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ABSTRACT

Motivation: A key goal of studying biological systems is to design
therapeutic intervention strategies. Probabilistic Boolean networks
(PBNs) constitute a mathematical model which enables modeling,
predicting and intervening in their long-run behavior using Markov
chain theory. The long-run dynamics of a PBN, as represented by
its steady-state distribution (SSD), can guide the design of effective
intervention strategies for the modeled systems. A major obstacle for
its application is the large state space of the underlying Markov chain,
which poses a serious computational challenge. Hence, it is critical
to reduce the model complexity of PBNs for practical applications.
Results: We propose a strategy to reduce the state space of the
underlying Markov chain of a PBN based on a criterion that the
reduction least distorts the proportional change of stationary masses
for critical states, for instance, the network attractors. In comparison
to previous reduction methods, we reduce the state space directly,
without deleting genes. We then derive stationary control policies
on the reduced network that can be naturally induced back to the
original network. Computational experiments study the effects of the
reduction on model complexity and the performance of designed
control policies which is measured by the shift of stationary mass
away from undesirable states, those associated with undesirable
phenotypes. We consider randomly generated networks as well as a
17-gene gastrointestinal cancer network, which, if not reduced, has
a 217 ×217 transition probability matrix. Such a dimension is too large
for direct application of many previously proposed PBN intervention
strategies.
Contact: xqian@cse.usf.edu
Supplementary information: Supplementary information are
available at Bioinformatics online.
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1 INTRODUCTION
To date, probabilistic Boolean networks (PBNs; Shmulevich et al.,
2002) form one of the widely accepted mathematical models for
cellular systems. One of their important applications is to design
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intervention strategies that beneficially alter cell dynamics through
studying the long-run network behavior. Since the probabilistic
description of a PBN is an ergodic and irreducible finite Markov
chain (MC; Qian and Dougherty, 2008; Shmulevich et al., 2002),
it possesses a steady-state distribution (SSD) reflecting its long-run
dynamics. Different stochastic control policies have been employed
to change the long-run dynamics so as to reduce the risk of entering
aberrant states and thereby alter the extant cell behavior (Datta et al.,
2006; Pal et al., 2006); however, owing to the inherent computational
complexity of optimal control methods using Markov chain theory,
it is often computationally prohibitive to achieve optimal control
policies for large networks (Akutsu et al., 2007; Bertsekas, 2005).
Several approximate and greedy algorithms (Ng et al., 2006; Qian
et al., 2009; Vahedi et al., 2008) have been proposed to find
suboptimal solutions but many of them still have complexity that
increases exponentially with the number of genes in the network.
Hence, there is a need for size reducing mappings that produce
more tractable models whose stationary control policies induce
suboptimal stationary control policies on the original network. This
article proposes a greedy procedure to reduce the network state
space. We study the effects of the proposed reduction with respect
to the changes of the long-run network dynamics and intervention
performance of stationary control policies derived using long-run
network dynamics.

Whereas the available reduction mappings (Dougherty and
Shmulevich, 2003; Ivanov and Dougherty, 2004; Ivanov et al.,
2007) consider deleting genes to reduce the state space, we focus
on deleting states by changing the regulatory rules and thereafter
the transition probability matrix of the original network, in a way
that does not interfere with the trajectories of the critical states
in the network, for example, its attractors. We reduce the state
space based on the structure of the basins of attraction (BOAs) in a
network. As the BOAs before and after this state reduction procedure
remain similar, the long-run dynamics, especially the proportion of
stationary masses for critical states, also remains similar. Hence, we
can design stationary control policies on the reduced network based
on long-run dynamics similar to those in Qian et al. (2009) and then,
from these, induce stationary policies on the original network. Our
in silico experiments show that the induced control policies achieve
substantial beneficial shift of stationary mass of the original network
toward desirable phenotypes.
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2 SYSTEMS AND METHODS

2.1 Background
We focus on binary PBNs in this article but our results directly extend to
more finely quantized PBNs since the underlying models are always finite
Markov chains. Following the standard definitions in Kauffman (1969) and
Shmulevich et al. (2002), a PBN is a collection of context Boolean networks
(BNs), whose network dynamics are determined by Boolean regulatory rules,
represented by function truth tables. In a BN of n genes, each gene xi ∈{0,1}
at time t+1 is determined by the values of a set Vi of predictor genes at
t via a Boolean function fi : {0,1}Ki �→{0,1}, where Ki =|Vi| denotes the
number of predictor genes in Vi and is called the input degree of xi in
the network. A truth table representing regulatory rules for one BN gives a
network predictor function f = (f1,...,fn). The network evolves as a trajectory
of gene expression states Xt ∈{0,1}n, which lie in the state space of size 2n.
From any initial state, a BN will eventually reach a set of states, called an
attractor cycle, through which it will cycle endlessly. Each state flows into
a unique attractor cycle and the set of states leading to a specific attractor
cycle is known as its basin of attraction (BOA). One type of attractors are
singleton attractors, i.e. states x for which f(x)=x.

For PBNs with k context BNs, there are k network predictor functions,
F={f1,...,fk}. Perturbation is introduced with a probability p by which
the current state of each gene in the network can be randomly flipped.
At each updating time, a decision is made whether to maintain the current
governing context or to switch the context (allowing the current context
to be selected). There is a switching probability q and, given the decision
to switch, selection probabilities cj,1≤ j≤k corresponding to the set of
context BNs. Assuming perturbation, the simplest type of PBN is a BN with
perturbation (BNp), which has only one context BN and k =1. As described
in Shmulevich and Dougherty (2010), we can derive transition probability
matrices P= (p(x,y))x,y of the underlying Markov chains for different
types of PBNs based on the truth tables and the involved probabilistic
parameters (Supplementary Materials), where p(x,y) is the probability
of the chain undergoing the transition from the state x to the state y.
Introduction of perturbation makes the corresponding Markov chains ergodic
and irreducible. Hence, a PBN possesses a SSD, defined by πT =πT P,
describing the long-run behavior, where T denotes transpose. Note that P can
be decomposed into two parts, (1−p)nF and H (Supplementary Materials),
where the rows of F are vectors determined by regulatory rules and H
is the perturbation term determined by Hamming distances between the
network states, and with p fixed, H is the same for all PBNs of n genes. A
PBN inherits the attractor structures from its context BNs. With sufficiently
small p, π will reflect the attractor structures within these BNs. To develop
therapeutic interventions, we are especially interested in the proportion of
time the network occupies an attractor when in its steady state. As has
been hypothesized (Kauffman, 1969; Li et al., 2004), attractors may capture
cellular phenotypes and occupy a large proportion of the stationary mass.

2.2 State reduction strategies
We first present a reduction procedure motivated by the aggregation
algorithms for computing SSDs for large Markov chains (Dayar and Stewart,
1996; Kafeety et al., 1992). These algorithms are based on grouping the
states so that the SSD can be approximated by solving small linear systems
for groups of states. Since the SSD reflects the long-run behavior for a
given PBN, we desire that the reduction preserves the original proportion
of stationary masses for critical states as much as possible. The difference of
the SSDs before and after reduction has been one measure used for different
reduction mappings (Ivanov et al., 2007). At the same time, the SSD is
determined by the properties of BOAs in the network. More specifically, it has
been shown that the steady-state probabilities for attractors are dependent on
the size and structure of BOAs (Brun et al., 2005). For a PBN, the underlying
Markov chain is often sparse. There are many transient states with negligible
stationary mass that are not observed in experiments. The attractors represent
the essential long-run network behavior and their stationary masses are

critical for both understanding and controlling the network. Biologically,
attractors have been widely recognized to correspond to meaningful cellular
states (Kauffman, 1969; Li et al., 2004). We consider them as the critical
states in the network (it being straightforward to include more states as
critical states if they are desirable from biologists, e.g. corresponding to
important phenotypes). The goal of our state reduction procedure is to prune
away the transient states so that we preserve the proportion of stationary
masses of the critical states.

Assuming that there are m critical states if there are altogether m
attractors in the given network, S ={xi1 ,xi2 ,...,xim }, where m�2n, we
want to preserve the proportion of πS =[πxi1

,πxi2
,...,πxim

] with πx as the
steady-state probability of state x. One criterion is

c=
∥∥∥∥ πS

‖πS‖ − π̃S

‖π̃S‖
∥∥∥∥

l1

, (1)

where π̃ is the SSD after reduction. Starting from the original network, we
select a state u, which belongs to a set of states that are the most distant from
the corresponding attractor cycles in all the BOAs, to delete so that the change
of c in (1) is minimum. We delete u in the sense that we force u to transit to
itself by setting f (u)=u. Since u will always be the most outside transient
state in its corresponding BOA, setting f (u)=u isolates u to be a singleton
attractor with its BOA size equal to 1, so that after ‘deletion’, it will not
interfere with the trajectories of the other state transitions in the network.
This greedy sequential procedure recursively selects the states having the
least influence on the SSD according to c until the change c is beyond a
given threshold cth. As we discuss next, these iteratively deleted states are
grouped as one ‘mega’ state in the reduced Markov chain.

Each step in this sequential procedure perturbs the transition probability
matrix P of the original network to a new matrix P̃, whose dimension
equals to that of P. During this procedure, the major computational task
is to compute c in (1). As we take only one state from one context network
and make it transit to itself at each step, only two entries in one row of the
transition matrix changes. Assuming f (u)=v in the original network, we set
f (u)=u for state reduction. Let P̃=P+E, where the perturbation matrix E
can be written as:

E =euξT ,

where eu is a 2n-dimensional unit vector with the u-th element equal to 1
and

ξT =[0,...,0, ε︸︷︷︸
u

,0,...,0, −ε︸︷︷︸
v

,0,...,0]

with ε changing for different types of PBNs according to their corresponding
transition probabilities (Supplementary Materials). Therefore, we can
implement the same analytic solution adapted from perturbation theory in
Markov chains (Hunter, 2005; Qian and Dougherty, 2008; Schweitzer, 1968)
to derive the exact perturbed SSD efficiently at each sequential step:

π̃=π+ πuε(zu −zv)

1−ε(zuu −zvu)
,

where zu and zv are two rows of the fundamental matrix Z (a generalized
inverse of I −P) that correspond to the states u and v; and zuu and zvu are the
u-th entries in the two rows. We emphasize that π and Z need to be updated
as in Qian et al. (2009) during the recursive procedure.

At the end of the recursive procedure, we group all the ‘deleted’ states
into one ‘mega’ state as they do not interfere with the remaining states. We
want to construct a new transition probability matrix P∗ with the dimension
(m′ +1)×(m′ +1), where m′ is the number of remaining states and m′ ≥m.
We first re-order the states by groups of remaining states and deleted states.
The re-ordered transition probability matrix P̃ has a special structure because
the deleted states are singleton attractors (Supplementary Materials):

P̃= (1−p)nF̃ +H,where F̃ =
(

F∗ 0
0 I

)
,

where F∗ is determined by the regulatory rules in the original network as the
reduction does not interfere with the state transitions for the remaining states.
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Fig. 1. The average distance of ‘deleted’ states with respect to the rank of
SSD change in an ascending order for 8-gene random BNps.

From P̃, we obtain P∗ using the following heuristic. We first add up the last
2n −m′ columns of P̃, these corresponding to the deleted states. They are
aggregated into one mega state. We then take the average of the last 2n −m′
rows in P̃ as the transition probabilities from the mega state to the remaining
states, since the mega state represents all the deleted states and these states
are similar to each other with respect to state transitions to the remaining
states. With P∗, we can compute the SSD, π∗, for this reduced Markov chain
to approximate the original network dynamics with the complexity O(m′)
reduced from O(2n). The worst case for the sequential procedure is when
m′ =2n, meaning there is no state that can be pruned away, and the best case
is when m′ =m, where all remaining states are critical.

2.2.1 BOA-based state reduction The state space of the underlying
Markov chains grows exponentially so that computing SSDs becomes
prohibitively expensive for large networks. Hence, the preceding reduction
procedure becomes computationally infeasible because each iterative step
requires for the computation of a perturbed SSD. Nevertheless, removing
transient states far from their corresponding attractor cycles should intuitively
have small effect on proportional change of stationary masses for critical
states. To validate this heuristic, we ran simulations with 100 randomly
generated BNps with n=8. The parameters to generate random BNps are
given in Section 3.1. For the simulation of each BNp, we perturb it by making
every state transit to itself one at a time and rank the change to the SSD in
an ascending order. At the same time, we compute the number of transitions
for each state to reach its corresponding attractor cycle in the original BNp
as our distance measure for each state. We plot the average distance for 100
random networks with respect to the rank in Figure 1. The plot shows that
the states that are farthest from their corresponding attractors influence the
SSD the least.

Based on this observation, we propose an aggressive reduction procedure
to prune or ‘strip’ away the outmost transient states in a BOA. In this
section, we assume that the complete information of the original PBN is
available and we can compute the structure of BOAs for the network. Based
on BOA structure, we can reduce the underlying Markov chain layer by
layer. These pruned states are forced to transit to themselves by re-setting
the corresponding regulatory functions as described above. They all become
singleton attractors and grouped as a mega state after reduction. Since there
is no guarantee of the bound for the proportional change of the critical states
using this procedure, we study the effects of the reduction on the proportional
change in silico in Section 3.

We note here that heuristics can be used to achieve better preservation
of stationary masses for critical states based on BOA structure. Because
attractor steady-state probabilities depend on the corresponding BOA sizes

and structures (Brun et al., 2005), the reduction procedure can selectively
delete the states by appropriately sampling the space of outmost transient
states according to either their distances to the attractor cycles to which
they belong, or the sizes of the corresponding BOAs. However, since our
final goal of state reduction is to derive effective intervention strategies
instead of approximating SSDs, we focus on this aggressive procedure for
our experimental evaluation.

2.2.2 Transition probability-based state reduction For a given PBN,
we can compute the transition matrix P of its underlying Markov
chain. The outmost transient states can be easily identified based on
the transition probabilities in P. We first compute

∑
x p(x,y) for all the

outmost transient states y. Because these states are at the outmost layers,
there are no other states transiting to them based on the regulatory
functions F. Based on the definitions of p(x,y) in Supplementary Materials,
if

∑
x p(x,y)<minj cj(1−p)n where cj is again the network selection

probability and cj =1 for BNps, then y has to be an outmost state and
can be deleted for reduction. Thus, the reduction procedure described in
Section 2.2.1 can be implemented based on the transition matrix without
finding the BOAs.

2.2.3 Observation-based state reduction If there is insufficient
information about the state transitions of a PBN, we can still implement
the same reduction procedure using only experimentally observed state
transitions based on the above observation. The motivation is that the
unobserved state transitions appear with very low probabilities in network
dynamics. Hence, the observed state transitions can directly approximate
the network dynamics and we can use the observed attractors as our
critical states and prune away all the unobserved states, which have high
probabilities of being transient states. In this case, the transition probabilities
p(x,y) have to be inferred from experimental data, and accurate estimation
is difficult to achieve, in particular, for transient states that are rarely
observed experimentally. In fact, we can directly delete and group states that
are not observed experimentally. The reduction procedure can then proceed
by considering those states as forming their own singleton attractors and
grouping them into one mega state, and the resulting reduced Markov chain
can be used to find effective control policies.

Note that once the outmost states are identified, either based on the BOA
structure, the transition probability matrix, or directly from experimental
observations, the reduction procedure is similar: force these states to transit
to themselves and form a mega state in the reduced Markov chain.

2.3 Stationary control policies after reduction
To mitigate the computational complexity inherent in dynamic programming,
several greedy stationary control policies (Qian et al., 2009; Vahedi
et al., 2008) have been introduced based on long-run network behavior;
nonetheless, these policies still have exponential complexity with respect
to the number of genes in a network. Here, we derive two control policies
on the reduced network based on the principles introduced in Qian et al.
(2009). When considering therapeutic interventions, the state space can be
partitioned into the set of desirable states D and the set of undesirable states U
according to the expression values of a given set of genes. For simplicity, we
will assume that the gene expression of the leftmost gene x1 in the network
determines that the network state x is either desirable (x1 =1) or undesirable
(x1 =0). Furthermore, without loss of generality, we focus on the control
policies by flipping a single control gene g, which is typically different from
x1 as we discussed in Section 3. The principle of deriving effective control
policies is based on the intuition that the control policy should reduce the
likelihood of visiting undesirable states πU =∑

x1=0πx (πx is the steady-
state probability for state x) either by directly shifting SSD or decreasing the
time to reach D.

2.3.1 BOA control policy First, we introduce the BOA control policy on
the original network (Qian et al., 2009). For any state x, let A(x) be the set
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of attractors (the cycle) for the basin containing x. Let dD(x) and dU (x) be
the minimal distances of state x to states in D and U, respectively. For a pair
of undesirable states x and xg (the state that differs from x only in the value
of the control gene g), we first check whether A(x) or A(xg) contains any
desirable attractors. If only one of these sets contains desirable attractors,
then we set the control actions for x and xg to always flip to that state so that
we increase the likelihood of entering into desirable attractors. If both A(x)
and A(xg), or neither one, has desirable attractors then, we compare dD(x)
and dD(xg): whichever is minimum, we apply control by flipping to that state
so that the network can reach the desirable states D faster. We do not apply
any control if dD(xg)=dD(x). For a pair of desirable states x and xg, we first
check whether A(x) or A(xg) contains any undesirable attractors. If only one
of them contains undesirable attractors, then we apply control to flip away
from that state so that we reduce the probability of getting into undesirable
attractors. If the condition is satisfied for both of the states or neither of them,
we then compare dU (x) and dU (xg) to make the time to reach the undesirable
states U longer. The computational complexity for finding this control policy
in the original network is O(2n).

With state reduction, we delete states to reduce the state space by making
them transit to themselves and the mega state, representing the group of these
deleted states, forms a singleton attractor in the reduced network. When
we design the control policy based on the BOA structure of the reduced
network, we simply look at the remaining states. If either x or xg remains in
the reduced network, we derive the control policy in the exactly same way
as in the original network, taking the advantage of knowing that a deleted
state should be a singleton attractor; otherwise, we do not apply any control.
Derivation of this control policy uses only the m′ remaining states in the
reduced network because they are the only ones remaining in the reduced
Markov chain. Hence, the complexity of deriving the control policy reduces
from O(2n) to O(m′). The control policy based on the reduced network is
induced back to the original network based on the fact that the reduction
does not change state transitions for the remaining states and each state in
the original network corresponds to a single state in the reduced network.
For deleted states by reduction, we do not apply any control.

2.3.2 SSD control policy It has been shown that SSD control policy
performs better than BOA control policy on original networks (Qian et al.,
2009) because it directly uses the shift of undesirable stationary mass as the
criterion of applying control. A key issue for this algorithm is the efficient
computation of the shifted stationary mass resulting from the intervention,
which can be done by the same analytic solution as in Section 2.2 (Hunter,
2005; Qian and Dougherty, 2008; Schweitzer, 1968). The control action by
flipping g at any given state x simply replaces the row in the original transition
probability matrix P corresponding to the state x by the row corresponding
to xg. The perturbed SSD is given by:

π̃(x)=π− πx(pxg −px)Z

1−(px −pxg )zx , (2)

where px and pxg are the two rows corresponding to the states x and xg in
P, respectively, zx is the column corresponding to the state x in Z , and π̃(x)
denotes the SSD after we apply control. Following this analytic solution, we
can quickly compute the total stationary mass, πU , for the undesirable states
and π̃U (x)=∑

x1=0 π̃x(x). Once this is done for each state, we can derive
a SSD control policy by comparing the total stationary mass of undesirable
states after applying control to x and xg: π̃U (x) and π̃U (xg). If both are larger
than the original undesirable stationary mass πU , then we do not apply any
control; otherwise, we apply control to the state which leads to less stationary
mass of the undesirable states. The computational complexity for finding this
new control policy is again O(2n), while the complexity for each iteration
in the algorithm increases from the BOA control policy by the vector-matrix
multiplications involved in (2).

For the reduced network, we can design a similar SSD control policy.
However, in the reduced network, we compute the approximate stationary
masses for the remaining states to derive the control policy based on the new
transition probability matrix P∗ and its corresponding fundamental matrix

Z∗ with (2). We only check the remaining states after reduction. If both x
and xg remain in the reduced network, then we derive the control policy in
exactly the same way as in the original network. If only one of these remains,
then we compute the shift of undesirable stationary mass by considering the
mega state as the corresponding flipped state. Otherwise, we do not apply any
control. Since the reduction procedure leads to small proportional changes
in stationary masses of the critical states, this control policy should capture
well the actual shift of undesirable stationary mass in the original network.
The derived control policy can be induced back to the original network with
no control for the deleted states. The complexity also reduces from O(2n) to
O(m′), which makes it possible to derive the induced SSD control policy for
large networks.

Clearly, it is more efficient to derive the BOA control policy than other
policies, such as the mean-first-passage-time policy (Vahedi et al., 2008)
and the SSD policy (Qian et al., 2009), which involve solving large linear
systems and are often computationally infeasible to derive for large networks.
Although the computational complexity of our state reduction procedure is
O(2n), which is the same as that for deriving the BOA control policy directly
on the original network, the state reduction procedure is more efficient
because it does not utilize the complete structural properties of the BOAs. The
complete procedure of deriving the state reduction, obtaining the BOA policy
based on the reduced network, and inducing that back to the original network
is more efficient than directly deriving the BOA policy based on the original
network. In the case of a network for which it is computationally feasible to
directly derive the BOA policy on the original network, its performance will
be better because full knowledge of the model is utilized. However, when
there is no sufficient information about the network, which is often the case,
it is still feasible to derive a SSD control policy based either on transition
probabilities between states or directly on experimental observations.

3 DISCUSSION
Using randomly generated networks as well as a larger, real-world
network designed from a gastrointestinal cancer dataset (Price et al.,
2007), we now study the effects of the proposed state reduction
algorithm with respect to both the approximation of long-run
dynamics and intervention performance.

3.1 Simulations with randomly generated networks
This section considers reduction effects based on a large number of
randomly generated networks with similar properties. The two most
important parameters for generating random BNs are the bias (pb)
and connectivity (K), where K is the maximum input degree of the
Boolean functions in the network and pb is the mean of the Bernoulli
distribution to generate the truth table of one Boolean function. All
simulation results are based on randomly generated networks with
K =3 and pb =0.5. We test the state reduction algorithm on random
BNps and PBNs with two context BNs. We set the perturbation
probability P=0.001 and selection probabilities with c1 uniformly
distributed in (0,1) and c1 +c2 =1. In all experiments, the control
gene is g=xn. In practice, one might consider all genes (other
than x1) as potential targets for intervention and identify the best
control gene with the largest beneficial impact as in Pal et al. (2006),
Qian et al. (2009) and Vahedi et al. (2008).

First, we study the effectiveness of the proposed state reduction
procedure by running simulations of 1000 randomly generated
networks with 6, 8, 10 and 12 genes.1 The number of remaining

1We limited the analysis to networks of no more than 12 genes because we
will need to compute the control policy on each originally generated network
in order to make the comparisons, which is computationally expensive.
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Fig. 2. The average ratio of the number of remaining states to the number of
states of original networks for randomly generated BNps and instantaneously
random PBNs with different numbers of genes.

states m′ reflects the degree of the reduction and determines
the computational complexity for finding control policies. In the
experiments, one and two layers of states are stripped from the
original networks (L=1,2). Figure 2 shows the ratio of the
average number, µm′ , of final remaining states to the original number
of states (N =2n) in both BNps and PBNs with different numbers
of genes. It shows that, with similar network properties, the number
of transient states farthest away from the attractor cycles within
the corresponding BOAs increases with the network size and the
degree of the reduction increases with increasing number of genes
in networks. PBNs have larger numbers of remaining states because
we delete and group only the intersection set of outmost transient
states in its context BNs. Details, including the average numbers
of remaining states and their standard deviations, are given in
Supplementary Materials.

To investigate reduction effects on the long-run network behavior,
we consider the proportional change of the stationary mass for
the critical states in S in (1) by replacing π̃S with π∗

S , which is
the steady-state vector corresponding to S for the final reduced
Markov chain after grouping deleted states into the mega state.
Using the same randomly generated networks from the experiments
described above, we provide the average proportional changes of the
stationary masses for the essential states and the respective standard
deviations in Table 1. On average, with increasing L, the proportional
change increases as we prune away more transient states. But the
proportional changes are small and decrease with increasing number
of genes for PBNs. The proportional changes of PBNs are much
smaller than those of BNps, which is to be expected since the
degree of reduction for PBNs is smaller as shown in Figure 2. These
results indicate that the state reduction is promising because the
previous experiments have shown that degree of reduction increases
with the number of genes for both BNps and PBNs. We conjecture
that with larger networks, one can reduce the state space greatly
while preserving the long-run network behavior fairly well. Note
the relatively large standard deviations in Table 1. To check whether
the state reduction procedure performs well for most of the random
networks, we plot the histogram of the actual proportional changes
for essential stationary masses for 1000 random 10-gene BNps with

Table 1. The average actual proportional changes for the stationary masses
of critical states µc and their standard deviations σc after reduction for
random BNps and PBNs with different numbers of genes n

BNp PBN

n 6 8 10 12 6 8 10 12

L = 1
µc 0.10 0.10 0.10 0.11 0.06 0.02 0.01 0.007
σc 0.12 0.12 0.12 0.13 0.23 0.08 0.05 0.015

L = 2
µc 0.15 0.14 0.13 0.14 0.06 0.02 0.01 0.009
σc 0.17 0.15 0.15 0.15 0.23 0.08 0.05 0.017

Fig. 3. The histogram of actual proportional change for the stationary mass
of critical states for randomly generated 10-gene BNps with L=1 layer of
transient states removed.

L=1 layers of transient states removed in Figure 3. More than
86% of the 1000 random BNps have <0.2 proportional change
for the critical states’ steady-state probabilities and the trend is
similar with other random networks (Supplementary Materials). This
demonstrates that in general, the reduction procedure preserves the
network dynamics.

Since our ultimate goal is to apply intervention strategies to
achieve therapeutic benefits, we study the effects of state reduction
on the intervention performance with both BOA and SSD control
policies for a fixed control gene xn. In Table 2, we provide the
average stationary mass of undesirable states πU before control
(ORG) and after applying the BOA control policy based on the
original network (BOA), the BOA control policy induced from the
reduced network with one layer of transient states grouped together
(BR1), the BOA control policy induced from the reduced network
with two layers of transient states grouped together (BR2), the
induced SSD control policy from the reduced network with one
layer of transient states grouped together (SSD1) and the induced
SSD control policy from the reduced network with two layers of
transient states grouped together (SSD2). All control policies reduce
the undesirable stationary mass significantly on average and the
performance for both the induced BOA and SSD control policies
from the reduced networks is comparable with the performance
for the BOA policy based on the original networks. The induced
SSD control policy performs slightly better than the induced BOA
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Table 2. The average undesirable stationary masses πU before and after
applying control for random BNps and PBNs

BNp PBN

n 6 8 10 12 6 8 10 12

ORG 0.49 0.50 0.49 0.49 0.50 0.50 0.50 0.49
BOA 0.27 0.30 0.33 0.34 0.35 0.38 0.40 0.41
BR1 0.33 0.35 0.37 0.38 0.38 0.41 0.43 0.44
BR2 0.37 0.39 0.40 0.41 0.39 0.43 0.44 0.45
SSD1 0.33 0.35 0.37 0.38 0.40 0.41 0.41 0.42
SSD2 0.36 0.38 0.39 0.40 0.41 0.42 0.43 0.44

Fig. 4. The average ratio of the undesirable stationary mass shift for the
induced control policies to that of the BOA control policy based on the
original networks for randomly generated networks.

policy. We show the performance degradation by plotting the ratio
of shifted undesirable masses by the policies after reduction to the
shifted masses by the BOA policy from the original networks in
Figure 4. The degradation is stable with respect to similar amounts
of reduction. Since the degree of reduction increases with the
increasing number of genes, we believe that, for networks with large
size, the reduction can still achieve significant beneficial results, the
key point being that the reduction allows the development of control
policies for networks that are too large for the policy to be derived
directly.

3.2 Gastrointestinal cancer network application
We have also applied state reduction to a 17-gene network designed
from a gastrointestinal cancer dataset (Price et al., 2007). The
same dataset has been used to test a gene reduction algorithm
in Ghaffari et al. (2010). The microarray data have been normalized,
filtered and binarized using the methods from Shmulevich and Zhang
(2002). A BNp is inferred based on the coefficient of determination
(CoD; Dougherty et al., 2000) using a modified network-growing
algorithm (Hashimoto et al., 2004) with gene OBSCN as a
seed. The inferred network has 17 genes: OBSCN , GREM2,
HSD11B1, UCHL1, A_24_P920699, BNC1, FMO3, LOC441047,

Fig. 5. An abstract diagram of the gastrointestinal cancer network inferred
based on the CoD using a modified network-growing algorithm (Ghaffari
et al., 2010; Hashimoto et al., 2004). Arrows show the predictor relationships
among genes.

THC2123516, NLN , COL1A1, IBSP, C20orf 166, KUB3, TPM1,
D90075 and BC042026 (Fig. 5). For intervention, we partition
the state space into a desirable set D and an undesirable set U
based on the seed gene OBSCN (x1) since OBSCN is one of
two genes composing the best classifier in Price et al. (2007).
Following Ghaffari et al. (2010), GREM2 is set as the control
gene. Since it is infeasible to compute numerically the SSDs for
the original network before and after applying control policies
based on πT =πT P with 217 states, we estimate the SSDs by
running the underlying Markov chains for a long time and using
the Kolmogorov–Smirnov test to decide if the network has reached
its steady state. We strip away L=1,2,3 layers of transient states
and the number m′ of remaining states in the final reduced models
is 7808, 2016 and 1016, respectively. In this example, as the degree
of reduction is very large with <1% of states remaining after
reduction when L=3, there is not even one pair of x and xg
both remaining after reduction, and therefore, the induced BOA
control policy, derived by comparing BOA structure for this pair of
states, does not perform well as shown in Supplementary Materials.
However, the reduction preserves long-term network dynamics
and the proportional change of steady-state probabilities for the
critical states with l∞ norm is <0.015 for L=1,2,3. As expected,
our induced SSD control policy maintains the integrity of the
control. Figure 6 shows the significant shifts in the SSD of the
network toward desirable states by applying the induced SSD control
policies. This further demonstrates that the proposed state reduction
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Fig. 6. SSD shift toward the desirable states in gastrointestinal cancer
network after applying the induced SSD control policy from the reduced
network with L=1, 2, 3.

and control policies are potentially helpful for developing effective
intervention strategies for future gene-based therapeutics.

3.3 Concluding remarks
In this article, we propose to reduce the state space of the underlying
Markov chain of PBNs in order to reduce the computational
complexity of searching for (sub-)optimal control policies. Through
simulations, we have demonstrated that the proposed state reduction
algorithm achieves good performance for both approximating the
long-run network behavior and intervening for beneficial dynamics
as both the reduction and intervention are directly tied to the
long-run network dynamics reflected by the SSDs. The proposed
algorithms are useful for designing effective intervention strategies
based on the information about the critical states which represent
important phenotypes, especially when a limited number of gene
expression patterns are observed in microarray experiments. Similar
research has a long history in system decompression in the absence
of qualifying knowledge. More importantly, the induced control
policies derived from the reduced networks yield substantial SSD
shifts away from the undesirable network states, and that is our
pragmatic goal. Future mathematical work will focus on deriving
theoretical bounds on the effects of the state reduction strategy for
both long-run behavior and intervention performance. In addition,
we are interested in investigating the benefits of the reduction for
both network inference and structural intervention.
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