field; (B) the change of the excitation of other
cells will determine which cell is most activate at a given position. This determines the E%
max level and thereby indirectly, via inhibition, alters the rate of other cells (Fig 3b). This
process is localized and therefore independent for each place field.

To determine which mechanism prevails in controlling rate remapping, i.e. excitatory drive
versus inhibitory competition, we looked for the ratio between the levels of remapping
accounted for by each mechanism (see Methods). We observed that both mechanisms
contribute to almost all place fields, with a slight dominance of mechanism A (Fig 4c).

Discussion
Rate remapping is a new form of coding, the mechanism of which has been unclear. We
have found that it can be explained in terms of simple processes: the summation of several
thousand LEC and MEC inputs to DG cells, in conjunction with a network process that
produces competitive inhibition. These mechanisms are sufficient to explain the key
observation, that even though the LEC input to the DG is not restricted to specific positions,
virtually all DG cells have place fields. Our simulations show that the spatial firing pattern
of DG cells is determined primarily by the MEC inputs; the role of the LEC is to determine
the specific rate at which place cells fire. In addition to accounting for these findings, our
model elucidates several other properties, notably the size of place fields, the average
number of place fields, and the fact that if DG cells have multiple place fields, these vary
independently during morphing of the environment. Other models have investigated the
integration of input from LEC and MEC in the DG (Hayman and Jeffery 2008, Si and
Treves 2009) and provided some insights that are consistent with our results. However our
model is the first to attempt to quantitatively account for rate remapping (for a comparison
of models, see Supplementary Text).

The mechanism of rate remapping can be understood intuitively in terms of the summation
of LEC and MEC inputs and the strong competition for firing in DG produced by the DG
inhibitory network (Fig 3). In this context, the strength of an input is defined by the
presynaptic activity of the neurons of the entorhinal cortex and the strength of the synapses
they form onto granule cells. If only the most excited cells can fire, then cells with both
strong LEC and MEC input will have great advantage in this competition. Thus, only cells
that have strong MEC inputs, and are thus “successful” place cells, can express the
additional input from the LEC. Conversely, cells that have strong LEC input, but weak MEC
input, and which could therefore express properties of the sensory world largely independent
of place, are unlikely to be winners. This explains why cells that solely code sensory
information, like those in the LEC and IT cortex, are very rare in the DG. This implies that
the representation of the environment, as conveyed by LEC, is mixed in the DG with the
spatial metric imposed by MEC.

Although convergence and competition are keys to understanding the mechanism of rate
remapping, two additional factors should be noted. First, the number of inputs into a single
DG cell from both LEC and MEC are large (>1000) and therefore not subject to large
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statistical fluctuations. If the number were much smaller, it might often arise by chance that
significant numbers of DG cells received strong enough LEC input to win the competition
even with negligible MEC input, contrary to what is observed (see Supplemental Text, Fig
S2). Second, spatial encoding is unique because the organism is always at a place; i.e. the
MEC is always active and formation of grid cells is not impaired by darkness (Hafting et al,
2005). In contrast, information from any specific sensory modality in the LEC may be
present or not at any point in time. Because place is always present, other sensory
information can never compete by itself for influence over the DG; the competition is
always influenced by MEC input. It may happen that sensory input affects the properties of
the grid cells when grids realign to distal cues (Sargolini et al. 2006), but such changes only
occur during global remapping, which is outside the scope of this study.

The mechanism we propose for rate remapping depends on the interaction of the LEC and
MEC. This interaction depends quantitatively on the relative magnitude of the two inputs
(α), which according to our analysis should be in the range of 0.2-0.3. Importantly,
modification of α provides a way of testing the proposed model of rate remapping.
Specifically, (1) the mean population vector correlation produced by morphing should
monotonically increase with α (Fig 1d) and (2) the mean place field size should
monotonically decrease with α (Fig S2D). With the advent of molecular methods for altering
firing rates or synaptic strengths in a region specific manner, it should become possible to
directly test these predictions.

Previous studies have shown that multiple place fields of single DG neurons emerge from
the mechanism considered here using inputs from MEC only (de Almeida et al. 2009a). Our
simulations show that this phenomenon still holds when inputs from both MEC and LEC are
considered. What emerges from our analysis is that simple random summation of the inputs
and competition among DG cells is sufficient to form place fields, but not selective enough
to form only one; i.e. multiple place fields is the best the system can do in decoding the
highly distributed grid cell input. The emergence of cells with single place fields, as occurs
in CA3, requires an additional processing step (de Almeida et al., 2010).

The independence of the rate remapping observed in the multiple place fields of single DG
cells (Leutgeb et al. 2007) constitutes a novel form of neural code. In this code the DG
neuron multiplexes multiple independent features that are selected on the basis of a spatial
metric. The independence emerges because both excitation and inhibition vary with spatial
location. Rate remapping is different from other rate codes in the brain that are selective for
multiple features, as for instance, the combined spatial frequency and orientation tuning
curves found in single neurons of the primary visual cortex (de Valois & de Valois 1990).
The overall response of these V1 cells can be explained by the multiplication of tuning
curves that, in contrast to the rate remapping in the DG, are fixed and invariant to any other
feature change (Mazer et al. 2002). The independent (nonmultiplicative) modulation of the
place fields of single DG neurons promotes orthogonalization of the encoding that is
required to generate the highly specific responses to single locations found in CA3 (Leutgeb
et al. 2007).

Our results answer some questions about this code, but other important questions remain. A
defining feature of this code is that the firing rate is not binary. Thus, a particular memory is
represented not only by which cells fire, but also by the firing rates. Now consider the
process of pattern completion for n cells with rates R1, R2…Rn. Suppose a partial cue is
presented, say R1 to R5. This should lead to the firing of unstimulated cells at their
appropriate graded rates. Indeed, there are attractor network models that use graded rather
than binary rates (Rolls 2007), and it will be interesting to see if these can account
quantitatively for pattern completion in CA3. Another unanswered question is where and
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how rate remapping is decoded so that cortical cells, which do not code sensory information
using spatially specific cells, can decode information (such as during replay) that they
receive from the hippocampus.

Experimental Procedures
Spatial response representation

All data was simulated for a 1 m square enclosure with a resolution of 1 cm2, compromising
10000 square bins organized in a 100 × 100 rectangular grid. The spatial response for each
cell of all considered cortical regions was composed by rate values assigned for each bin,
defining a rate map.

Simulation of spatial response from entorhinal cortex
MEC spatial response was set invariant to the morphing of the environment, being simulated
only once. The rate (λ) of each MEC cell follows the equation defined by Blair et al. (2007)
and is a function of the Cartesian position (r = (x,y)) and subject to the following parameters:
the place field decay constant (a, normally distributed with 0.55±0.03), the inter-vertex
distance (d, ranging from 30 to 100 cm), the spatial offset (c = (xo,yo), ranging from (0,0) to
(d,d)) and the angular offset (θ, from 0° to 60°):

The vertex angles (θ1=-30°, θ2=+30° and θ3=+90°) define a honeycomb grid that bases the
formation of the grid cell firing. We simulated the spatial response of 10000 MEC cells,
each of them with a random parametric set within the range specified above.

LEC spatial response was set dependent to the degree of morphing (v). Indeed, morphing
was incorporated in the model by changing the spatial response of LEC cells. For each LEC
cell there were assigned one rate map for the beginning and another for the end of the
morphing, each of them generated independently (following the methods below). For the
intermediate morphing steps, it was defined a random (uniformly distributed) transition
morphing degree for each cell in a way that the spatial response of the cell is invariant from
the beginning to this point and from this point to the end.

To synthesize the LEC rate maps, the arena was divided in a 5×5 grid that covers the whole
arena. For each rate map, these regions were randomly separated in two groups (active or
inactive) according to the expected spatial information score (high spatial specificity renders
less active regions). A base rate map is built by assigning a random rate value within the
range [0,0.5] for non-active regions and [0.5,1] for active regions. To obtain the final map of
LEC responses we convolved the base map with a Gaussian kernel with standard deviation
of 17 bins. We simulated the spatial response of 10,000 LEC cells by using the number of
active regions to fit to the experimental spatial information score (Hargreaves et al. 2005).
Samples of LEC rate maps and the spatial information score histogram are shown in Fig 1b
and Fig 1c respectively.

LEC and MEC spatial responses had the population mean average rate normalized. Since we
could not obtain information about the relative mean fire rate of MEC and LEC populations,
we had the ratio parameterized by α in the range [0,1] when the rates were integrated in the
computation of the excitatory input of the granule cell.
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Granule cells
Each granule cell integrates the excitatory input received from a random group of MEC and
LEC cells following the estimated convergence (see below). The sum of entorhinal input of
each granule cell (I) is specific for each position, which allow a map representation. The
excitatory input is the product of the rate (λ) of the afferent cell with the specific synaptic
weight (W, see below).

The rate of granule cells is defined by competition of the sum of the entorhinal input within
the population ruled by a percentage of maximal suprathreshold excitation (E%-max)
winner-take-all process (de Almeida et al. 2009b), measured as 10%. At a specific position
and arena shape, the amount of inhibition is equal to 90% of the sum of the entorhinal input
of the most excited cell in the population. Whenever this global inhibition is higher than the
sum of entorhinal inputs of a specific cell, this cell remains silent. Otherwise, the rate of the
cell is the difference between excitation and inhibition.

, where H is Heaviside function.

Supplementary figure 1 gives an insight of how granule cells rate map is obtained from grid
cells and LEC cells and how rate is influenced by both the input of entorhinal input of the
cell and by the population inhibition.

Convergence from entorhinal cortex
The convergence of the entorhinal cortex input onto granule cells was estimated by the
number of synapses as ∼1200 for grid cells (de Almeida et al. 2009a) and following the same
procedure as ∼1500 for LEC inputs (see Supplementary Methods).

Synaptic weight
Synaptic weight (W) is defined by the synaptic size (s) (de Almeida et al. 2009a):

The synaptic size distribution was defined by the measured size distribution of excitatory
synapses onto granules cells (Trommald et al. 1997):

, s ranges from 0 to 0.2

Data analysis
Cells with average firing rate above 10% of the mean average firing rate of cell population
were considered active.
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Composite population vector correlation
Composite population vector (PV) correlation has been used in the analysis of experimental
data to observe the reduction of rate coincidence at the same position in the dentate gyrus
when the shape of the arena is morphed (Leutgeb et al. 2007). PVs are obtained by storing in
a vector the rate at a certain position bin of each cell of a population. The correlation
between the PV of the same group on two different conditions give a measure of how the
condition affects the overall population activity. The PV correlation value is the mean
correlation value considering all positions bins.

Place field analysis
The number of place fields was estimated from the rate map for active cells in each stage of
the morphing. Rate maps were smoothed by a Gaussian kernel with 9 pixels radius. Pixels
with firing rate above 20% of the peak rate were considered active. Groups of contiguous
active pixels (>200 and <2500 pixels) with average rate exceeding the mean population fire
rate and with peak activity above two times the mean population fire rate were considered to
be a firing field.

Curve fit
Persistent place fields were obtained by applying place field analysis on the average rate
map for all morphing shapes (Leutgeb et al. 2007). There different curves were fit to the in-
field rate for each persistent place field following the morphing: (a) linear regression, (b)
quadratic regression and (c) sigmoid function. Fits with p values < 0.05 were considered
significant, and each place field was assigned to the category with the highest explained
variance (F values).

Rate remapping measures
The level of the rate remapping effect is measured for each persistent place field (p) whose
average mean rate for the two extreme shapes of the morphing (λSR) is above 10% of the
mean average firing rate of the cell population. The rate remapping level (ηR) is defined as
the absolute difference in firing rate normalized by λSR. The level of rate remapping due to
mechanism A (ηA), which is based on the change of the sum of direct excitatory inputs, is
the absolute difference in the mean sum of the input at the positions of the place field
normalized by λSR. The level of rate remapping due to mechanism B (ηB), which is based on
the change in the level of inhibition, is the absolute difference in the mean global inhibition
level at the positions of the place field, normalized by λSR. The ratio of the impact of the two
mechanisms (γ) is ηB divided by ηA + ηB.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. MEC and LEC inputs and estimation of model parameters
(a) Example of the 10 MEC modeled rate maps (number is the maximum firing rate). MEC
rate maps remain constant during morphing. (b) Example of the 10 LEC rate maps from
experimental data (H, maximum rate when informed. From (Hargreaves et al. 2005).
Reprinted with permission from AAAS) and 10 from the model for the two environments
(square and round, maximum rate in both environments). Rate maps presented with equally
distributed spatial score (ranked from right to left). (c) Histogram of spatial information
score from LEC rate maps (H, experimental data and square, model. correlation 0.9957, P <
0.05). (d) Ratio (α) between the mean firing rates in MEC and LEC estimated as 0.32 by
fitting to the experimentally observed reduction on spatial coincidence using population
vector correlation as the environment is morphed (Leutgeb et al. 2007). (e) Histogram of the
number of place fields found in DG cells (Leutgeb and square environment). Stable high
correlation between experimental and simulated histograms during morphing indicates that
modification in LEC activity do not disrupt place field formation (R = 0.98).
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Figure 2. Simulated DG cells exhibit independent place field rate remapping, as observed
experimentally
Differential rate changes in individual firing fields of cells from the dentate gyrus during
progressive maneuvering of the walls of the arena. (a) Recorded cells. From (Leutgeb et al.
2007). Reprinted with permission of AAAS. (b) Simulated cells. Individual fields are
numerically labeled to relate to the respective line diagram of the mean field rate. The rate
curves were fitted to linear (red), quadratic (green) or sigmoid (blue) functions and are
shown when significant (p < 0.05, dotted line). (c) Histogram of the best fit classification for
recorded and simulated curves. Correlation between histograms is of 0.9543 (P = 0.045).
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Figure 3. Different mechanisms for independent rate remapping of different place fields of the
same cell
(A) Rate is directly affected by changes of the input drive. For a given cell, morphing
(round to square) induces localized variation of LEC input, changing the rate of each place
field independently (At PF1, elevation of input drive (INPUT1) causes the rise of rate
(RATE1). At PF2, the fall of the input level (INPUT2) leads to reduction of rate (RATE2)).
In this case, remapping is only caused by the change of the input since the global inhibition
level does not vary (dotted red line); (B) Rate is inversely affected by changes of the
inhibition. Morphing induces localized variation of the global inhibition level, changing the
rate of each place field independently (At PF1, the raise of the global inhibition level
(INH3) causes the decay of the rate (RATE3). At PF2, the fall of the global inhibition level
(INH4) causes the rise of the rate (RATE4)). In this case, remapping is only caused by the
local changes on the global inhibition level since all inputs to this cell remain in the same
level during remapping. The change of the inhibition level is caused by variations of the
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input drive of the most excited cell. For each cell and wall shape a rate map is shown with
the relevant place fields indicated by a white circle and the process values used of the
computation of the rate at these place fields: the sum of entorhinal input (light gray bar for
LEC and dark gray bar for MEC); the sum of entorhinal input of the most excited cell (red
line); the global inhibition level (dotted red line) and the rate (black bar). (C) Distribution of
the mechanism balance ratio through active place fields (see Methods). Low ratio indicates
prevalence of mechanism (A) while high ratio indicates that mechanism (B) is more
effective.
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