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Abstract
The yeast and fungal prions determine heritable and infectious traits, and are thus genes composed
of protein. Most prions are inactive forms of a normal protein as it forms a self-propagating
filamentous β – sheet - rich polymer structure called amyloid. Remarkably, a single prion protein
sequence can form two or more faithfully inherited prion variants, in effect alleles of these genes.
What protein structure explains this protein-based inheritance? Using solid-state NMR, we
showed that the infectious amyloids of the prion domains of Ure2p, Sup35p and Rnq1p have an
in-register parallel architecture. This structure explains how the amyloid filament ends can
template the structure of a new protein as it joins the filament.

The yeast prions [PSI+] and [URE3] are not found in wild strains, indicating they are a
disadvantage to the cell. Moreover, the prion domains of Ure2p and Sup35p have functions
unrelated to prion formation, indicating that these domains are not present for the purpose of
forming prions. Indeed, prion forming ability is not conserved, even within S. cerevisiae,
suggesting that the rare formation of prions is a disease. The prion domain sequences generally
vary more rapidly in evolution than does the remainder of the molecule, producing a barrier to
prion transmission, perhaps selected in evolution by this protection.
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Scrapie is a uniformly lethal neurodegenerative disease of sheep that has been known in
Europe since at least the 18th century (Parry, 1983) and perhaps much longer in China
(Wickner, 2005). Its transmissibility to sheep and goats (Cuille & Chelle, 1936, Cuille &
Chelle, 1939) and the typical brain pathology gave it, and similar diseases of humans, cattle,
deer and elk, the name transmissible spongiform encephalopathy (TSE). The recent
epidemic of the bovine form of this disease (Wilesmith, 1988), and its fortunately rare
transmission to humans (Will, et al., 1996) spotlighted these conditions, but their relation to
non-infectious amyloid diseases such as Alzheimer's disease, Parkinson's disease, and type
II diabetes may ultimately prove even more important. Early studies of the infectious agent
were hampered by the year+ incubation periods and the expense of buying a flock of sheep
for each experiment! The infection of mice with the scrapie agent improved matters
(Chandler, 1961), but not until recent tissue culture infection methods (Klohn, et al., 2003)
has the agent assay truly become simple.
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Historically, the extreme UV-resistance of the scrapie agent first implied that any essential
nucleic acid component must be much smaller than even the small RNA phages (Alper, et
al., 1966, Alper, et al., 1967, Bellinger-Kawakara, et al., 1987), and led to the suggestion
that the infectious agent had no essential nucleic acid (Alper, et al., 1967). Griffith then
proposed what is essentially the modern 'protein-only' model (Griffith, 1967). The
purification of the infectious agent showed a single major protein species, named PrP
(Bolton, et al., 1982, Diringer, et al., 1983), and Prusiner coined the term "prion" to mean an
"infectious protein", transmitting an infection without an essential nucleic acid component
(Prusiner, 1982).

PrP is encoded by a chromosomal gene (Basler, et al., 1986, Locht, et al., 1986), the same
(Carlson, et al., 1986, Hunter, et al., 1987) as the Sinc gene of mice, shown much earlier to
control scrapie incubation period (Dickinson, et al., 1968). The finding that the gene
affected in familial human TSE disease that produces infectious material for monkeys
(Masters, et al., 1981) was the gene encoding PrP (Hsiao, et al., 1989), and that PrP
determines the species barrier (Prusiner, et al., 1990) were important arguments for the prion
model.

Amyloid formed from recombinant PrP is minimally infectious unless other lipid and
nucleic acid components are included (Legname, et al., 2004, Deleault, et al., 2007,
Makarava, et al., 2010, Wang, et al., 2010), leaving some residue of doubt about whether the
TSE are truly prions. Clearly, PrP is the determinant of specificity and essential for
infectivity, but it remains possible that minor RNA or lipid components contribute.

In contrast, the initial genetic evidence for yeast prions was convincing (Wickner, 1994,
Masison, et al., 1997): unlike nucleic acid replicons, 1) curing of prions is reversible,
meaning that they arise de novo in a cell presumed to be devoid of the putative replicon; 2)
overproduction of the prion protein increases the frequency of prion generation; and 3) the
propagation of the prion requires a chromosomal gene (encoding the prion protein) whose
mutant phenotype is similar to that of the presence of the prion. These properties posited for
a yeast prion were true of [URE3] and [PSI+] as prions of Ure2p and Sup35p, respectively
(Wickner, 1994). None of the three genetic properties posited for yeast prions were known
then (or even now) for TSEs. Similar evidence was obtained for the [Het-s] non-
chromosomal gene of the filamentous fungus Podospora anserina being a prion of the HET-
s protein (Coustou, et al., 1997). Amyloid formed in vitro from recombinant prion protein
efficiently transmits the corresponding prion to yeast or fungal cells (Maddelein, et al.,
2002, King & Diaz-Avalos, 2004, Tanaka, et al., 2004, Brachmann, et al., 2005, Patel &
Liebman, 2007).

Studies of TSEs have revealed that many "strains" of the infectious agent could show quite
distinct properties in the identical host (Bruce, 1993). One source of resistance by many to
the proposals that the TSEs are infectious proteins has been the striking and consistent
differences in the incubation periods, tissue distributions and other features of the disease
produced by different strains of scrapie, and the lack of a plausible mechanism by which a
protein could transmit its conformation from one molecule to another. Not only were there
no known examples of heritable (or transmissible) traits being encoded in anything but
nucleic acid sequence, but it was not clear how protein-only transmission of information
could occur. For example, in reviewing the TSEs and proposing the term "prion" to describe
them Prusiner (Prusiner, 1982) proposed that, if indeed the TSEs were cases of a "protein-
only" infectious agent, the mechanism might be a) reverse translation, b) protein-dependent
protein synthesis or c) a protein’s induction of transcription of its own gene. None of these
proved to be the mechanism of the mammalian prion. While clear evidence of differences in
protein conformation in different prion strains was obtained (Bessen & Marsh, 1994,
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Caughey, et al., 1998), no mechanism for the faithful propagation of such conformational
differences was proposed (Fig. 1).

With the discovery of yeast prions (Wickner, 1994), and the existence of prion strains (or
"variants") in yeast (Derkatch, et al., 1996), it was clear that the variant phenomenon was
general, and did not reflect a nucleic acid component of the prions. Yeast prion variants are
also based on different structures (see below) -amyloids- but what are these structures, and
how are they faithfully propagated?

The spectrum of prions in yeast and fungi (Table 1)
The yeast amyloid-based prions include [URE3], a prion of Ure2p, a regulator of nitrogen
catabolism (Fig. 2)(Wickner, 1994); [PSI+], a prion of Sup35p, a subunit of the translation
termination factor (Wickner, 1994); [PIN+], a prion of Rnq1p of unknown normal function
(Derkatch, et al., 2001); [SWI+], a prion of Swi1p, a component of the SWI-SNF chromatin
remodeling complex (Du, et al., 2008); [MCA], a prion of MCA1p, the yeast metacaspase
homolog (Nemecek, et al., 2009); [OCT+], a prion of Cyc8, a subunit of the Tup1-Cyc8
transcription repressor (Patel, et al., 2009); and [MOT3] a prion of Mot3p, a transcription
factor (Alberti, et al., 2009). The yeast [β] prion is a self-propagating active vacuolar
protease B, which can be essential for the activation of its inactive precursor protein
(Zubenko, et al., 1982,Roberts & Wickner, 2003). [Het-s], a prion of the HET-s protein of
the filamentous fungus Podospora anserina (Coustou, et al., 1997), is a mediator of
heterokaryon incompatibility, and is unusual in that it functions in its prion form, but has no
known function in its non-prion form.

Biology of yeast and fungal prions
Species barriers

Mammalian prions of one species may be unable to infect another species, or only do so
with dramatically increased incubation period (reviewed in (Collinge & Clarke, 2007)). This
'species barrier' is a result of sequence differences between the PrP proteins of the respective
species (Prusiner, et al., 1990). A similar species barrier between yeast species has likewise
been observed (Chernoff, et al., 2000, Kushnirov, et al., 2000, Santoso, et al., 2000, Chen, et
al., 2007, Edskes, et al., 2009).

Prion variants
Prion variants of [PSI+], [URE3] and [PIN+] were first observed as differences in intensity
of the prion phenotype (strong or weak) and in the stability in propagation of the prion
during growth (Derkatch, et al., 1996, Schlumpberger, et al., 2001, Bradley, et al., 2002,
Brachmann, et al., 2005). However, [PSI+] variants also differ in whether they can
propagate in cells expressing a given mutant of the prion domain (King, 2001), a result that
corresponds logically to the species barrier in mammalians. Variants of [URE3] show
dramatic differences in the actual species barrier among different species of Saccharomyces
(Edskes, et al., 2009). Chaperones are important in prion propagation (reviewed by (Sharma
& Masison, 2009)) and these effects also vary depending on the prion variant (Kushnirov, et
al., 2000). Different [PSI+] variant amyloids show different distribution along the prion
domain sequence of rates of hydrogen-deuterium exchange, indicating that as in mammals,
yeast prion variants are based on self-propagating structural variants (Toyama, et al., 2007).

Are yeast and fungal prions a help or a hindrance?
Heterokaryon incompatibility of fungi is like transplantation incompatibility in mammals,
preventing vegetative fusion of genetically distinct fungal strains, apparently for the purpose
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of blocking the spread of fungal viruses (Saupe, et al., 2000). Since the [Het-s] prion
mediates heterokaryon incompatibility in Podospora (Coustou, et al., 1997), it was proposed
that it may actually be a beneficial prion (Wickner, 1997). This theme was applied to prions
of yeast when it was noted that certain [PSI+] strains were more stress-resistant than the
corresponding [psi-] strain (Eaglestone, et al., 1999). However, further observations did not
support a general stress-resistance of [PSI+] cells (True & Lindquist, 2000). Indeed, in a
screen of many phenotypes, there was, except for hypersensitivity to 5 mM Zn2+, no
phenotype consistently imparted by being [PSI+], and in most cases, being [PSI+] was
detrimental (True & Lindquist, 2000). Finally, in a re-examination using the same strains it
was found that less than half of the differences were reproducible (Namy, et al., 2008). Even
if these experiments had shown that a prion conferred a consistent benefit for yeast under
some specific culture condition, this would not prove that the prion was of benefit to yeast
unless a) this condition could be shown to be a significant part of the niche of this species in
the wild, b) yeast carrying this prion could be isolated from that niche, and c) this benefit
outweighed any detriment that would be encountered under other conditions (Partridge &
Barton, 2000). It seems clear that [PSI+] should produce inappropriate readthrough of
translation termination codons of many genes, and thus cause the production of many non-
functional or mis-functional proteins, so it is not surprising that no consistent advantage of
being [PSI+] has been detected.

Infectious elements, such as viruses, bacteria or prions, are easily found in the wild even if
they are lethal, simply because their rate of spread out-runs the damage they do to their
hosts. For example, chronic wasting disease, a prion infection of deer and elk, is found in
several percent of animals in large areas of the US, and scrapie of sheep has been a problem
for at least centuries (Parry, 1983), if not millenia (Wickner, 2005). Certainly if an infectious
element is a benefit to its host, and is stable (like the [PSI+] and [URE3] variants claimed to
help their hosts) it will quickly spread in the population as infectivity and benefit work
together. The mitochondria, which originated as a bacterium infecting another cell, is an
example. Thus, if an infectious entity is NOT found in wild isolates, one can then safely
conclude that it is a detriment to its host. We surveyed seventy wild yeast strains isolated
from several continents and many different environments, and none had [URE3] or [PSI+],
indicating that both are diseases (Nakayashiki, et al., 2005).

It is suggested that [PSI+] formation may be induced under certain stress conditions to
relieve the cells of the stress by altering translation (Tyedmers, et al., 2008). However, it
was found that under four of the six stress conditions inducing [PSI+] formation, [PSI+] was
a detriment to the cells, rather than helping them survive. This indicates that the [PSI+]
induction was not an adaptive response, but may have been due to chaperones being
occupied with dealing with the stress, and were not available to prevent prion formation. In
the two other [PSI+] “induction” conditions where the presence of [PSI+] was reported to
favor cell survival, the authors failed to rule out the possibility that this condition was not
inducing [PSI+] appearance but was simply selecting [PSI+] cells already in the population
before the stress, thus explaining the modestly increased fraction of surviving cells that were
[PSI+].

If the prion domains of prion proteins had no function other than prion formation, and were
conserved through a long span of evolution, then one could argue that prion formation may
be conserved for some purpose that we do not know about. However, prion domains of
Ure2p and Sup35p each have non-prion functions and the ability to form prions is not
generally conserved. The prion domain of Ure2p is important for the nitrogen regulation
function of the molecule in that Ure2p is rapidly degraded if it lacks this region and nitrogen
catabolite repression is leaky (Shewmaker, et al., 2007). Likewise, the prion domain of
Sup35p interacts with the polyA binding protein and is necessary for the normal shortening
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of the polyA structure of mRNAs and thus for normal mRNA turnover (Hoshino, et al.,
1999, Hosoda, et al., 2003). Moreover, the prion-forming ability of Sup35p is not well
conserved even within Saccharomyces cerevisiae isolates and fully 25% of strains examined
have a large deletion that prevents them from becoming [PSI+] (Resende, et al., 2003). The
Ure2p prion domain is apparently conserved within S. cerevisiae (Edskes & Wickner, 2002),
but S. paradoxus is unable to form the [URE3] prion (Talarek, et al., 2005), and the Ure2p
of S. castelii is unable to convert to [URE3], at least in S. cerevisiae (Edskes, et al., 2009).
Thus prion formation is sporadic, and not well conserved, and the prion domains have non-
prion functions, indicating that prions are molecular malfunctions.

Human populations are polymorphic for residue 129 of PrP with about half of alleles having
Val and half a Met residue. Heterozygous individuals rarely get either spontaneous or
infectious CJD, leading Mead et al. to propose that this polymorphism arose to protect
humans from this disease in an era when cannibalism was not rare (Mead, et al., 2003). The
Ure2p and Sup35p prion domains also vary more rapidly than does the remainder of the
molecule (although both prion domains have non-prion functions), and this results in a
species barrier between the intermating species of the Saccharomyces genus (Chen, et al.,
2007, Edskes, et al., 2009). We suggested that the Q/N - rich prion domains are preserved in
evolution because they have functions (protein stabilization, mRNA turnover), but that, as in
the human case, they vary rapidly (within limits imposed by these functions) to prevent
prion infection (Edskes, et al., 2009).

The [Het-s] prion of Podospora anserina constitutes an interesting comparison with the
yeast prions. [Het-s] is found in 80% of wild het-s strains (Dalstra, et al., 2003), suggesting
that it is beneficial to its host, as mentioned above. However, in addition to heterokaryon
incompatibility, [Het-s] also determines a 'meiotic drive' system that promotes the
inheritance of the prion-forming allele, het-s, over the het-S allele (Dalstra, et al., 2003).
Meiotic drive is a phenomenon in which a chromosomal gene promotes its own inheritance
by inactivating germ cells carrying the opposite allele. The meiotic drive allele may be quite
detrimental to the organism, but it can often spread in the wild by cheating on meiosis. Thus,
it is not clear whether the [Het-s] prion is widespread because heterokaryon incompatibility
is important to Podospora, or because of the meiotic drive effect. In either case, the HET-s
protein has evolved to be a prion with a specific effect on the cell, and thus a specific
structure.

The [β] prion is not an amyloid but is just the active form of vacuolar protease B, normally
synthesized as an inactive precursor which is activated by cleavage by protease A (Jones,
1991). In the absence of protease A, active protease B can activate its own precursor
(Zubenko, et al., 1982)(Roberts & Wickner, 2003). A cell which lacks active protease B
remains so, but can be 'infected' by transfer of cytoplasm from a cell that has it. Thus, in the
absence of protease A, the active mature form of protease B is a prion, called [β] (Roberts &
Wickner, 2003). [β] is important for cell survival in stationary phase and for sporulation and
meiosis, both processes requiring protein turnover (Roberts & Wickner, 2003). This is
clearly a case of a beneficial prion.

Shuffled prion domains can still form prions
The N-terminal prion domain of Ure2p is unstructured in the native form and changes to β-
sheet in the formation of the infectious amyloid (Taylor, et al., 1999, Baxa, et al., 2003,
Baxa, et al., 2005, Pierce, et al., 2005); we assume that the prion domain of Sup35p is
likewise unstructure in the native form, and it certainly is largely β-sheet in the prion form
(e.g. (King, et al., 1997)). The C-terminal nitrogen regulation domain of Ure2p (residues
~94-354) does not change substantially (Baxa, et al., 2002, Bai, et al., 2004, Loquet, et al.,
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2009), and the C-terminal part of Sup35p is likewise unaltered by amyloid formation
(Krzewska, et al., 2007).

In order to determine whether there were specific sequences in the Ure2p or Sup35p prion
domains which were essential for prion formation, we shuffled each domain, without
altering their amino acid content, inserted the shuffled domain in place of the normal prion
domain, and selected prion-containing cells, either those arising spontaneously, or those
induced by overproduction of the shuffled prion domain. We were surprised to find that each
of the 5 shuffled Ure2ps and each of the 5 shuffled Sup35p proteins could become a prion in
yeast (Ross, et al., 2004, Ross, et al., 2005). This remarkable result would appear, on the
surface, to contradict the fact that even a single amino acid change can, in some cases,
constitute a 'species barrier' and block propagation of a prion from one protein to another.
For example, a single amino acid change in the Sup35p prion domain can block propagation
of the usual [PSI+] from the wild type Sup35 (Doel, et al., 1994), but the mutant Sup35p can
form its own [PSI+] (Kochneva-Pervukhova, et al., 1998).

Amyloid is β sheet - rich, with the β strands perpendicular to the long axis of the filaments,
but amyloid can have any of four types of architecture: 1) antiparallel, 2) parallel in-register,
3) parallel out-of-register or 4) β-helix (Fig 3A). Except for the parallel in register structure
(Fig. 3B), different amino acid residues are apposed and interact with each other. For such a
structure to require near identical sequence for propagation, there would have to be some
relation between the apposed residues, perhaps complementarity (large with small, positive
with negative charge) or identity (both hydrophobic or both hydrophilic). This relation
would almost certainly be lost on shuffling the amino acid sequence. In contrast, the parallel
in-register architecture pairs identical residues of different molecules. In this case, shuffling
the sequence would not prevent identical residues from having the same interactions; the
only difference is that they would be ordered in a different sequence (Fig. 3B). Such a
structure would be favored by a peptide composed of residues that have favorable
interactions with themselves, such as hydrophobic or hydrophilic residues, but would not be
expected if charged residues were abundant. In fact, charged residues are scarce in the
known prion domains. Postulating a parallel in-register architecture for prion amyloids is not
without precedent, as this structure has been demonstrated for amyloid of the Aβ peptide and
Tau involved in Alzheimer's disease, the amyloid of amylin involved in type II diabetes
mellitus, alpha-synuclein involved in several neurodegenerative diseases (Balbach, et al.,
2002,Der-Sarkissian, et al., 2003,Luca, et al., 2007,Margittai & Langen, 2008).

Verification of parallel in-register β-sheet architecture of yeast prion
amyloids

Because of their non-crystalline nature, large size and insolubility, solid-state nuclear
magnetic resonance (ssNMR) is the best method to address the structure of amyloid
filaments (Tycko, 2006). Labelling the carbonyl carbon of specific groups of residues
with 13C provides a probe of both secondary structure of the labeled residues and of their
distance from the next closest labeled residue. Compared to random coil, residues in β-sheet
structure show a shift in carbonyl 13C resonant frequencies to lower values, while those in α-
helix shift to higher values (Wishart, et al., 1991). This confirmed measurements showing
that the Ure2p, Sup35p and Rnq1p prion domain amyloids were largely β-sheet structures
(Shewmaker, et al., 2006, Baxa, et al., 2007, Wickner, et al., 2008).

Distance measurements were used to distinguish the in-register parallel architecture fromβ-
helix, antiparallel, or parallel out-of-register structures. The former predicts a distance of
~0.5 nm from one labeled carbonyl carbon atom to the same atom on the adjacent molecule
in the filament (Fig. 3A). This is just the distance between strands in a β-sheet and if
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residues of adjacent molecules are aligned (in-register) then this will be the distance
observed between labeled atoms. Each of the other possible structures predict a much
greater distance (Fig. 3A). The distance measurement is done using a dipolar recoupling
experiment (Tycko, 2007). "Magic angle spinning" - spinning the sample at an angle of
54.74 degrees relative to the direction of the magnetic field - is used to eliminate dipole-
dipole interactions (the nuclei directly interacting as two tiny magnets). Selected dipole-
dipole interactions are re-established by a series of radiowave pulses. These interactions
result over time in the loss of alignment of the 13C nuclear spins, and thus the decay of the
NMR signal. The rate of this signal decay is proportional to the inverse of the cube of the
distance to the next labeled nucleus (Fig 4B).

The material for these experiments was amyloid formed in vitro from recombinant prion
domains of Sup35p, Ure2p and Rnq1p, labeled with one amino acid carrying 13C
specifically in the carbonyl position. Because of their relatively large size, these peptides
cannot be synthesized, and must be made in E. coli. Due to the vicisitudes of bacterial
metabolism, it is only practical to label certain amino acids without concern about leakage of
label into other residues or dilution of labeled amino acid with endogenously synthesized
material. For this purpose, Leu, Ile, Val, Phe, Tyr, and Met have been most useful. For
Ala-3-13C, a large amount of labeled amino acid and a short labeling period produces only
~60% labeling, but not cross-labeling of other amino acids. The key point is that each
labeled amyloid preparation is highly infectious for yeast, transmitting the respective prion
(King & Diaz-Avalos, 2004, Tanaka, et al., 2004, Brachmann, et al., 2005, Patel &
Liebman, 2007).

In each case, we found that the rate of signal decay reflected a distance of about 0.5 nm,
consistent with a parallel in-register β-sheet architecture (Fig. 4B) (Shewmaker, et al.,
2006,Baxa, et al., 2007,Wickner, et al., 2008). However, it was critical to establish that this
distance was an intermolecular distance, because we are unable to label single residues. For
this purpose, we diluted the fully amino acid-labeled sample with an unlabeled sample. If
the measured distance were an intramolecular distance, then we would expect no effect on
the rate of signal decay (Fig. 4A). However, if we had an in-register parallel β-sheet
structure, the rate of signal decay should be substantially deminished because in most cases,
the neighboring molecules of the labeled molecule would be unlabeled, and decay would be
promoted only by more distant 13C nuclei. Indeed, as shown for example by Fig 4B, this
was found in each case, showing that the nearest neighbor was in a different molecule, again
indicative of the in-register parallel structure.

To finally confirm the in-register aspect, it was necessary to use Ala-3-13C labeled amyloid.
The side chains in a β-strand point alternately in opposite directions (Fig. 4C). Thus, while
an in-register structure structure would give a distance in the dipolar recoupling experiment
of about 0.5 nm, this distance is >0.8 nm if the strands are even a single residue out of
register. The result was as expected for an in-register structure in each case (Fig. 4D)
(Shewmaker, et al., 2006,Baxa, et al., 2007,Wickner, et al., 2008).

That shuffled prion domains could still be prions originally suggested the in-register parallel
structure (Ross, et al., 2005), so we examined whether in fact the shuffled prion domains
have this structure (Shewmaker, et al., 2008). Indeed, by the same NMR methods used to
study the normal sequences, we showed that two of the shuffled Ure2p prion domains and
one shuffled Sup35p prion domain each have an in-register parallel β-sheet structure
(Shewmaker, et al., 2008).

Although the amyloid formed in vitro from recombinant prion domains is highly infectious
for yeast, it generally produces an array of prion variants on infection (e.g. (Brachmann, et
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al., 2005)). Corresponding to this demonstrated genetic heterogeneity, the 2-
dimensional 13C-13C ssNMR spectra show rather broad peaks indicative of structural
heterogeneity (Shewmaker, et al., 2006, Baxa, et al., 2007, Wickner, et al., 2008). It has
been found that Sup35NM filaments formed at 37C produce, on transfection into yeast,
mainly a weak [PSI+] variant, while fibers formed at 4C produce mainly a strong variant
(Tanaka, et al., 2004). Differences in the distribution of slow-exchanging amide hydrogens
between the 37C and 4C filaments indicate structural differences between these preparations
(Toyama, et al., 2007). We used the same solid-state NMR methods to examine such
preparations and found that both had an in-register parallel structure (Shewmaker, et al.,
2009). This study also confirmed that drying of samples did not alter their infectivity or their
properties as judged by ssNMR.

Again, the [Het-s] prion of Podospora anserina provides an illuminating contrast to the
yeast prions (Saupe, 2007). Only a single variant of [Het-s] has been described, and,
correspondingly, the ssNMR peaks of a 2D 13C-13C homonuclear dipolar coupling
experiment of amyloid of HET-s217–289 (the prion domain) are remarkably sharp, probably
sharper than for any other amyloid described, suggesting that a single well defined structure
is formed (Ritter, et al., 2005). This structure is a 2-turn β-helix, formed by direct partial
repeats in the peptide sequence (Wasmer, et al., 2008).

In-register parallel structure explains inheritance of variant information
The in-register parallel architecture was hypothesized to explain the shuffleability of prion
domains of Ure2p and Sup35p (Ross, et al., 2005). We then verified, using solid-state NMR,
that this is in fact the architecture of the various infectious amyloids of Ure2p, Sup35p and
Rnq1p (Shewmaker, et al., 2006, Baxa, et al., 2007, Wickner, et al., 2008). We still do not
know the detailed structure of any prion amyloid. But it is clear that the in-register parallel
architecture can explain the inheritance of prion variant information (Wickner, et al., 2007,
Wickner, et al., 2008, Wickner, et al., 2008), as discussed below.

What holds the structure in-register?
The in-register parallel β-sheet structure (Fig. 5) is held in-register by several types of
bonding between the side chains of identical residues of adjacent molecules:

a. the β-zipper structure of lines of glutamine or asparagine residues consisting of
hydrogen bonds between their sidechain amide hydrogen and sidechain carbonyl
oxygen (Perutz, et al., 1994, Chan, et al., 2005, Nelson, et al., 2005). This forms a
strip of hydrogen bonds running the length of the amyloid filament.

b. hydrogen bonds between serine or threonine hydroxyl hydrogen and hydroxyl
oxygen of the same residue of the next molecule up or down the filament.

c. hydrophobic interactions between identical residues.

The only interactions between identical residues that are unfavorable are between identical
charged residues, and such residues are few in the known prion domains, while Gln, Asn,
Ser and Thr residues are particularly abundant.

What are the differences among prion variants?
We have proposed that variants differ in the location of the turns connecting the β-strands,
the extent of the β-sheet structure or, potentially, the way in which protofilaments associate.
Variants of Aβ structure have either two or three protofilaments associating to form a
filament (Paravastu, et al., 2008), but the mass per unit length of prion domains of Ure2p,
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Sup35p and Rnq1p are each one monomer per 4.7 angstroms (Baxa, et al., 2003, Diaz-
Avalos, et al., 2005, Chen, et al., 2009), making this unlikely in the yeast prion case.

How does prion amyloid assemble?
Assembly of Sup35 prion domain amyloid occurs by addition of monomers (Collins, et al.,
2004). Amyloid of the [URE3] prion (at least) is assembled by conversion of the
unstructured prion domain in the native molecules (Pierce, et al., 2005) into highly
structured polymers, with the structure assumed by new monomers templated by the
structure of the last monomer on the end of the filament (Fig. 5). Thus, in the same way that
DNA sequence of the parental strand templates the sequence of the new strand, the
conformation of a protein molecule at the end of the filament templates the conformation of
a new molecule as it joins the end of the filament. Turns in the template become turns in the
new molecule. Intramolecular side chain-side chain interactions perpendicular to the
filament axis will also be reproduced in the new molecule. We now see a mechanism by
which proteins can act as genes, but it remains to be determined exactly what are the
structures of different prion variants.

Conclusions
The rapidly increasing number of yeast prions, and the in-depth studies of their mechanisms
of generation and propagation, is revealing an array of pathobiological phenomena that is
aiding efforts to understand mammalian prion and non-prion amyloid diseases. Our finding
an in-register parallel architecture for the infectious amyloids of the prion domains of Ure2p,
Sup35p and Rnq1p has clear implications for the mechanism that underly the otherwise
mysterious fact that proteins are capable of templating their own self-propagating
conformation.
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Fig. 1.
One protein sequence can produce several heritable prion variants. How can a protein
structure be self-propagating? We have suggested that the in-register parallel β-sheet
architecture, compatible with many different structures, is uniquely able to explain protein
structure templating.
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Fig. 2.
Yeast and fungal prions. The most widely studied prions of S. cerevisiae and Podospora
anserina are diagramed. For the yeast prion proteins Ure2p and Sup35p, prion amyloid
formation prevents normal function, thus producing a phenotype. The normal function of
Rnq1p is unknown. The normal function of the HET-s protein is its prion function.
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Fig. 3.
A. The four types of β-sheet architecture. Only the in-register parallel form results in a
labeled atom in a residue of one molecule being about 4.7 angstroms from the same atom of
the same residue of an adjacent molecule. The solid-state NMR experiments measure this
distance. The large dot represents a single amino acid residue labeled with 13C at its
carbonyl carbon. B. If a prion domain can be shuffled and still be a prion, it is likely to have
an in-register parallel architecture. The specificity of prion propagation requires that
interacting residues have some relation to each other. If the architecture is antiparallel, β
helix or out of register parallel, that relation would have to be one of non-identity in most
cases. Shuffling the sequence would disrupt this relation. However, in the case of a parallel
in-register β sheet, it is identical residues whose side-chains interact to determine the
sequence-specific prion propagation. Shuffling the sequence does not prevent this same
interaction, although the residues will be in a different sequence, identical residues can still
interact to produce an amyloid filament.
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Fig. 4.
Solid-state NMR data demonstrates the in-register parallel architecture for the yeast prion
amyloids - the prion domain of Rnq1 in this case (Wickner, et al., 2008). The rapid decay of
the NMR signal for 1-13C-Tyr or 1-13C-Leu labeled molecules indicates that these atoms are
~5 angstroms from their nears labeled neighbor (B). To show that that nearest neighbor is in
a different molecule, labeled molecules are diluted with unlabeled molecules and the
observed results (B, inverted blue triangles) are in accord with the expected results (inverted
empty green triangles) as diagrammed in (A) for the nearest neighbor being in a different
molecule. To determine if the structure is really in-register, methyl-13C-Ala labeled
molecules were examined. Even a single residue out of register would result in a slow signal
decay (C). The rapid decay confirms the in-register parallel architecture (D). Similar results
have been obtained for the prion domains of Sup35p (Shewmaker, et al., 2006) and Ure2p
(Baxa, et al., 2007).
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Fig. 5.
In-register parallel structure explains the ability of each yeast prion amyloid to faithfully
template any of several "variant" structures. We suggest that variants differ in the locations
of the turns (the folds of the sheet). Side chain–side chain interactions along the filament
axis enforce the same locations for turns in the molecule newly joining the end of the
filament as those in the previous molecule. The black dots represent a particular residue, say
Gln46, in a prion domain sequence.
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Table 1

Yeast and fungal prions.

Prion Protein Normal protein function Prion manifestation Refs.

[URE3] Ure2p Nitrogen catabolism: In the presence
of a rich N source, Ure2p binds the
positive transcription factor Gln3p,
keeping it in the cytoplasm.

Inappropriate derepression of
enzymes and transporters for the
utilization of poor nitrogen sources.

(Lacroute, 1971) (Wickner,
1994)(Turoscy & Cooper,
1987)

[PSI+] Sup35p Translation termination, mRNA
turnover

Increased readthrough of translation
termination codons

(Cox, 1965)(Wickner, 1994)

[PIN+] Rnq1p none known Increased frequency of generation
of [PSI+] and [URE3] prions.

(Derkatch, et al., 1997)
(Sondheimer & Lindquist,
2000) (Derkatch, et al., 2001)

[β] Prb1p Vacuolar protease PrB; prion form is
active PrB, not amyloid

Poor sporulation, poor survival in
stationary phase

(Zubenko, et al., 1982)(Roberts
& Wickner, 2003)

[SWI+] Swi1p subunit of SWI-SNF chromatin
remodeling complex

Partially defective Swi1- phenotype
such as poor growth on raffinose,
galactose or glycerol

(Du, et al., 2008)

[MCA] Mca1p Metacaspase homolog. ?apoptosis? (Nemecek, et al., 2009)

[OCT+] Cyc8p Transcription co-repressor Derepressed invertase, Cyc2p, other
proteins

(Patel, et al., 2009)

[MOT3] Mot3p Transcription repressor of genes
derepressed under anaerobiasis

Derepression of "anaerobic genes". (Alberti, et al., 2009)

[GAR] Pma1p, Std1p plasma membrane proton pump;
glucose signalling

Resistance to glucose-repression (Brown & Lindquist, 2009)

[Het-s] HET-s No known non-prion function Prion form necessary for
heterokaryon incompatibility

(Coustou, et al., 1997)
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