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Purpose: In the development of therapeutic vaccines against cancer, it is important to design 

strategies for antigen cross-presentation to stimulate cell-mediated immune responses against 

tumor antigens.

Methods: We developed a polyethyleneimine (PEI)-based protein antigen delivery system to 

promote cross-presentation through the major histocompatibility complex (MHC) I pathway 

using ovalbumin (OVA) as a model antigen. PEIs formed nanoparticles with OVA by electro-

static interactions, as demonstrated by electrophoresis analysis, scanning electron microscopy, 

and photon correlation spectroscopy analysis.

Results: The nanoparticles were used to stimulate mouse bone marrow-derived dendritic cells 

in vitro and resulted in significantly more OVA
257–264

/MHC I complex presentation on dendritic 

cell surfaces. The activated dendritic cells interacted specifically with RF33.70 to stimulate 

interleukin-2 secretion. The cross-presentation promoting effect was more prominent in dendritic 

cells that had been cultured for longer periods of time (13 days). Further studies comparing the 

antigen presentation efficacies by other polyanionic agents, such as PLL or lysosomotropic 

agents, suggested that the unique “proton sponge effect” of PEI facilitated antigen escape from 

the endosome toward the MHC I pathway.

Conclusion: Such a PEI-based nanoparticle system may have the potential to be developed 

into an effective therapeutic vaccine delivery system.

Keywords: cross-presentation, polyethyleneimine, dendritic cells, vaccine

Introduction
Cancer vaccines are viewed as promising tools to fight tumors.1,2 The aim of a cancer 

vaccine is to activate the patient’s own immune system against tumor cells. There have 

been many cancer vaccine strategies proposed and tested, including tumor cell lysates, 

tumor antigen-pulsed dendritic cells, recombinant tumor antigens, and various DNA 

vaccine constructs.3,4 However, the outcomes are highly variable and there have been 

safety and quality control problems. Based on these concerns, vaccine constructs 

containing recombinant tumor-associated antigens or epitopes are considered more 

desirable because of the advantages of easy production, convenient administration, 

and proven safety.5

Protein-based cancer vaccines in general have limited therapeutic efficacy because 

they induce predominantly antibody responses instead of antigen-specific cytotoxic T 

lymphocyte responses, which are critical for immunity against tumors.6 Controlling 

the antigen-processing process inside antigen-presenting cells and presenting 

them through the major histocompatibility complex (MHC) I pathway is the key to 
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stimulating cytotoxic T lymphocytes.7,8 Nanoparticle-based 

delivery systems have shown some efficacy in protecting 

antigens from degradation and improving uptake by antigen-

presenting cells.9 In order to help the antigens to escape from 

endosomes inside antigen-presenting cells and to access the 

MHC I pathway, some endosome-disruptive agents were 

applied. Based on the listeriolysin O protein, Stier et  al 

designed a listeriolysin O-liposome system that could cre-

ate pores within the endosomal/lysosomal membrane.10 

Bungener et al used reconstituted virosomes from the influ-

enza virus and reported membrane fusion between the viro-

some membrane and the endosome membrane.11 Kwon et al 

and Murthy et al prepared a responsive polymer microsphere 

that degraded in the acidic lysosome to release the antigen.12,13 

Antigen cross-presentation was considered essential for the 

efficacy of therapeutic vaccines.

In this study we developed a new antigen delivery system 

based on the cationic polymer polyethyleneimine (PEI) and 

demonstrated that its endosome-disruptive effect was suffi-

cient and effective for cross-presentation. Ovalbumin (OVA) 

was used as a model antigen, and various aspects of immune 

recognition and stimulation were demonstrated. Mouse bone 

marrow-derived dendritic cells were used to evaluate cross-

presentation efficiency, because dendritic cells were viewed 

as the most powerful antigen-presenting cells.14,15 Our study 

indicates that the PEI-based nanoparticles show promise as 

antigen delivery systems for therapeutic cancer vaccines.

Materials and methods
Materials
OVA

257–264
 peptide was synthesized by GL Biochem Ltd, 

Shanghai, China. OVA and PEI (branched, 10 kDa) were 

purchased from Sigma-Aldrich, St Louis, MO, USA. Goat 

antimouse IgG–FITC was purchased from the KangChen 

Bio-tech Company, Shanghai, China. Mouse granulocyte–

macrophage colony-stimulating factor and mouse 

interleukin (IL)-4 were purchased from R & D Systems, 

Minneapolis, MN, USA. Cell culture media were obtained 

from Gibco Invitrogen, Carlsbad, CA, USA.

RF33.70 cells (Kb restricted T cell hybridoma and specific 

for OVA
257–264

) were kindly provided by Professor Xuetao 

Cao from the Second Military Medical University, Shanghai, 

China. These cells were maintained in RPMI-1640 culture 

medium with 10% heat-inactivated fetal bovine serum and 

antibiotics.

The hybridoma cells that produced the monoclonal anti-

body 25-D1.16, specific for the OVA
257–264

/MHC I complex, 

were kindly provided by Professor Kyung-Dall Lee from the 

University of Michigan, Ann Arbor, MI, USA. The cell line 

was grown in RPMI-1640 with 10% fetal bovine serum.

Five- to six-week-old male C57BL/6 mice (H-2b) were 

purchased from the Shanghai Laboratory Animal Center, 

Shanghai, China, and were housed in a specific pathogen-free 

environment at Shanghai Jiao Tong University School of 

Pharmacy. All experiments were approved by the Animal 

Care and Use Committee of Shanghai Jiao Tong University 

School of Pharmacy, Shanghai, China.

The bone marrow-derived dendritic cells were prepared 

based on the typical procedure described in the literature.16 

Briefly, bone marrow from C57BL/6  mice was collected 

and cultured in RPMI-1640 complete medium (10% heat-

inactivated fetal bovine serum, 100  U/mL penicillin, 

100 U/mL streptomycin) supplemented with 10 ng/mL mouse 

granulocyte–macrophage colony-stimulating factor and 

1 ng/mL mouse IL-4. Nonadherent cells were removed after 

three days, and the adherent cells were replanted in fresh 

RPMI-1640 complete medium supplemented with mouse 

granulocyte–macrophage colony-stimulating factor and IL-4. 

The nonadherent and loosely adherent cells were harvested 

as dendritic cells after another three days.

Preparation of PEI–OVA  
and PLL–OVA nanoparticles
The nanoparticles were prepared following the protocols 

that were used to prepare polymer–DNA complex with 

modification.17,18 OVA was dissolved in 1  mM HEPES 

(pH 7.4) solution to get an OVA concentration of 5 mg/mL. 

Branched PEI
10000

 (Sigma) or PLL
26000

 (Sigma) was dissolved 

in distilled water to yield different concentration. Polymer–

OVA particles were prepared by adding OVA solution to 

polymer solution at equal volume and vortexing for 30 seconds 

at room temperature.

Nanoparticle characterization
The polymer–OVA nanoparticles were analyzed using both 

native sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (PAGE, 8%–16% Tris-Glycine gel) and denatured 

sodium dodecyl sulfate PAGE (4%–12% Bis-Tris gel 

from Invitrogen). Gels were stained with Coomassie Blue 

(Invitrogen).

The surface morphology of nanoparticles was observed 

by scanning electron microscopy (SEM, FEI SIRION 

200 system, FEI Company). After the samples were deposited 

on silica wafers and dried, they were observed at 5 kV. 
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The size distribution and zeta potential of the nanoparticles 

were determined using photon correlation spectroscopy 

(Zetasizer Nano ZS90, Malvern Corp, Malvern, UK) at a 

scattering angle of 90°C and a temperature of 25°C.

OVA257–264/MHC I complex 
characterization on dendritic cells
Polymer–OVA nanoparticles were added to dendritic cells at 

different concentrations. Dendritic cells were incubated overnight 

at 37°C and then harvested and washed with phosphate-buffered 

saline. The expression of OVA
257–264

/MHC I on the surface of 

the dendritic cells was determined by staining the cells with 

25-D1.16 monoclonal antibodies at 4°C. Thirty minutes later, 

the dendritic cells were washed and incubated with secondary 

antibody for a further 30 minutes. The dendritic cells were then 

washed again and analyzed by flow cytometry.

IL-2 secretion by OVA257–264/MHC I 
complex-specific T cells
After addition of polymer–OVA nanoparticles, dendritic cells 

were harvested after 12 hours and diluted by RPMI-1640 

complete medium. 2  ×  104 dendritic cells and 2  ×  105 

RF33.70 cells per well were mixed and incubated in 96-well 

plates. After 24 hours of incubation, IL-2 concentration in 

the culture supernatant was determined by mouse IL-2 

enzyme-linked immunosorbent assay (ELISA) kit (Bender 

MedSystems, Austria).

Results
Preparation and characterization  
of PEI–OVA particles
We prepared PEI–OVA nanoparticles based on electrostatic 

interactions between the positive amino groups on PEI and the 

negative surface charges on OVA above its pKa. The two agents 

were mixed in different weight ratios, and the resulting com-

plexes were examined by gel electrophoresis. Figure 1A shows 

the native gel electrophoresis analysis of the complexes, which 

indicates that OVA was completely combined with PEI when 

the PEI/OVA weight ratio was over 0.04. However, the sodium 

dodecyl sulfate PAGE analysis showed that free OVA still 

existed at the same weight ratio (Figure 1B). This phenomenon 

demonstrated that sodium dodecyl sulfate could compete with 

OVA and disturb the combination of PEI and OVA.

The microscopic morphology of the resulting particles 

was examined by SEM. The PEI–OVA nanoparticles were, 

in general, spherical and polydispersed. The SEM image of 

PEI–OVA 0.04 nanoparticles is shown in Figure 2A.

The particles were further evaluated by measuring their size 

distributions and surface zeta potential. As shown in Table 1, 

the zeta potentials of the particles increased with increasing 

ratios of PEI to OVA. The particles were positive when the 

PEI/OVA ratios were over 0.12. Table 1 also shows the average 

sizes of these particles, which were around several hundred 

nanometers between PEI/OVA ratios of 0.01 to 0.16.

For comparison, we also prepared different polycation–

antigen nanoparticles. PLL is another kind of widely used 

cationic polymer in gene transfection.19–21 PLL could form 

nanoparticles with OVA by electronic interaction. The zeta 

potential and size distribution were also determined by pho-

ton correlation spectroscopy. The results were similar to 

those we obtained from PEI–OVA nanoparticles (Table 2). 

SEM results also showed that the surface morphology looks 

similar (Figure 2B).

Improved OVA257–264/MHC I complex 
presentation on dendritic cells
OVA antigen processing and epitope loading by dendritic 

cells after interacting with the PEI–OVA nanoparticles were 

A
1 2 3 4 5 6 7 8 9

B
1 2 3 4 5 6 7 8 9

Figure 1 Combination of PEI and OVA. A) Native gel electrophoresis of PEI–OVA 
particles in different ratios (PEI/OVA w/w). Lane 1, protein marker; Lane 2, OVA; 
Lane 3, 0.01; Lane 4, 0.02; Lane 5, 0.04; Lane 6, 0.06; Lane 7, 0.08; Lane 8, 0.12; Lane 9, 
0.16. B) SDS–PAGE of PEI–OVA particles in different weight ratios. Lane 1, protein 
marker; Lane 2, OVA; Lane 3, 0.01; Lane 4, 0.02; Lane 5, 0.04; Lane 6, 0.06; Lane 7, 0.08; 
Lane 8, 0.12; Lane 9, 0.16.
Abbreviations: PEI, polyethyleneimine; OVA, ovalbumin; SDS–PAGE, sodium 
dodecyl sulfate polyacrylamide gel electrophoresis.

Figure 2 SEM image of A) PEI–OVA and B) PLL–OVA particles on silicon wafer.
Abbreviations: PLL, polylysine; PEI, polyethyleneimine; OVA, ovalbumin; SEM, scan-
ning electromicroscopy.
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examined by determining the expression of OVA
257–264

/MHC I 

complexes on dendritic cell surfaces using the specific anti-

body 25-D1.16  monoclonal antibodies.22 No surface 

OVA
257–264

/MHC I complexes were detected by the 25-D1.16 

monoclonal antibodies on naïve dendritic cells. Pulsing the 

dendritic cells with OVA antigen alone would generally result 

in antigen processing inside the endosome/lysosome and 

presentation through the MHC I pathway. Therefore, the 

OVA
257–264

/MHC I complex signal was very low. Pulsing 

with PEI–OVA nanoparticles resulted in antigen release 

from endosomes and cross-presentation through the MHC I 

pathway. Figure  3A shows the dendritic cell surface 

OVA
257–264

/MHC I signals after pulsing with PEI–OVA 

nanoparticles at different ratios. The PEI–OVA nanoparticle 

group that was prepared in a weight ratio of 0.04 had the 

highest mean signal intensity, approximately eight times 

higher than that of the OVA group.

The dendritic cell surface OVA
257–264

/MHC I signals after 

pulsing with PLL–OVA nanoparticles at different ratios 

showed a similar trend. The highest signal intensity was 

obtained at a weight ratio of 0.08 (Figure 3B).

IL-2 secretion by early and late  
dendritic cells after PEI–OVA pulsing
PEI–OVA pulsed dendritic cells were then incubated with a 

murine T cell hybridoma specific for OVA
257–264

 (RF33.70), 

and the resulting IL-2 concentration in the supernatant was 

measured as an indicator of the T cell stimulation effect of 

dendritic cells. Only those dendritic cells that contained 

antigens cross-presented by MHC I complexes interacted 

specifically with these T cells and upregulated IL-2 secretion. 

Two types of pulsed dendritic cells were examined. Bone 

marrow-derived dendritic cells that were harvested at day 6 

were designated as early dendritic cells, whereas the cells 

harvested at day 13 were designated as late dendritic cells.11 

In both cases, dendritic cells pulsed by the PEI–OVA 0.04 

nanoparticles showed a signif icantly improved T cell 

stimulation effect compared with dendritic cells pulsed by 

OVA solution at the same concentration (Figure 4). We can 

see that the increasing extent was more obvious in late 

dendritic cells, although the value was larger in early den-

dritic cells.

IL-2 secretion by dendritic cells  
after PLL–OVA pulsing
In contrast, as shown in Figure 5, there was no detectable 

increase observed in IL-2 secretion when RF33.70 cells were 

coincubated with dendritic cells pulsed by PLL–OVA nano-

particles prepared at all weight ratios. This indicated that 

PLL–OVA nanoparticles could not improve antigen cross-

presentation or stimulate antigen-specific T cells.

Effect of chloroquine and NH4Cl  
on OVA processing and cross-
presentation
Because compounds such as chloroquine and NH

4
Cl had 

been reported to be able to buffer and delay acidification of 

endosomes and lysosomes, the intracellular fate of exogenous 

antigens may be changed by addition of these compounds. 

To study the mechanism of antigen processing, we tested 

their effects on the outcome of antigen processing and pre-

sentation after PEI–OVA pulsing. As shown in Figure  6, 

these two compounds hindered the cross-presentation effi-

ciency of dendritic cells, which resulted in decreased IL-2 

expression following incubation with RF33.70  cells, as 

compared with the effect when the endosomes/lysosomes 

had a normal acidification process.

Discussion
The intracellular fate of antigens is pivotal to the immune 

effect. Exogenous antigens are usually degraded by enzymes 

in acidic endosomes, which causes failure to induce the 

cytotoxic T lymphocyte response. This is one of the main 

difficulties in the development of therapeutic cancer vaccines. 

As discussed earlier, methods have been developed to assist 

antigen escape and showed improved cross-presentation. The 

aim of our research was to provide a new strategy for antigen 

delivery.

Table 1 Average size and zeta potential of PEI–OVA particles 
were varied when mixed in different ratios

PEI/OVA  
weight ratio

0.01 0.02 0.04 0.06 0.08 0.12 0.16

Average size (nm) 69.4 104.4 169.0 342.7 359.7 262.0 297.5
Zeta potential (mV) −23.1 −20.3 −12.4 −4.6 −4.4 12.4 20.0

Abbreviations: PEI, polyethyleneimine; OVA, ovalbumin.

Table 2 Average size and zeta potential of PLL–OVA particles 
were varied when mixed in different ratios

PLL/OVA  
weight ratio

0.01 0.02 0.04 0.06 0.08 0.12 0.16

Average size (nm) 51.8 109.7 172.8 124.4 92.4 82.4 80.8
Zeta potential (mV) −18.4 −17.6 −5.8 32.9 35.6 43.5 47.7

Abbreviations: PLL, polylysine; OVA, ovalbumin.
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We prepared PEI–OVA nanoparticles by mixing PEI 

solution and OVA solution together. The nanoparticles 

interacted due to electrostatic interactions between the cat-

ionic polymer–PEI and the negatively charged protein–OVA. 

The electrostatic complexation process was confirmed by 

electrophoresis, SEM, zeta potential, and particle size 

analysis. The nanoparticles formed were quite stable and 

their electrophoretic profiles, zeta potential, and size distribu-

tion data remained the same for several days. Stability is 

important in the potential application of these nanoparticles 

as therapeutic vaccine carriers.

The OVA
257–264

 peptide is a class I (Kb)-restricted peptide 

epitope of OVA that is presented by the MHC I complex on 

antigen-presenting cells. We measured the amount of 

OVA
257–264

/MHC I complexes on dendritic cell surfaces as 

an indicator of the efficiency of antigen cross-presentation 

after OVA antigen pulsing. The 25-D1.16 antibody specifi-

cally recognizes OVA
257–264

/MHC I complexes.23 Our data 

indicated that the expression of OVA
257–264

/MHC I increased 

significantly after pulsing with PEI–OVA nanoparticles 

overnight. The extent of this increment was also found to 

be related to the PEI–OVA mixing weight ratio. 
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Figure 4 Improved cross-presentation efficiency on early dendritic cells and late dendritic cells. Interleukin-2 concentration in supernatant was measured by ELISA when 
RF33.70 cells were coincubated for 24 hours with dendritic cells harvested at six days A) or dendritic cells harvested at 13 days, B) pulsed with PEI–OVA nanoparticles. Data 
are presented as mean ± SD, n = 4, **P , 0.01 versus OVA solution group.
Abbreviations: ELISA, enzyme-linked immunosorbent assay; PEI, polyethyleneimine; OVA, ovalbumin.
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Figure 3 Quantification of dendritic cell surface OVA257–264/MHC I complexes. A) OVA257–264/MHC I complexes on the surface of dendritic cells after pulsing with PEI–OVA 
nanoparticles which were made using different ratios of PEI and OVA. Data are presented as mean ± standard deviation, n = 3. B) OVA257–264/MHC I complexes on the surface 
of dendritic cells after pulsing with PLL–OVA nanoparticles which were made using different ratios of PLL and OVA. Data are presented as mean ± standard deviation, n = 3, 
*P , 0.05 versus OVA solution group, **P , 0.01 versus control group. 
Abbreviations: PEI, polyethyleneimine; OVA, ovalbumin; PLL, polylysine; MHC, major histocompatibility complex.
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The nanoparticles with best immune effect were prepared 

at a weight ratio of 0.04. The cross-presentation effect was 

further confirmed by IL-2 secretion of RF33.70 cells that 

were OVA
257–264

/MHC I-specific hybridoma cells. The den-

dritic cells pulsed by PEI–OVA nanoparticles at a weight 

ratio of 0.04 stimulated the most significant IL-2 secretion 

by RF33.70 cells. Other PEI–OVA ratio particles had very 

little effect. We suspect this may be because PEI had some 

cytotoxicity, which interfered with the interaction between 

dendritic cells and RF33.70 cells. If a less toxic cationic 

polymer can be developed with similar functions, we may 

see greater improvements in antigen processing and 

cross-presentation efficiencies.

On the contrary, the cross-presentation effect of the 

PLL–OVA nanoparticles was somewhat different. We did 

observe a significant OVA
257–264

/MHC I signal increase with 

25-D1.16 antibody staining, but there was no stimulation of 

IL-2 secretion by RF33.70 cells. The highest 25-D1.16 anti-

body staining signal was observed at a PLL to OVA weight 

ratio of 0.08 and above. Those nanoparticles had quite high 

positive surface charges, which may attract nonspecific bind-

ing of 25-D1.16 antibodies, resulting in false signal increase. 

However, because the PLL–OVA pulsed dendritic cells had 

no effect on stimulating IL-2 secretion by RF33.70 cells, we 

concluded that PLL–OVA nanoparticles were not capable 

of promoting antigen cross-presentation in dendritic cells.

To understand the mechanism of PEI-mediated antigen 

cross-presentation, Yang and Hsu, and Yan et al proposed that 

it may be due to the positive surface charge that promoted 

uptake by dendritic cells and promoted the production of 

reactive oxygen species. The main evidence was the increased 

expression of CD80/CD86 on dendritic cell surfaces.24,25 

However, our findings were different. The PEI–OVA 0.04 

nanoparticles had a negative surface potential, and there was 

no significant upregulation of CD80/86 expression on den-

dritic cells. However, the improvement of specific OVA
257–264

/

MHC I presentation and functional stimulation of IL-2 secretion 

was significant. We believe that the PEI–OVA nanoparticles 

we prepared may be effective as a result of the special 

endosome-disruptive effect of PEI.

PEI is well known for its proton sponge effect, whereby 

the unprotonated amines of PEI can buffer influent protons, 

leading to osmotic swelling and rupture of endosomes.26 Such 

an endosomal rupturing effect may help antigen release from 

the endosome and its subsequent cross-presentation by the 

MHC I pathway. To find support for such a hypothesis, we 

further examined the effect of endosomal pH on cross-

presentation efficiency. We made an interesting observation 

that the PEI effect on cross-presentation with dendritic cells 

harvested at 13  days was more prominent than that with 

dendritic cells harvested at six days. This may be due to the 

different endosome acidification characteristics in dendritic 

cells harvested at six days versus dendritic cells harvested at 

13  days. Endosomal acidification was believed to control 

exogenous antigen degradation by influencing the activity 

of lysosomal proteases.27 Hotta et  al reported that late 

dendritic cells were usually not capable of cross-presenting 

exogenous antigens because the endocytic compartments 
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would acidify rapidly in late dendritic cells after antigen 

uptake, whereas in early dendritic cells the pH would be 

maintained at a mildly acidic level and allow some antigen 

escape from endosomes for cross-presentation.28 Therefore, 

our data suggest that PEI can buffer the influent protons in 

late dendritic cells and prevent rapid acidification, which 

resulted in greatly improved cross-presentation efficiency in 

dendritic cells harvested at 13 days.

We also examined the effects of two other lysosomotro-

pic agents, chloroquine and NH
4
Cl, on cross-presentation 

efficiency. Both chloroquine and NH
4
Cl inhibit acidification 

of endosomes and have been reported to increase cross-

presentation of exogenous antigens.29–31 However, treatment 

with chloroquine or NH
4
Cl actually reduced PEI–OVA 

nanoparticle-mediated cross-presentation (Figure  6). We 

think this is because the inhibition of endosome acidification 

by chloroquine and NH
4
Cl reduced the proton influx and 

prevented endosome rupture and antigen escape. This is 

consistent with a previous report that the use of chloroquine 

slightly decreased the gene transfection activity of PEI.17

Conclusion
In summary, our data demonstrate that PEI–OVA nanopar-

ticles were formed by electronic interactions, and the proton 

sponge effect of PEI was essential for promoting antigen 

cross-presentation for therapeutic vaccine application. This 

system is attractive due to its simplicity, flexibility, stability, 

and high loading efficiency. The main limitation is the toxicity 

of PEI.32 Further studies are needed to synthesize new poly-

mers that have the proton sponge effect but lower toxicity. 

Additionally, a targeting strategy may be necessary for in vivo 

applications.33
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