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ABSTRACT

Motivation: Highly sensitive and specific screening tools may
reduce disease -related mortality by enabling physicians to diagnose
diseases in asymptomatic patients or at-risk individuals. Diagnostic
tests based on multiple biomarkers may achieve the needed
sensitivity and specificity to realize this clinical gain.
Results: Logic regression, a multivariable regression method
predicting an outcome using logical combinations of binary
predictors, yields interpretable models of the complex interactions in
biologic systems. However, its performance degrades in noisy data.
We extend logic regression for classification to an ensemble of logic
trees (Logic Forest, LF). We conduct simulation studies comparing
the ability of logic regression and LF to identify variable interactions
predictive of disease status. Our findings indicate LF is superior
to logic regression for identifying important predictors. We apply
our method to single nucleotide polymorphism data to determine
associations of genetic and health factors with periodontal disease.
Availability: LF code is publicly available on CRAN, http://cran.r-
project.org/.
Contact: wolfb@musc.edu
Supplementary information : Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Diseases often stem from complex gene–gene and
gene–environment interactions and single biomarkers typically
perform poorly with respect to sensitivity and specificity (Alvarez-
Castro and Carlborg, 2007; Kotti et al., 2007; Kumar et al., 2006).
Lo and Zhang (2002) note that common statistical methods for
screening high-dimensional biomarker data focus on only main
effects and do not capture interactions that lead to disease. Failure
to recognize interactions among genes leads to the inability to
replicate study results in human populations (Carlborg and Haley,
2004). Many authors suggest that a panel of biomarkers rather
than a single marker has the potential to provide improvements in
sensitivity and specificity required to replace traditional diagnosis
(see, e.g. Kumar et al., 2006; Manne et al., 2005; Srivastava,
2005). Diseases for which panels of markers demonstrate improved
sensitivity and specificity over single markers include prostate,
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ovarian and bladder cancer and heart disease (Manne et al., 2005;
Negm et al., 2002; Wagner et al., 2004; Zethelius et al., 2008).

Non-parametric tree-based methods are easily interpretable and
have flexibility to identify relationships among predictor variables
(Austin, 2007). Logic regression (LR; Ruczinski et al., 2003) is
a tree-based method capable of modeling a binary, continuous
or survival response with higher order interactions among binary
predictors. In this article, we focus on classification of a binary
response. LR generates classification rules by constructing Boolean
(‘and’= ∧, ‘or’= ∨, and ‘not’= !) combinations of binary predictors
for classification of a binary outcome. An LR model is represented
as a tree with connecting nodes as the logical operators and terminal
nodes (called leaves) as the predictors. LR has been used in the
development of screening and diagnostic tools for several diseases
and has shown modest improvements in sensitivity and specificity
compared with traditional approaches such as logistic regression and
CART (Etzioni et al., 2003, 2004; Janes et al., 2005; Kooperberg
et al., 2007; Vermeulen et al., 2007).

LR can be unstable when data are noisy. In the context of
identifying interacting genetic loci, performance was poor for
frequently occurring interactions only weakly associated with the
response (Vermeulen et al., 2007). A study designed to identify
regulatory motifs confirmed that increasing noise in data severely
limited the ability of LR to correctly identify the true model
in simulated data (Keles et al., 2004). Ensemble extensions of
tree-based methods demonstrate improved predictive accuracy
(Breiman, 1996; Dietterich, 2000; Friedman, 2001). Two ensemble
adaptations of LR are available. Monte Carlo LR (MCLR) builds
a series of models from the training dataset using Monte Carlo
methods and identifies groups of predictors that co-occur across
all models (Kooperberg and Ruczinski, 2005). However, the
relationship among predictors (∧, ∨ and !) is unclear. LogicFS,
a bagging version of LR, constructs an ensemble by drawing
repeated bootstrap samples and building LR models from each
(Breiman, 1996; Schwender and Ickstadt, 2008). In contrast to
MCLR, logicFS identifies explicit predictor interactions [referred to
as prime implicants (PIs)]. Additionally, logicFS provides a measure
of variable interaction importance.

In Section 2, we present a new ensemble of logic trees approach
called Logic Forest (LF), and introduce a new permutation-based
measure of predictor importance. We also develop the idea of
subset matching as an additional means of identifying important
interactions. We present a simulation study in Section 3 comparing
the performance of LR and logicFS with LF considering data with
noise in the predictors, latent predictors and varying true model
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complexity. We apply LF to periodontal disease data in Section 4
and discuss the results of our simulation studies in Section 5.

2 DEFINITIONS AND NOTATION

2.1 LF
Given observed data W=(

y,x
)

recorded on n subjects consisting

of a binary response y=(
y1,...,yn

)′ and p binary predictors
xi =

(
xi1,...,xip

)
, i=1,...,n, LR constructs a tree T describing

Boolean combinations of predictors that best classify the response.
For example, LR might produce the expression T =(

X4 ∨X11
)∧

X5. A logic expression (i.e. tree) can be expressed in reduced
disjunctive normal form (DNF), defined as a series of PIs joined
by ∨ operators (Fleisher et al., 1983). PIs capture predictor
interactions as ∧ combinations that cannot be further reduced
(Schwender and Ickstadt, 2008). For example T2 =(

X3 ∧X4 ∧X5
)∨(

X3 ∧X5 ∧X11
)∨(

X3∧!X3 ∧X5
)

is the DNF of the expression T1 =(
X4 ∨X11∨!X3

)∧(
X5 ∧X3

)
. T2, however, is not in reduced DNF as

its third term can be further simplified yielding the three PI reduced
DNF form, T3 =(

X3 ∧X4 ∧X5
)∨(

X3 ∧X5 ∧X11
)∨X5. Henceforth,

all logic expressions will be in reduced DNF. The complexity of a
tree is defined by the size and number of PIs. A PI’s size is defined as
the number of predictors in the PI. Given an LR model, LR

(
W

)=T ,
and a new observation consisting of predictors x with dimension
1×p, the prediction made by T is ŷ

(
T ,x

)
taking values 0 or 1.

The LF of B trees, denoted LF
(
W,B

)={T1,...,TB}={Tb},b=
1,...,B, is an ensemble of LR trees constructed from B bootstrap
samples, Wb, from W. For each b, a positive integer Mb is selected
limiting the size of tree Tb in the ensemble by specifying the
maximum number of terminal nodes (leaves); thus, random selection
of Mb from within specified ranges ensures variability of tree sizes
within LF.

Given values for the p predictors for m new observations, x∗ (an
m×p matrix), and a forest of B trees LF

(
W,B

)
, the predicted values,

ŷ
(
{Tb},x∗)

, are based on a majority vote so that

ŷ�

({
Tb

}
,x∗

�

)
=

{
1 if 1

B
∑B

b=1 ŷ�

(
Tb,x∗

�

)
≥0.5

0 otherwise
(1)

where x∗
� is the �th row of x∗. Given response y∗ ={

y∗
1,...,y∗

m
}

for
x∗, we calculate the misclassification rate as:

MC
({

Tb
}
,y∗,x∗)

= 1
m

∑m

�=1

(
y∗
� − ŷ�

(
{Tb},x∗

�

))2
. (2)

Associated with tree b in the forest is an out-of-bag dataset,
OOB (Tb ), comprising observations not included in the bootstrap
sample used to construct Tb. If test data are not available, we
can use OOB (Tb ) to obtain an unbiased estimate of the forest’s
misclassification rate. Let Wi = (yi,xi )∈W, and let O (Wi,Tb )=
I (Wi ∈OOB (Tb ) ) indicate the i-th observation’s membership in
OOB (Tb ). The LF OOB prediction is

ŷOOB
i

({
Tb

}
,xi

)
=

⎧⎨⎩ 1 if
∑B

b=1 ŷi

(
T b,xi

)
O

(
Wi,T b

)∑B
b=1 O

(
Wi,T b

) ≥0.5

0 else.
(3)

The LF OOB misclassification rate is

MCOOB
({

Tb
}
,y,x

)
= 1

n

∑n

i=1

(
yi − ŷOOB

i

(
{Tb},xi

))2
. (4)

2.2 Variable importance measures
Let X be a predictor or, more generally, a PI occurring in the tree.
The importance of X in an LR model, VIMP.LR

(
X

)
, is determined

by X’s presence or absence in a fitted tree, T , providing a crude
assessment of association with response.

An advantage of LF over LR is the availability of many trees
for identifying important predictors and PIs. Our LF importance
measure for predictor Xj,j=1,...,p, is based on the misclassification
rates for each tree in the forest. Denote the OOB misclassification
rate for Tb by

MCOOB
(

Tb,y,x
)
=

∑n
i=1

(
yi − ŷi

(
Tb,xi

))2
O

(
Wi,Tb

)
∑n

i=1O
(
Wi,Tb

) . (5)

Let x
(
j
)

denote the matrix of predictors with Xj randomly permuted.
We define the variable importance measure for Xj by

VIMP.LF
(
Xj

)=

1
B

∑B

b=1

[
MCOOB

(
Tb,y,x

(
j
))

−MCOOB
(

Tb,y,x
)]

. (6)

Values range between −1 and 1, with positive values suggesting a
positive association between response, Y, and predictor Xj . More
generally, (6) can be computed with Xj being a PI.

An algorithm similar to LF, called logicFS, was introduced
by Schwender and Ickstadt (2008). Unlike logicFS, LF randomly
selects the maximum size when building each tree in the ensemble.
Although tree size can vary in logicFS, flexibility in the upper bound
for the maximum number of leaves in a tree enhances the probability
that the forest will discover smaller PIs.Additionally, Schwender and
Ickstadt provide a different measure of PI importance obtained by
replacing the permutation step in (6) with addition or removal of the
PI in tree Tb, which we will refer to as VIMP.FS (Schwender and
Ickstadt, 2008).

2.3 Subset matching
Let F be the set of unique PIs identified in a LF consisting of B
trees. When a given PI, P for example, is an element of F, we say
P is an ‘exact match’. We say P is a ‘subset match’ for a forest if P
is an exact match or P∧Q is an element of F for some PI, Q. For
example, LF might identify PI1=X4 ∧X5 and PI2=X4 ∧X5 ∧X6. The
PI X4 ∧X5 is an exact match to PI1 and a subset match to PI2. The
concept of subset matching enables us to fully detect contributions
of PIs to the fitted trees in LF

(
W,B

)
. Also, if a PI has multiple

subset matches to increasingly larger PIs in F, then that PI is said
to persist.

3 SIMULATIONS
We compare the performance of LR and logicFS with LF using
eight simulation studies. Each simulation is characterized by an
underlying logical relation L and predictor noise level. A training
dataset W= (y,x) used to construct LR

(
W

)
, LF

(
W,B

)
and logicFS
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Table 1. Simulation scenarios for all eight cases

Case Scenario True predictors True response
(
L
)

P
(
L=1

)
Predictor
noise (π)

1 Predictor noise z1,z2,...,z20
iid∼Bern

(
0.5

)
L1 =(

Z4 ∧Z5
)∨(

Z5 ∧Z11
)

0.3750 0.05
2 0.3750 0.15

3 Model complexity zi,i=1,2,...,50
iid∼Bern

(
0.50

)
if i �=4,5,11 L1 =(

Z4 ∧Z5
)∨(

Z5 ∧Z11
)

0.09375 0.05

4 zi
iid∼Bern

(
0.23015

)
if i=4,5,11 0.09375 0.15

5 L2 =(
Z4 ∧Z5 ∧Z21∧!Z45

)∨ 0.10156 0.05

z1,z2,...,z50
iid∼Bern

(
0.5

) (
Z5 ∧Z11 ∧Z21∧!Z45

)∨
6

(
Z5 ∧Z16 ∧Z21 ∧Z33∧!Z45

)
0.10156 0.15

7 Latent predictora z1,z2,...,z21
iid∼Bern

(
0.5

)
L3 =(

Z4 ∧Z5
)∨(

Z5 ∧Z11 ∧Z21
)

0.3125 0.025
8 L4 =(

Z4 ∧Z5 ∧Z21
)∨(

Z5 ∧Z11 ∧Z21
)

0.1875 0.025

For the latent predictor scenarioa, Z21 represents a latent predictor and is not observed in the data used to construct LR, logicFS, and LF models.

models, FS
(
W,B

)
, is generated by simulating error-free Bernoulli

predictors z and obtaining the observed response y=L(z). Observed
predictors x are constructed such that xj =1−zj with probability
π and otherwise xj =zj where π is a prespecified noise level.
We focus on the effects of predictor noise, the complexity of L
and an omitted predictor, the last motivated by our experience
that complexity of biological networks prohibits observation of
all related variables. Table 1 describes these three scenarios
encompassing eight simulation cases.

We consider sample sizes ranging from 25 to 1000. For each
combination of simulation case and sample size, we generate 500
datasets. We evaluate the performance of LR

(
W

)
, FS

(
W,B

)
and

LF
(
W,B

)
using a test dataset of 100 observations generated in the

same way as the training data. For model evaluation, let K (K ⊂F) be
the set of five PIs in LF

(
W,B

)
or FS

(
W,B

)
with maximum absolute

VIMP.LF or VIMP.FS values, respectively. Evaluation criteria are:
(i) mean model error rate, defined as the misclassification rate of
the fitted model for the test dataset (2); (ii) identification of PIs
in L according to VIMP.LR and inclusion in K for LF; and (iii)
identification of PIs in L according to subset matching as described
in Section 2.3 for LR and according to subset matching to K for LF
and logicFS.

We use the LogicReg package (Kooperberg and Ruczinski,
2007) in R v. 2.7.1 (R Development Core Team, 2009) with
simulated annealing optimization to fit all LR models. Maximum
model size for LR models is selected using the cross-validation
procedure suggested by Ruczinski et al. (2003). Cross-validation
improves LR model performance by reducing the likelihood of
over-fitting. LogicFS models are constructed using the logicFS
package (Schwender, 2007) available at www.bioconductor.org. The
LF algorithm (Section 2.1) is used to generate all ensemble models.
LogicFS and LF models include B=100 logic regression trees. The
same starting and ending annealing temperatures are selected for LR,
logicFS and LF. The starting temperature of 2 is selected such that
∼90% of ‘new’ models are accepted. The final temperature of −1 is
set to achieve a score where >5% of new models are accepted. The
cooling schedule is set so that 50 000 iterations are required to get
from start to end temperature. Increasing the number of iterations to
250 000 did not affect our findings. With these settings, an ensemble
is constructed in less than a minute on a Windows 2.26 GHz
machine.

Table 2. Mean model error rate for simulation Cases 1–6 (Table 1)

Case Predictor Sample LR mean logicFS mean LF mean
noise (%) size error rate error rate error rate

1 5 25 0.190 0.190 0.184
200 0.070 0.060 0.061

1000 0.062 0.060 0.060

2 15 25 0.320 0.314 0.310
200 0.200 0.201 0.199

1000 0.174 0.173 0.173

3 5 25 0.135 0.124 0.104
200 0.062 0.063 0.064

1000 0.055 0.048 0.053

4 15 25 0.136 0.127 0.108
200 0.107 0.103 0.103

1000 0.102 0.102 0.101

5 5 25 0.130 0.124 0.102
200 0.081 0.079 0.082

1000 0.063 0.049 0.080

6 15 25 0.125 0.116 0.105
200 0.104 0.102 0.100

1000 0.100 0.098 0.100

Error rate variance ranges between 1.1×10−4 and 1.4×10−7.

3.1 Predictor noise
Cases 1 and 2 (Table 1) examine the effects of noisy predictors on
LR, logicFS and LF performance. The results for the mean model
error rates for samples sizes 25, 200 and 1000 are shown in Table 2.
Model error rates are similar at all sample sizes for all three methods
for Cases 1 and 2. Figure 1 shows the proportion of times each
method recovered the PI X4 ∧X5 using exact and subset matching
by sample size for each noise level. Error bars in the figure represent
95% confidence intervals for the proportions.

Figure 1 shows that LF is significantly more likely to exactly
identify the PI X4 ∧X5 than LR for sample sizes n=25 to 100 in
data with 5% noise and for n=25 to 300 in data with 15% noise.
The performance of LF and logicFS is similar in data with 5%
noise although LF more frequently exactly identifies the PIs for
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Fig. 1. Recovery of the PI X4 ∧X5 for model L1 (Cases 1 and 2) in data with
5 or 15% noise in all predictors. N = 500 replications for each sample size.
Error bars represent 95% confidence intervals.

sample sizes n≤50. LF exactly identifies X4 ∧X5 significantly more
frequently than logicFS in data with 15% noise for sample sizes from
n=35 to 200. The results for PI X5 ∧X11 were similar to those of
X4 ∧X5 (results not shown).

The performance of the three methods does not improve
significantly with subset matching in data with 5% noise. However,
in data with 15% noise, the ability of all three methods is enhanced
under subset matching.Although the performance of LR and logicFS
is closer to LF when subset matching is used, LF still identifies
the PIs more frequently than logic FS for 50≤n≤150 and more
frequently that LR for 25≤n≤300. Both LR and logicFS identify
the relationship between X4 and X5 and between X5 and X11, but
the tendency is to add spurious components to the PI.

We also consider a null scenario in which there is no association
between predictors and the response. The predictors follow the

distribution for Cases 1 and 2 (Table 1) and the response is L
iid∼

Bern
(
0.375

)
. We simulate 500 datasets for sample sizes ranging

from 25 to 1000 and examine the proportion of times each method
recovers the PIs X4 ∧X5 and X5 ∧X11 according to the criteria
defined for these simulations. All three methods recover these PIs
in <2% of all simulation runs at all sample sizes.

3.2 Model complexity
Cases 3–6 (Table 1) examine the effect of model complexity on
the ability of each method to correctly identify PIs truly associated
with the response and on the error rate of the fitted model. Cases
3 and 4 investigate a simple logic expression, L1, describing the
response using two PIs of size 2. Cases 5 and 6 investigate a more
complex model, L2, containing three PIs, two of Size 4 and one of
Size 5. These models also have a lower probability of an observed
response value of 1 relative to Cases 1 and 2, which has been shown
to reduce the ability of LR to identify interactions known to be
important (Vermeulen et al., 2007).

Fig. 2. Recovery of the PI X4 ∧X5 for L1 (Case 3) with P
(
L=1

)=0.09375,
in data with 5% noise in all predictors. N = 500 replications for each sample
size. Error bars represent 95% confidence intervals.

Fig. 3. Recovery of the PIs X4 ∧X5 ∧X21∧!X45 and X5 ∧X16 ∧X21 ∧
X33∧!X45 for the complex model, L2 (Case 5), in data with 5% noise in
all predictors. N = 500 replications for each sample size. Error bars represent
95% confidence intervals.

Results for average model error rates for sample sizes 25, 200 and
1000 (5 and 15% noise) for Cases 3–6 are shown in Table 2. Figure 2
represents the proportion of times each method recovers L1’s PI
X4 ∧X5, exactly and by subset matching, for 5% predictor noise.
Figure 3 represents the proportion of times each method recovers
L2’s PIs X4 ∧X5 ∧X21∧!X45 and X5 ∧X16 ∧X21 ∧X33∧!X45 for 5%
noise.

The mean model error rate of LF is significantly smaller than both
LR and logic for n=25 in Cases 3 through 5. However, logicFS has
smaller mean model error rate than LF and LR in Cases 3 and 5 for
n≥200. The difference in mean model error rates for logicFS and
LF is significant for n≥500 for Case 3 and for n≥300 for Case 5.

From Figure 2, for data with a simple underlying model L1 and
5% noise in the predictors LF is significantly more likely to exactly
identify the true PI, X4 ∧X5, than LR and logicFS for n≥35 and for
35≤n≤500, respectively. The results for recovery of X5 ∧X11 are
similar in data with 5% predictor noise. In data with 15% noise, LR
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and logicFS exactly identify these PIs X4 ∧X5 and X5 ∧X11 in <5%
of models at all sample sizes. However, LF exactly identifies the PIs
in >60% of all models once n=150 (see Fig. 1, Section 1 of the
Supplementary Material). A comparison of the performance of both
methods for Cases 1 and 2 versus Cases 3 and 4, which consider
the same simple model but with P

(
L1 =1

)=0.375 compared with
P

(
L1 =1

)=0.09375, respectively, indicate that all three methods
are less likely to recover the true PIs if there is reduced probability
of a response being 1 (Figs 1 and 2).

In the complex model, L2, LF and logicFS exactly identify the
two PIs of Size 4 with greater frequency than LR at sample sizes
n≥150 for both noise levels. LF and logicFS identify all PIs in L2
equally well with the exception of the two PIs of Size 4 at n=75
and the largest PI at n=1000 where logicFS exactly identifies these
PIs more frequently than LF. All three methods have difficulty in
identifying the largest PI in L2 (Fig. 3). This is likely due to the fact
that the largest PI explains only a small proportion of variation in
the response. In data with 15% noise, the proportion of times the
two Size 4 PIs are recovered is greatly reduced for all three methods.
However, LF exactly identifies the two Size 4 PIs more frequently
than LR for n≥150 and than logicFS for n≥300. LF achieves a
maximum of 23% of models containing exact matches compared
with 15% for logicFS and 2% for LR. In data with 15% noise, none
of the methods is able to recover the largest PI exactly.

LR, logicFS and LF all demonstrate improved performance for
true underlying model L1 when evaluated by subset matching.
However, LF identifies the two PIs from model L1 more often than
LR and logicFS for sample sizes between n=75 and n=200 in data
with 5% noise and between n=75 and n=300 for data with 15%
noise.

Use of subset matching for identifying PIs in the complex model
L2 only significantly improves the performance of the three methods
in data with 15% predictor noise (see Fig. 2, Section 1 in the
Supplementary Material). LogicFS and LF both identify the PIs
of Size 4 more frequently than LR as subset matches for n≥300.
LogicFS identifies these two PIs more frequently as subset matches
than LF for n≥750. Even using subset matching, all three methods
have difficulty identifying the Size 5 PI in the complex model at
both noise levels.

3.3 Latent predictors
In Cases 7 and 8 (Table 1), we consider models in which a latent
variable directly affects one or more PIs explanatory of the response.
The true response for Case 7, L3, has two PIs but only Z5 ∧Z11 ∧Z21
contains the latent predictor Z21. In Case 8, the response, L4, has
similar PIs and both PIs are affected by the latent predictor.

Corresponding to the latency of Z21, predictor X21 is not observed
and therefore not available when constructing the models; thus we
cannot identify the true PIs. For these cases, we determine the
proportion of times each method identifies X4 ∧X5 and X5 ∧X11, the
observed components of the true PIs. The mean model error rate was
not statistically different at a majority of sample sizes (results not
shown). The only exception occurs at n=25 where LF and logicFS
have significantly smaller mean error rates than LR. Figure 4 shows
the proportion of times each method recovers the two partial PIs by
sample size for L3.

The ability of each method to recover the partial PIs X4 ∧X5 or
X5 ∧X11 depends on the model. For L3, where only the relationship

Fig. 4. Recovery of exact and subset matches for observed components of
the PI X5 ∧X11 ∧X21 for L3 (Case 7). N = 500 replications for each sample
size. Error bars represent 95% confidence intervals.

between X5 and X11 is strongly affected by the absence of X21,
X4 ∧X5 is exactly recovered in 100% of models for n>150 for all
three methods, while exact recovery of X5 ∧X11 occurs much less
frequently (Fig. 4). LF is more adept at exactly recovering X5 ∧X11
than LR and logicFS at all sample sizes. LR and logicFS rarely
recover the exact PI X5 ∧X11 for data generated under L3 (Fig. 4).
In L4, LR and logicFS rarely exactly recover either PI even with
increasing sample size. However, LF is able to exactly identify both
PIs in L4 in up to 60% of models (see Fig. 3, Section 2 in the
Supplementary Material).

For X5 ∧X11 for L3 and for both X4 ∧X5 and X5 ∧X11 for L4,
the performance of LR and logicFS improves greatly with subset
matching. Despite improvement in the performance of LR with
subset matching, LF performs significantly better than LR in both
models and for all sample sizes n≥35 (Fig. 4). However, logicFS
identifies the PI X5 ∧X11 in L3 significantly more frequently as
subset matches than LF for sample sizes ranging between n=75 and
n=200. LogicFS also identifies both PIs in L4 as subset matches
more frequently than LF for n≥500.

4 PERIODONTAL DISEASE IN AFRICAN
AMERICANS WITH DIABETES

We examine the association of genetic and health factors with
prevalence of generalized adult periodontitis using data from a study
conducted at the Center for Oral Health Research at the Medical
University of South Carolina. Here, generalized adult periodontitis
is defined as ≥3 mm clinical attachment loss and >30% of sites
affected.

These data are drawn from 244 African American adults
with diabetes. Information on each subject includes the binary
health indicators total cholesterol (>200 mg/dl),HDL(>40mg/dl),
triglycerides (>150mg/dl), C-reactive protein levels (>1mg/l),
HbA1c levels (>7%), smoking status (current versus former and
never, former versus current and never) and genotype data for nine
single nucleotide polymorphisms (SNPs) believed to play a role in
inflammation and/or bone resorption. Among the 244 participants in
the study, 95 have generalized adult periodontitis.

Seven of the SNPs are coded by two dummy variables for the LF
analysis. The first dummy variable takes value 1 if the subject has a
SNP genotype with at least one copy of the minor allele (dominant
effect of the minor allele) and the second takes value 1 if the subject
has two copies of the minor allele (recessive effect of the minor
allele). This coding allows for consideration of both dominant and
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Fig. 5. Normalized VIMP.LF for model including SNPs and health indicators
(LF1) and model including only SNPs (LF2).

recessive genetic effects in the model. The remaining two SNPs for
which no subjects have two copies of the minor allele are coded for
the dominant genetic effect only. The final dataset includes 23 binary
predictors composed of these 16 SNP dummy variables and seven
health indicators.

Two LF models, each with B=100 trees, are constructed from
the data. The first LF model includes all SNPs and health indicators
as predictors. The second model is constructed with only the SNPs
as predictors. The top five PIs for both models, as determined by
VIMP.LF magnitude, are shown in Figure 5. VIMP.LF scores are
normalized so the largest is 1. The most important single predictor
identified by the models is the recessive genetic effect for the IL-
1α−889 minor allele (IL1A1.22). Previous studies suggest that the
minor allele of IL-1α−889 is associated with advanced periodontitis,
though these studies considered only the dominant genetic effect
(Gore et al., 1998; Kornman et al., 1997; Moreira et al., 2007).
Also two PIs selected among the top five by VIMP.LF magnitude
appear in both models: (i) IL1B.12 ∧ IL1A1.22 and (ii) IL1A1.22 ∧
!MMP3.12 (Fig. 5). IL1A1.22 represents the recessive genetic effect
for the IL-1α−889 minor allele, IL1B.12 represents the dominant
genetic effect for the IL-1β+3954 minor allele and !MMP3.12
represents the recessive genetic effect for the MMP3 major allele.
PI(a), IL1B.12 ∧ IL1A1.22, suggests an association consistent with
previous reports (Gore et al., 1998; Kornman et al., 1997). The
recessive genetic effect for the MMP3 minor allele is implicated in
chronic periodontitis in a Brazilian population (Astolfi et al., 2006),
but the interaction described by PI(b) has not been noted previously.

5 CONCLUSIONS
LR has the ability to model complex interactions such as those
that might describe a disease state. To improve identification of
important PIs, Schwender and Ickstadt (2008) presented a bagged
version of LR called logicFS. Unlike their approach, our method
randomly selects a maximum size when building each tree in the
ensemble, thereby enhancing the probability that the forest will
discover smaller PIs. We also introduce a permutation measure to
quantify PI importance. Additionally, we present the notion of subset
matching to enhance sensitivity to PI contributions. We extend
simulations in previous studies evaluating the performance of LR,
logicFS and our ensemble of LR trees, LF, by including larger sample
sizes, noise in the predictors and smaller probabilities of the response

variable taking value 1. Our results show that LF and logicFS are
better able identify important PIs than LR. LF also demonstrates
improved ability to recover PIs relative to logicFS at smaller sample
sizes in a majority of the simulation scenarios. We also show that
forced inclusion of smaller trees in the forest is beneficial for PI
identification, particularly in data with latent variables or noisy
predictors.

Using the permutation-based measure of variable importance,
LF is more adept at identifying informative PIs in noisy data,
in data with a latent variable and in more complex true models
than LR and logicFS. The greatest improvement from LF occurs
in scenarios where PIs are smaller and more weakly associated
with a response or in situations where there is failure to observe
a predictor truly associated with the response. LF also exhibits
greater improvement relative to LR as sample size increases,
while the largest improvements in performance of LF relative
to logicFS occurs at smaller sample sizes (35≤n≤200). The
main exception occurs for data following a complex underlying
model where the performance of LF and logicFS is similar for
recovery of the three PIs in L2 (Fig. 3). LR, logicFS and LF all
demonstrate limited ability to recover large PIs weakly associated
with the outcome in the presence of smaller PIs with stronger
associations.

We also introduce the idea of subset matching. If a PI persists in
increasingly larger PIs, then that PI may represent a true association.
For example, discovery of the PIs P, P∧Q1 and P∧Q2 ∧Q3
suggests a true association of the PI P with the response. In LF,
as opposed to LR, we have the richness of the forest in which to
evaluate this persistence of predictors and PIs. Especially in a latent
variable setting, where not all components of a predictive PI are
observed, persistence throughout the forest facilitates identification
of the observed components of that PI.

LF, LR and logicFS were also compared with Random Forest
(RF) and MCLR. The mean model error rate for RF was larger
than all three methods for a majority of sample sizes for simulation
Cases 1, 2, 3, 5 and 7 and comparable with LF for Cases 4 and 8.
RF is designed to identify important individual predictors from
among all predictors in the data and concerning identification of
individual predictors, RF performed comparably with LF. However,
RF provides no direct mechanism for quantifying associations
among predictor interactions and response. MCLR is designed to
identify predictors that co-occur with the greatest frequency. MCLR
identified predictor combinations from true PIs in <5% of all models
for all simulation scenarios (results are not shown).

The simulations presented in this article are by no means an
exhaustive study of all scenarios one might encounter in biologic
data. However, this study provides insight into the effectiveness of
ensemble methods, LF in particular, in improving the identification
of PIs in scenarios likely in biological studies. LF is not designed
to handle data with a larger number of predictors than observations.
Based on simulations examining the performance of LF, data should
have at least twice as many observations as predictors for the best
performance.

The methods and measures presented in this study were restricted
to classification trees. LR has the ability to build trees as predictors
in linear and logistic regression models by altering the scoring
functions used in constructing the LR model (sums of squares and
deviance, respectively). Further studies are necessary to assess the
performance of LF with such alternative scoring functions.
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