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† Background and Aims Improving phosphorus (P) nutrient efficiency in Lolium perenne (perennial ryegrass) is
likely to result in considerable economic and ecological benefits. To date, research into the molecular and bio-
chemical response of perennial ryegrass to P deficiency has been limited, particularly in relation to the early
response mechanisms. This study aimed to identify molecular mechanisms activated in response to the initial
stages of P deficiency.
† Methods A barley microarray was successfully used to study gene expression in perennial ryegrass and this was
complemented with gas chromatography-mass spectrometry metabolic profiling to obtain an overview of the
plant response to early stages of P deficiency.
† Key Results After 24 h of P deficiency, internal phosphate concentrations were reduced and significant altera-
tions were detected in the metabolome and transcriptome of two perennial ryegrass genotypes. Results indicated a
replacement of phospholipids with sulfolipids and the utilization of glycolytic bypasses in response to P
deficiency in perennial ryegrass.
† Conclusions The transcriptome and metabolome of perennial ryegrass undergo changes in response to
reductions in P supply after 24 h.

Key words: Lolium perenne, perennial ryegrass, phosphorus deficiency, metabolic profiling, transcript profiling,
cross species hybridization.

INTRODUCTION

Depleting phosphorus (P) reserves has been described as one
of the ‘most significant sustainability issues of our time’
(Vaccari, 2009). Continually increasing demand will deplete
global supplies by the end of the century (Vaccari, 2009),
leading to price volatility that threatens the economic sustain-
ability of agriculture. Overuse of fertilizers has increasingly
been shown to exert a detrimental impact on the environment
largely through run-off (Ferrier and Edwards, 2002) and
associated environmental degradation (Tilman, 1998;
Gyaneshwar et al., 2002). However, predictions suggest that
worldwide fertilizer usage is projected to increase as the popu-
lation increases (by 46 % to 8.9 billion people by 2050; Anon,
2004) and exerts an associated requirement for food. In the
past, significant attention has been focused on the negative
impacts of nitrogen but more recently there has been an
increased focus on the environmental impacts of P. It was
revealed in one Canadian study that decreasing inputs of P
was more critical in reducing eutrophication than controlling
nitrogen inputs (Schindler et al., 2008). Furthermore, there is
also evidence that excess P is likely to result in a greater
loss of plant species than that associated with enhanced

nitrogen, therefore having a greater impact on biodiversity
(Wassen et al., 2005).

Perennial ryegrass, Lolium perenne, is the principal forage
used in temperate regions (Humphreys, 2005). Improving P
nutrient efficiency in this species is likely to result in consider-
able economic and ecological benefits. To date, no studies
have investigated the (bio)molecular response of perennial rye-
grass to P deficiency. Publicly available genomic resources,
including available microarrays, for the study of gene
expression are limiting in perennial ryegrass (Ciannamea
et al., 2006). To overcome this limitation, microarrays devel-
oped for related species can be employed to study gene
expression in the target organism (Hammond et al., 2005;
Bar-Or et al., 2007). In other species, P deficiency was
reported to result in a variety of responses both at the gene
expression (Hammond et al., 2003, 2005; Misson et al.,
2005; Wasaki et al., 2006; Guo et al., 2008) and metabolite
(Hernandez et al., 2007; Huang et al., 2008) levels.

Improving a plant’s ability to acquire and efficiently utilize
P is one approach to both alleviating the scarcity of the
resources and reducing environmental impacts. Efforts
towards this have been accelerated by legislative measures to
reduce fertilizer usage and pollution (Anon, 2000). The
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adaptation of plants to limited P can be optimized by allocat-
ing a greater proportion of their biomass to the root system
(Hermans et al., 2006), remobilization of internal P and modi-
fications in the carbon metabolism (Raghothama, 1999;
Ramirez-Rodriguez et al., 2005). Plants generally adjust their
metabolism to optimize internal P utilization and improve P
acquisition (Theodorou and Plaxton, 1993). In barley,
carbohydrate metabolism is initially readjusted to reduce P
consumption, and when stress becomes more severe, P is
salvaged from small P-containing metabolites such as
glucose 6-P, fructose 6-P, inositol 1-P and glycerol 3-P
(Huang et al., 2008).

P uptake can be enhanced by secretion of phosphatases and
organic acids, modified root growth, and enhanced expression
of P transporters (Ramirez-Rodriguez et al., 2005). Organic P
generally constitutes the majority of P in soils; however, it is
unavailable for plant uptake (Wang et al., 2004; Richardson
et al., 2009) but can be converted to a more available form
with the excretion of phosphatases (Plaxton, 2004).
Transgenic studies aimed at improving P use efficiency have
generally focused on developing plants with better ability to
make use of organic P in the soil. The expression of phytase
from Aspergillus in Arabidopsis resulted in increase root
phytase activity and subsequently enabled plants to meet
their P requirements from phytate (Richardson et al., 2001).
An alternative route to increased P uptake was taken by
Wang et al. (2004), who over- expressed an Arabidopsis thali-
ana purple phosphatase gene (AtPAP15) containing a carrot
(Daucus carota) extracellular targeting peptide in soybean to
obtain inorganic P from organic P sources. This resulted in a
60–120 % increase in plant weight and an associated 60–
90 % increase on plant P content (Wang et al., 2004).

The increase in the expression of genes related to organic
acid metabolism and their secretion have also been reported
under P deficiency, which suggests that organic acids play an
important role in the adaptation to P-limiting conditions
(Uhde-Stone et al., 2003a, b). A citrate synthase gene over-
expressed in Arabidopsis was shown to improve growth on
P-limited soils due to enhanced citrate excretion from roots
(Koyama et al., 2000). The majority of the inorganic P
present in soil is in precipitated form or adsorbed to soil con-
stituents such as organic matter and clays (Richardson et al.,
2009). It is thought that an increase in the levels of organic
acids in the rhizosphere will chelate ions which are usually
associated with phosphate groups, such as Ca2+, Fe2+ or
Al3+, thus allowing the inorganic P to be released for plant
uptake (Vance et al., 2003).

The objective of the present study was to determine the
early response mechanisms of perennial ryegrass to P
deficiency. We used a 44k barley microarray to study
changes in gene expression whilst a complementary gas
chromatography-mass spectrometry (GC-MS) approach was
taken to study changes in primary metabolism.

MATERIALS AND METHODS

Selection of genotypes

A screen was carried out on five seedlings from each of 34
ecotypes and two cultivars of Lolium perenne

(Supplementary Data 1, available online) with the aim of
identifying material with a high capacity to remove P
from solution. After 5 d, seedlings were weighed, transferred
to 50-mL glass test tubes containing 40 mL nutrient solution
[CaCl2.2H2O, 0.75 mM; MgSO4.7H2O, 0.38 mM; MS Micro
Salts (Duchefa, Haarlem, The Netherlands), 0.146 g L21;
NH4NO3, 5 mM; Ca(NO3)2.4H2O, 2.33 mM; KH2PO4,
0.31 mM] and placed in a growth room maintained at
23 8C with a 16-h daylight regime [photosynthetically
active radiation (PAR) ¼ 360 mmol m22 s21]. After 3 d,
samples were taken from each solution, the P content was
determined using the molybdenum blue assay as described
by He and Honeycutt (2005), and a standard curve was gen-
erated (R2 ¼ 0.99) using dilutions of initial nutrient solution.
Results were analysed in GenStat V10 (VSNi, Hemel
Hempstead, UK) using a one-way ANOVA (without block-
ing). The fresh weights of seedlings at the start of the exper-
iment were used as covariates in the analysis. Two
genotypes (IRL-OP-02538-P and Cashel-P) were selected
from this screen and propagated to provide adequate
clonal replicates for the experiments described below.

Experimental conditions

Seedlings of IRL-OP-02538-P and Cashel-P were cleaned of
soil and transferred to perlite medium held inside plastic plug
trays (P84 Plug Trays, Carley’s Bridge Potteries, Enniscorthy,
Ireland) floated on the plant nutrient solution (see above).
Solutions were placed in two 25-L tanks and aerated with an
aquarium pump (Rena Air 300, RENA, Chalfont, PA, USA).
Experiments were performed in a controlled glasshouse with
a mean daily temperature of 22 8C and supplemented with
lighting (PAR ¼ 650 mmol m22 s21) for 16 h. The plants
were allowed to acclimate for 1 week to the hydroponics
growth conditions before applying treatments. At the start of
the treatment the solutions in both tanks were replaced with
either solution A, identical to that above, or solution B, iden-
tical to that above except that the KH2PO4 content was reduced
to 0.016 mM. After 24 h (noon) root and leaf tissues were
separated and flash frozen in liquid nitrogen. Two separate
repeats of the experiment were performed to obtain samples
for array hybridizations and metabolite profiling, respectively,
and independent biological replicates (four in total) were
sampled for each.

Microarray processing: genomic DNA hybridizations

Genomic DNA (gDNA) was isolated according to the
method of Doyle and Doyle (1987) with minor modifications.
Throughout this study, a custom microarray
SCRI-Hv35-44k-v1 (Agilent design 020599) representing
approx. 42 000 barley unigene sequences from the public
HarvEST database (assembly 35; http://www.harvest-web
.org/) was used (ArrayExpress accession A-MEXP-1728).
This microarray along with a smaller barley array design
(Chen et al., 2010) have been successfully used for gene
expression analysis in our laboratory. Array procedures fol-
lowed MIAME guidelines (Brazma et al., 2001). The design
of the microarray experiment and the data derived from it
are detailed in the public database ArrayExpress (http://www.
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ebi.ac.uk/microarray-as/ae/; accession E-TABM-950). For
gDNA hybridizations, fluorescent labelling and purification
was carried out according to the protocol detailed by
Ducreux et al. (2008).

Microarray processing: cDNA hybridizations

Total RNA was isolated independently from four biological
replicates of leaf and root tissues using an RNeasy Plant Mini
Kit (Qiagen, Hilden, Germany) with on-column DNase I
digestion according to the manufacturer’s protocol. Samples
were run on Bioanalyzer RNA 6000 Nano Chips (Agilent
Technologies, Santa Clara, CA, USA) to assess quality and
integrity.

The design of the microarray experiment and the data
derived from it are detailed in the public database
ArrayExpress (http://www.ebi.ac.uk/microarray-as/ae/; acces-
sion E-TABM-943). In total, four biological replicates of
each sample were processed (two genotypes, two treatments,
two tissues, four replicates; 32 samples; 16 arrays). The exper-
imental design was balanced with respect to fluorescent dyes,
with two replicates of each sample labelled with either Cy3 or
Cy5 to minimize dye bias. RNA samples were labelled as
cDNA and purified using the Quick Amp Labelling Kit
(Agilent Technologies) as recommended using 1 mg total
RNA per sample.

Microarray processing: data extraction and analysis

For data extraction, microarray images were imported into
Agilent Feature Extraction (FE) (v.10.5.1.1) software and
aligned with the array grid template
(020599-D-F-20080612). Intensity data for each spot were
extracted using a defined FE protocol (GE2-v5-95-Feb07)
and data from each array were normalized using the
LOWESS (locally weighted polynomial regression) algorithm
(Yang et al., 2002). Normalized datasets for each array were
subsequently loaded into GeneSpring software (v.7.3.1;
Agilent Technologies) for analysis.

For the RNA-based microarray study, specific samples were
subjected to dye-swap according to the experimental design,
and data with consistently low probe intensity level –
flagged as absent in all replicate samples – were discarded.
Comparisons were made between the two P treatments for
each tissue and genotype independently using volcano plots
(Cui and Churchill, 2003), with thresholds of .two-fold
change and a Student’s t-test P value ,0.05 applied, to ident-
ify significantly regulated genes. Unique and overlapping
genes between the lists were selected using Venn diagrams.

Quantitative RT-PCR

Total RNA was isolated as described above and 200 ng was
converted to cDNA using SuperScript III and Oligo(dt)20

primer (Invitrogen, Carlsbad, CA, USA) as recommended by
the manufacturer. Real-time assays and melting curve analysis
were performed with SYBR Green I Master (Roche) on the
LightCycler 480 according to the pack insert (http://www.
roche-applied-science.com/pack-insert/4707516a.pdf). Analysis
was carried out on three biological replicates (each in technical

triplicates). Reaction efficiency values were calculated by
running each primer set on serial dilutions of a cDNA mixture
comprising leaf and root material. Normalization was performed
using the housekeeping gene LpGAPDH (Petersen et al., 2004).
Primers were designed from the barley sequences used for micro-
array probe design (Supplementary Data 2, available online).
Statistical analyses were performed in REST 2008 (Pfaffl et al.,
2002).

Sample preparation for metabolite profiling

Frozen tissues of roots and leaves were freeze dried and
homogenized using a mortar and pestle. Frozen tissue
powder (approx. 50 mg) was extracted as described by Foito
et al. (2009). In summary, samples were extracted sequentially
with methanol (3 mL), water (0.75 mL), chloroform (6 mL)
and an additional volume of water (1.5 mL) resulting in a
biphasic extract in order. Aliquots from the resulting polar
and non-polar fractions (750 mL and 4 mL, respectively)
were derivatized as described by Foito et al. (2009).

Analysis of metabolites by GC-MS

The polar and non-polar samples were analysed similarly
using a GC-DSQ-MS system (Thermo Finnigan, Manchester,
UK). Samples (1 mL) were injected into a programmable
temperature vaporizing (PTV) injector with a split of 40 : 1.
The PTV and chromatography conditions used are described
by Foito et al. (2009). Mass spectra were acquired under elec-
tron impact ionization conditions at 70 eV and 100 mA of
emission current over the mass range 35–900 a.m.u at 6
scans s21 with a source temperature of 200 8C and a solvent
delay of 1.3 min. Acquisition rates were set to give approxi-
mately ten data points across a chromatographic peak. Data
were acquired using the XcaliburTM software package v. 1.4.
Acquired total ion chromatograms and mass spectra were ana-
lysed using XcaliburTM software package v2.0.7 (Thermo
Finnigan) as described by Foito et al. (2009). Analysis of var-
iance was used to compare across P treatments and identify
significantly regulated metabolites (P , 0.05). The complete
profiles were initially compared by principal components
analysis (PCA) and the results for metabolite analysis with
respect to data acquisition controls are described in
Supplementary Data 3 (Figs S1 and S2, available online).
All statistical analysis was performed using GenStat version
12.1.0.3338 (VSNi).

RESULTS

Genotype selection

The purpose of the pre-screen was to identify seedlings with
increased rates of Pi removal from solution. The results
showed that ecotype had an effect on P removal (F35,142 ¼
3.07, P , 0.001). The ecotype with the highest removal of P
from solution was IRL-OP-02538 (Supplementary Data 1).
The seedling with the highest P removal (63.56) was propa-
gated together with a seedling from the cultivar ‘Cashel’
(41.51), which displayed an average removal of P from sol-
ution. We chose to test two genotypes as opposed to a single
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genotype in order to identify more general response mechan-
isms of perennial ryegrass to 24 h of P deficiency and avoid
making assumptions based on the response of a single
genotype.

Array hybridization across species

Initial experimentation used genomic DNA to determine the
overall level of hybridization of perennial ryegrass genome to
probes on the barley microarray. This took advantage of the
extreme sensitivity of the Agilent microarray platform.
Approximately 40 % of probes (16000 genes) hybridized
with measurable signal to perennial ryegrass genomic DNA.
This level of hybridization reflects the levels of sequence
diversity between the two species, although the 60-mer
probes utilized in the Agilent microarray allow for a certain
degree of mismatches, as reported previously for analysis of
diverse potato genotypes (Ducreux et al., 2008). After hybrid-
ization with cDNA derived from leaf and root RNA, approx.
6800 and approx. 6300 probes, respectively, produced an
acceptable signal amongst replicates.

The validity of the array results was verified by real-time
RT-PCR of seven selected genes (Table 1) identified as signifi-
cantly regulated by using the barley arrays. The results were in
general agreement with the array results with the exception of
U35-44k-v1-8347, a putative MAP3K-like protein kinase,
which was not identified as being significantly up-regulated
by real-time RT-PCR (Table 1). Indeed, the strong agreement
confirms the efficacy of the barley arrays for analysing gene
expression in perennial ryegrass.

Transcriptomic changes in leaf tissue under P deficiency

Using the barley arrays the expression profiles of two peren-
nial ryegrass genotypes changed in response to 24 h of P
deficiency (Fig. 1; Supplementary Data 4 and 5, available
online). The genes significantly regulated (≥two-fold and
P , 0.05) in each genotype are shown in Supplementary
Data 4. The greatest number of significantly regulated genes
(222) was discovered in the leaf tissue of Cashel-P under P
deficiency, with 95 % of these genes being up-regulated. In

contrast, a much smaller number of genes (35) were signifi-
cantly regulated in the leaf tissue of IRL-OP-02538-P
(Fig. 1A).

Only 21 genes were significantly regulated in a similar
fashion in both genotypes, some of which have an unknown
function (Table 2). No down-regulated genes were common
between genotypes. The gene with the greatest induction in
both genotypes encodes a putative glycerol 3-phosphate per-
mease (G3PP).

In all cases there were a number (three) of genes encoding
phosphatases up-regulated under P deficiency in leaf tissue
(Supplementary Data 4). In addition, one gene encoding a
phosphate transporter was also up-regulated but to a lesser
extent. One group of genes was notably up-regulated, particu-
larly in the Cashel-P genotype, and these were those involved
in cell-wall synthesis with five cellulose synthase genes
up-regulated under P deficiency (CESA4, CESA9, CESA1,
CESA2 and CESA8). Other genes involved in cell-wall modi-
fication were also identified with the gene encoding ENDO-1,
4-beta-xylanase, which catalyses the hydrolysis of the major
plant hemicellulose, xylan, showing the greatest increase in
expression in Cashel-P under P deficiency.

Metabolite changes in leaf tissue under P deficiency

Metabolite profiling was carried out on genotypes from
IRL-OP-02538 and ‘Cashel’ when grown under normal and
restricted P supply. The profiles included the levels of 206
metabolites (140 identified), which included 116 polar metab-
olites and 90 non-polar metabolites. PCA revealed distinguish-
ing differences between the profiles of leaves from different
genotypes (Supplementary Data 3, Fig. S3, available online)
and, to a lesser extent, between treatments. An ANOVA ident-
ified a number of significantly different (P , 0.05) metabolites
in the different tissues and genotypes (Fig. 1B). In contrast to
the transcriptomic data, no major difference in the number of
up-regulated metabolites between genotypes was found,
although the majority of the significantly regulated metabolites
were different. In the leaf tissue of IRL-OP-02538-P there were
27 regulated metabolites (including nine unidentified). One
unidentified metabolite experienced an increase under P

TABLE 1. Validation of microarray leaf and root data by real-time RT-PCR of seven genes identified as significantly regulated from
leaf or root hybridizations

Description Rice match Putative function
Array RT-PCR

Cashel-P IRL-OP-02538-P Cashel-P IRL-OP-02538-P

Leaf
U35-44k-v1-12109 LOC-Os02g33710.1 Histidine decarboxylase 5.9 (0.001) 5.8 (0.000) 8.2 (0.000) 7.4 (0.000)
U35-44k-v1-37470 LOC-Os12g37600.1 Glycerol-3-phosphate acyltransferase 1 0.9 (0.951) 5.8 (0.005) 0.9 (0.904) 2.7 (0.029)
U35-44k-v1-8347 LOC-Os03g30130.2 Phospholipase C 2.8 (0.007) 4.3 (0.006) 1.4 (0.374) 1.6 (0.178)
U35-44k-v1-7335 LOC-Os01g54620.1 CESA4 – cellulose synthase 1.4 (0.702) 7.0 (0.038) 1.2 (0.626) 4.0 (0.013)
Root
U35-44k-v1-22715 LOC-Os01g67126.1 60S ribosomal protein L5-2 3.3 (0.585) 3.6 (0.032) 0.6 (0.714) 8.2 (0.000)
U35-44k-v1-49610 LOC-Os08g43870.1 Hypothetical protein 1.0 (0.939) 2.6 (0.024) 0.9 (0.543) 2.8 (0.003)
U35-44k-v1-43490 LOC-Os08g39300.1 Serine-glyoxylate aminotransferase 1.2 (0.718) 0.3 (0.021) 0.7 (0.487) 0.3 (0.000)

The fold change for both array and RT-PCR data are shown with associated significance values in parentheses; significant differences in bold. Array data
were analysed in GeneSpring and RT-PCR data in REST.
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deficiency, while levels of the remaining 26 (Table 3)
declined. This is in contrast to the genotype Cashel-P in
which levels of 11 metabolites increased and levels of ten
decreased (Table 4). From the 21 significantly regulated
metabolites in Cashel-P in leaf tissue, four remain unidenti-
fied. These differences in trends between genotypes contribu-
ted significantly to the segregation seen in the PCA of the leaf
tissue. In Cashel-P, there was a significant decrease in amino
acids (asparagine, glutamine, homoserine and histidine)

while the levels of putative phytol-derived metabolites
appeared to be up-regulated (phytol A-C and phytil methyl
ether). Despite the overall differences in the metabolic
response to P limitation, both genotypes experienced a signifi-
cant decrease in levels of Pi.

Trancriptomic changes in root tissue under P deficiency

There were a much lower number of significantly regulated
genes under P deficiency in the root tissue in comparison with
leaf tissue. Furthermore, the majority of the significantly
regulated genes were down-regulated in both genotypes
(Supplementary Data 5). In Cashel-P the down-regulated
genes included those which encode a pair of ribosomal
proteins, an asparagine synthetase (EC 6.3.5.4), a serine-
glyoxylate aminotransferase (EC _2.6.1.45), a fructose-1,
6-bisphosphatase (EC 3.1.3.11) and a sedoheptulose-1, 7-
bisphosphatase (EC 3.1.3.37; full list in Supplementary Data
5). Only one gene was commonly regulated in both genotypes
and this encoded a 1,4-beta-xylanase (EC 3.2.1.8), which was
up-regulated.

Metabolite changes in root tissue under P deficiency

In the PCA of the metabolite profiles from root tissue
(Supplementary Data 3, Fig. S4) there was no segregation
between genotypes as observed in the leaf tissue. However, the
ANOVA highlighted differences which could not be visualized
using PCA of the root tissue. A greater difference in the
number of significantly regulated metabolites was found
between genotypes in the root tissue: 14 metabolites (eight uni-
dentified) were regulated in Cashel-P (Table 4) whereas 36 (ten
unidentified) were regulated in IRL-OP-02538-P under P

Cashel-P Cashel-PIRL-OP-2538-P IRL-OP-2538-P

RootLeaf

A

222 21 35 8 1 26

Cashel-P Cashel-PIRL-OP-2538-P IRL-OP-2538-P

B

19 2 25 11 3 33

FI G. 1. (A) Number of genes from barley array hybridizations with ≥
two-fold change in expression (P , 0.05) under limited phosphorus for each
genotype. (B) Number of metabolites with significant fold change (P ,
0.05) under limited phosphorus for each genotype. Leaf tissue on left and

root tissue on right.

TABLE 2. Genes significantly (P , 0.05) induced ≥ two-fold after 24 h of P deficiency in the leaf tissue of both Cashel-P and
IRL-OP-02538-P

IRL-OP-02538-P Cashel-P

Array ID Best hit rice pp5 E value Fold change P Fold change P

U35-44k-v1-27526 Glycerol 3-phosphate permease 1 × 10245 7.6 ,0.01 17.1 ,0.01
U35-44k-v1-31414 Glycerol 3-phosphate permease 7 × 10270 7.0 ,0.01 12.3 ,0.01
U35-44k-v1-12109 Histidine decarboxylase 1 × 102121 5.9 ,0.01 5.8 ,0.01
U35-44k-v1-7536 Purple acid phosphatase precursor 1 × 102166 5.5 ,0.01 5.3 ,0.01
U35-44k-v1-26073 Nucleotide pyrophosphatase/phosphodiesterase 1 × 102130 4.5 ,0.01 5.4 ,0.01
U35-44k-v1-31178 No hits found 3.7 ,0.01 2.9 0.01
U35-44k-v1-7801 UDP-sulfoquinovose synthase chloroplast precursor 1 × 10268 3.4 0.01 4.2 ,0.01
U35-44k-v1-27915 ids4-like protein 4 × 10218 3.4 ,0.01 5.3 ,0.01
U35-44k-v1-48069 No hits found 3.1 ,0.01 2.4 0.02
U35-44k-v1-24642 Expressed protein 2 × 10215 2.9 0.04 5.7 ,0.01
U35-44k-v1-8347 Phospholipase C 1 × 102159 2.8 0.01 4.3 0.01
U35-44k-v1-30444 Expressed protein 4 × 10243 2.8 ,0.01 2.0 ,0.01
U35-44k-v1-36750 Expressed protein 4 × 10285 2.7 ,0.01 2.4 0.04
U35-44k-v1-28139 Phosphate transporter 1 1 × 10282 2.7 0.04 10.5 0.01
U35-44k-v1-27385 Acid phosphatase/vanadium-dependent haloperoxidase-related 4 × 1025 2.5 0.01 2.4 ,0.01
U35-44k-v1-28600 Expressed protein 4 × 10265 2.4 0.01 2.5 ,0.01
U35-44k-v1-2801 Expressed protein 3 × 10221 2.3 0.05 2.6 ,0.01
U35-44k-v1-9242 Diacylglycerol O-acyltransferase 1 putative expressed 1 × 10297 2.1 0.05 6.3 0.01
U35-44k-v1-11282 Xyloglucan endotransglucosylase/hydrolase protein 30 precursor 8 × 10247 2.1 0.05 2.3 0.04
U35-44k-v1-1867 Pyrophosphate–fructose 6-phosphate 1-phosphotransferase alpha subunit 0.0 2.1 0.01 2.6 0.01
U35-44k-v1-6244 Glycerophosphoryl diester phosphodiesterase precursor 3 × 10293 2.1 0.03 2.4 ,0.01
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TABLE 3. Comparison of identified significantly different (P , 0.05) metabolites in the leaves and roots of IRL-OP-2538-P under
P-sufficient and P-deficient phosphorous

Average response ratio of
IRL-OP-2538-P under

sufficient P supply

Average response ratio of
IRL-OP-2538-P under

limited P supply Low/high P Log(ratio)

Leaf
Unknown 1.83 × 1024 3.10 × 1024 1.69 0.007 0.23
Phytil methyl ether 2nd peak 4.47 × 1021 4.01 × 1021 0.90 0.028 –0.05
Unknown 5.17 × 1021 4.49 × 1021 0.87 0.045 –0.06
Unknown 1.10 × 1022 9.22 × 1023 0.84 0.037 –0.08
Phenylalanine 5.64 × 1024 4.71 × 1024 0.84 0.015 –0.08
n-Tetracosanol 1.11 × 1022 9.01 × 1023 0.81 0.010 –0.09
Octadecanol 5.25 × 1023 4.02 × 1023 0.76 0.044 –0.12
Isoleucine 3.09 × 1024 2.13 × 1024 0.69 0.002 –0.16
Unknown 3.71 × 1024 2.53 × 1024 0.68 0.001 –0.17
Unknown 5.13 × 1024 3.48 × 1024 0.68 0.007 –0.17
Citric acid 5.48 × 1023 3.50 × 1023 0.64 0.032 –0.19
Pentadecenoic acid 5.43 × 1023 3.37 × 1023 0.62 0.002 –0.21
b-Alanine 4.94 × 1025 3.01 × 1025 0.61 0.016 –0.22
Leucine 4.13 × 1024 2.49 × 1024 0.60 0.030 –0.22
Fructose* 1.19 × 1022 7.15 × 1023 0.60 0.005 –0.22
Tyrosine 2.40 × 1024 1.37 × 1024 0.57 0.013 –0.24
Unknown 4.19 × 1024 2.39 × 1024 0.57 0.049 –0.24
Malic acid 1.22 × 1022 6.73 × 1023 0.55 ,0.001 –0.26
Unknown 5.80 × 1025 2.58 × 1025 0.44 ,0.001 –0.35
n-Pentadecanoic acid 8.70 × 1024 3.82 × 1024 0.44 0.029 –0.36
Lysine 3.61 × 1025 1.56 × 1025 0.43 0.017 –0.36
Fucosterol 1.84 × 1023 7.44 × 1024 0.41 0.020 –0.39
Phosphate 3.06 × 1023 1.20 × 1023 0.39 0.004 –0.41
2-Piperidinecarboxylic acid 2.27 × 1025 8.58 × 1026 0.38 0.015 –0.42
Unknown 2.26 × 1023 8.37 × 1024 0.37 0.023 –0.43
Unknown 2.12 × 1023 7.73 × 1024 0.36 ,0.001 –0.44
Proline 2.20 × 1023 5.26 × 1024 0.24 0.043 –0.62
Root
Unknown 5.63 × 1024 0.00 * ,0.001 *
Stigmastadienol 6.68 × 1025 6.03 × 1024 9.03 0.032 0.96
Diamino-1,3-propane 3.25 × 1026 1.93 × 1025 5.94 0.009 0.77
Unknown 8.96 × 1024 3.65 × 1023 4.08 0.006 0.61
Unknown 1.72 × 1023 5.29 × 1023 3.07 0.003 0.49
Unknown 4.07 × 1025 9.54 × 1025 2.34 0.002 0.37
D-5-Avenasterol 1.63 × 1023 3.63 × 1023 2.23 0.010 0.35
Putrescine 7.52 × 1025 1.62 × 1024 2.15 ,0.001 0.33
Galactose 2.89 × 1025 5.78 × 1025 2.00 0.046 0.30
Fructose* 1.22 × 1023 2.35 × 1023 1.93 ,0.001 0.29
Glucose* 1.23 × 1023 2.27 × 1023 1.85 ,0.001 0.27
Unknown 5.51 × 1025 9.49 × 1025 1.72 0.008 0.24
Shikimic acid 2.66 × 1025 4.00 × 1025 1.50 0.001 0.18
Unknown 2.07 × 1024 3.09 × 1024 1.49 0.011 0.17
Sucrose 7.85 × 1022 1.16 × 1021 1.48 0.027 0.17
n-Octadecanoic acid 7.44 × 1023 9.96 × 1023 1.34 0.020 0.13
Linoleic acid 2.06 × 1021 2.62 × 1021 1.27 0.001 0.10
a-Linolenic acid 5.63 × 1022 6.82 × 1022 1.21 0.016 0.08
b-Sitosterol 1.55 × 1021 1.86 × 1021 1.20 0.017 0.08
n-Hexadecanoic acid 2.05 × 1021 2.47 × 1021 1.20 0.017 0.08
Valine 1.61 × 1023 1.27 × 1023 0.79 0.031 –0.10
Eicosanol 1.08 × 1022 7.60 × 1023 0.70 0.026 –0.15
Leucine 9.10 × 1024 6.26 × 1024 0.69 0.015 –0.16
Unknown 4.80 × 1024 3.02 × 1024 0.63 0.041 –0.20
Lysine 2.29 × 1024 1.42 × 1024 0.62 0.006 –0.21
Phosphate 1.24 × 1022 7.33 × 1023 0.59 ,0.001 –0.23
Cinnamic acid 4.50 × 1022 2.60 × 1022 0.58 0.045 –0.24
4- or 3-Hydroxycinnamic acid 2.23 × 1022 1.23 × 1022 0.55 ,0.001 –0.26
Alanine 1.83 × 1023 9.89 × 1024 0.54 0.001 –0.27
Unknown 5.29 × 1024 2.75 × 1024 0.52 0.006 –0.28
Allantoin 8.70 × 1024 4.16 × 1024 0.48 ,0.001 –0.32
Unknown 1.25 × 1023 5.05 × 1024 0.40 ,0.001 –0.39
Unknown 1.36 × 1024 4.74 × 1025 0.35 ,0.001 –0.46
n-Docosanol 8.50 × 1024 2.97 × 1024 0.35 0.007 –0.46
Heneicosanol 9.84 × 1024 3.15 × 1024 0.32 0.002 –0.49
Mannitol 3.14 × 1024 3.64 × 1025 0.12 ,0.001 –0.94

* Both glucose and fructose result in two peaks corresponding to their isomers. The levels of both isomers were combined to calculate the total value of
glucose and fructose.
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deficiency (Table 3). Furthermore, the latter genotype experi-
enced a general increase in sugar levels (glucose, fructose,
galactose and sucrose) and fatty acids (C16:0, C18:0, C18:2 and
C18:3) whilst levels of some of the pyruvate-derived amino
acids (alanine, leucine and valine) decreased. Among the metab-
olites significantly regulated in Cashel-P (14), only six were
putatively identified. For Cashel-P, the imposition of limiting
P conditions resulted in an increase in the levels of sucrose
and some amino acids (methionine, aspartic acid and glutamic
acid) whilst levels of some fatty acid (C24:0 and C18:1) decreased.

DISCUSSION

This study aimed to uncover changes in the transcriptome
and metabolome of two perennial ryegrass genotypes
during the initial stages of P deficiency. It is the first study
looking at the global responses to low P availability in peren-
nial ryegrass and provides an insight into the early-stage
response mechanisms of the plant to P deficiency.
Metabolic profiling demonstrated that P deficiency resulted

in a Pi decrease in the leaves of both genotypes (Tables 3
and 4), thus confirming that the experimental conditions
have successfully produced an effect on the levels of Pi
and that the time frame (24 h) was sufficient to elicit this
response. However, no significant differences in growth
were observed (data not shown). Hammond et al. (2003)
reported that in A. thaliana the concentration of P in the
shoots decreases without causing an effect of plant growth
between 24 and 72 h after P withdrawal, suggesting that
24 h of exposure to P withdrawal is a plausible time frame
to expect a decrease in shoot P in perennial ryegrass.
Interestingly, Hammond et al. (2003) used the promoter of
the SDQ1 gene (UDP-sulfoquinovose synthase), which
specifically responds to P limitation, to control the expression
of the GUS marker gene in an attempt to develop smart
plants allowing the detection of P-limitation before it affected
plant growth. In this study we observed an increase in the
expression of SDQ1 after 24 h (Table 2), which appears to
confirm that the experimental conditions have resulted in a
specific response from the plant to P limitation.

TABLE 4. Comparison of identified significantly different (P , 0.05) metabolites in the leaves and roots of Cashel-P under
P-sufficient and P-deficient conditions

Average response ratio of Cashel-P
under sufficient P supply

Average response ratio of Cashel-P
under limited P supply Low/high P Log(ratio)

Leaf
g-Aminobutyric acid 3.41 × 1024 6.86 × 1024 2.01 0.006 0.30
Unknown 3.56 × 1025 5.65 × 1025 1.59 0.029 0.20
Galactose/glycerol conjugate 8.19 × 1025 1.25 × 1024 1.53 0.042 0.18
Threonic acid 8.27 × 1024 1.21 × 1023 1.46 0.034 0.16
Unknown 2.60 × 1021 3.62 × 1021 1.4 ,0.001 0.14
Phytol B 2.12 × 1022 2.85 × 1022 1.34 0.002 0.13
Phytol A 1.27 × 1022 1.66 × 1022 1.31 ,0.001 0.12
Sucrose 4.01 × 1021 5.04 × 1021 1.26 0.038 0.10
Phytol C 6.33 × 1023 7.88 × 1023 1.25 0.025 0.10
n-Hexadecenoic acid 4.43 × 1022 5.54 × 1022 1.25 0.014 0.10
Phytil methyl ether 1.49 × 1021 1.79 × 1021 1.2 0.004 0.08
Homoserine 2.16 × 1024 1.17 × 1024 0.54 0.047 –0.27
2-Piperidinecarboxylic acid 3.95 × 1025 2.03 × 1025 0.51 0.048 –0.29
Unknown 7.45 × 1025 3.18 × 1025 0.43 0.010 –0.37
5-Oxoproline 5.29 × 1022 2.27 × 1022 0.43 0.049 –0.37
Histidine 7.89 × 1026 2.04 × 1026 0.26 0.024 –0.59
Spermidine 5.38 × 1026 1.18 × 1026 0.22 0.048 –0.66
Glutamine* 2.66 × 1023 5.3 × 1024 0.20 0.026 –0.70
Phosphate 7.64 × 1023 1.17 × 1023 0.15 0.002 –0.82
Asparagine* 1.11 × 1023 1.5 × 1024 0.14 0.009 –0.87
Unknown 3.48 × 1024 3.10 × 1025 0.09 0.046 –1.05
Root
Unknown 2.40 × 1024 5.71 × 1024 2.38 0.045 0.38
Unknown 1.08 × 1024 2.28 × 1024 2.11 0.019 0.32
Unknown 3.69 × 1024 7.56 × 1024 2.05 0.046 0.31
Methionine 3.62 × 1025 7.12 × 1025 1.97 0.027 0.29
Unknown 5.11 × 1025 9.36 × 1025 1.83 0.046 0.26
Sucrose 5.50 × 1022 9.70 × 1022 1.76 0.022 0.25
Aspartic acid 5.14 × 1023 8.28 × 1023 1.61 0.002 0.21
Glutamic acid 6.61 × 1023 9.84 × 1023 1.49 0.034 0.17
n-Tetracosanoic 1.35 × 1022 9.20 × 1023 0.68 0.043 –0.17
Unknown 1.21 × 1024 7.60 × 1025 0.63 0.028 –0.20
Octadecenoic acid 4.61 × 1023 2.53 × 1023 0.55 0.005 –0.26
Unknown 2.09 × 1023 1.05 × 1023 0.50 0.044 –0.30
Unknown 6.10 × 1024 2.69 × 1024 0.44 0.003 –0.36
Unknown 4.32 × 1025 1.39 × 1025 0.32 0.035 –0.49

* Both glutamine and asparagine generate two trimethylsilyl (TMS) derivatives which were combined to generate the total levels of asparagine and
glutamine. For glutamine the TMS4 derivative was multiplied by a factor of 2 before being combined with its other derivative.
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Furthermore, an increase in the expression of SDQ1 in
A. thaliana pho1 mutants (with low internal Pi concentration)
and in wild-type plants exposed to P imitation has been
reported (Essigmann et al., 1998). This led the authors to
suggest that this effect is caused by low shoot P
(Essigmann et al., 1998), which appears to be consistent
with our results.

Lipid membrane remodelling

One mechanism of adaptation to P-deficient growth con-
ditions is the remodelling of plant lipid membranes in order
to liberate Pi bound in membrane phospholipids (Plaxton,
2004). The increase reported in the expression levels of
genes encoding phospholipase A1 (EC 3.1.1.32) together
with increases in glycerophosphoryl diester phosphodiesterase
(EC 3.1.4.46, hydrolysis of deacylated phospholipids to gly-
ceraldehyde 3-phosphate), acid phosphatase/vanadium-
dependent hydrolase and diacylglycerol O-acyltransferase 1
(EC 2.3.1.20) also appears to suggest a certain degree of phos-
pholipid remodelling in the response to P deficiency in peren-
nial ryegrass. Photosynthetic membranes are characterized by
a substantial fraction of non-phosphorus lipids, such as galac-
tolipids or sulfolipids (e.g. sulfoquinovosyldiacylglycerol),
which reflects the need to conserve P by plants (Benning,
2009). Here we observed a significant increase in expression
of genes encoding UDP-sulfoquinovose synthase (EC
3.13.1.1), a key enzyme in the sulfoquinovosyldiacylglycerol
(SQDG) synthesis pathway, during P deficiency in the leaf
tissue of both genotypes. Hammond et al. (2003) demonstrated
that, in Arabidopsis, the expression of a gene involved in sul-
folipid biosynthesis (SQD1) is specifically increased in
response to P limitation. Furthermore, Misson et al. (2005)
demonstrated in Arabidopsis that under Pi deficiency SQDG
increased, whereas phosphatidylglycerol (PG) decreased.
These results are in agreement with elevated expression of
genes involved in SQDG synthesis and phospholipid
degradation.

We also observed an increase in gene expression levels of a
sulphate transporter in both genotypes, although the increase
was only significant in Cashel-P (Cashel-P: 5.2-fold, P ,
0.001; IRL-OP-02538-P: 2.8-fold, P ¼ 0.054). This has pre-
viously been observed in Arabidopsis and was proposed to
support an increased demand for sulphur during P deficiency
to meet the needs for increased sulfolipid synthesis (Misson
et al., 2005). An Arabidopsis mutant, sqd2, disrupted in a puta-
tive identified sulfolipid synthase (SQD2) gene, displayed no
measurable sulfolipid content and reduced growth under
P-deficient conditions (Yu et al., 2002). The authors of that
study hypothesized that sulfolipids may substitute for anionic
phospholipids under P-deficient conditions and therefore
allow photosynthesis to continue. Further support for lipid
membrane remodelling in perennial ryegrass can be seen
from the strong induction of a gene encoding G3PP under P
deficiency (7.5- and 17.1-fold, P , 0.001 in IRL-OP-02538-
P and Cashel-P, respectively). This suggests the enhanced
mobilization of glycerol 3-phosphate from the cytosol into
the chloroplast or endoplasmic reticulum where it could be uti-
lized in lipid biosynthesis (Fig. 2).

Our results indicate that the replacement of phospholipids
with sulfolipids in the membranes of photosynthetic tissue is
also occurring in perennial ryegrass under P deficiency and
that this is a rapid response to changes in P status.

Carbon partitioning

At the metabolome level in the leaves of IRL-OP-02538-P,
P deficiency was accompanied by an overall decrease in
metabolite levels whilst there were no putatively identified
up-regulated metabolites. The significantly regulated metab-
olites included a variety of metabolite classes such as sugars,
amino acids, fatty acids and organic acids. The overall
decrease in metabolite levels may be symptomatic of either a
decrease of source activity due to decreases in photosynthetic
activity, an increase in sink activity or both. P limitation has
been reported to impact upon photosynthetic activity (Foyer
and Spencer, 1986; Lauer et al., 1989; Rodriguez et al.,
1998; Hammond and White, 2008) although increases in the
root/shoot ratio are also considered typical effects of P limit-
ation (Freedan et al., 1989; Hermans et al., 2006; Hammond
and White, 2008) and may account for increased sink activity
as carbohydrates are exported from the leaves to the roots. A
study by Wissuwa et al. (2005) focused on determining
whether root growth in rice is affected by either source or
sink limitations when grown under P-deficient conditions
and they did this by comparing rice genotypes under four P
levels and two light treatments. The authors reported that net
photosynthesis was 70 % greater in plants grown under high,
compared with low, light but it was found that this did not
translate into greater root growth under P limitation, leading
them to suggest that assimilate supply from source leaves
was not a limiting factor under P limitation. Conversely, low
P supply appears to limit root growth directly. It was proposed
that the most tolerant genotype used in the experiment of
Wissuwa et al. (2005) preferably mobilized P to the roots,
which would increase P concentrations and consequently
promote growth. The levels of sugars in the roots of
IRL-OP-02538-P increase in response to P limitation, which
seem to suggest a decrease in sink activity, resulting from a
reduction in root growth. Root growth inhibition in response
to P limitation has been suggested to be mediated by
putrescine in rice (Shih and Kao, 1996), and although no
root/shoot ratios were measured, the significant up-regulation
of putrescine levels found in this study suggests a limitation
of root growth in IRL-OP-02538-P plants as an early response
to limited P availability.

Glycolytic bypasses

The results showed evidence of glycolytic bypasses being
utilized and these have previously been reported in other
species as being valuable mechanisms to enable the efficient
use of P during periods of deficiency (Theodorou and
Plaxton, 1993). We observed a significant increase in the
expression of a gene encoding an a-subunit of pyropho-
sphate : fructose 6-phosphate 1-phosphotransferase (PFP, EC
2.7.1.90) during P deficiency in the leaf tissue of both geno-
types. The phosphorylation of fructose 6-phosphate to fructose
1-6 bisphosphate during glycolysis is efficiently catalysed by
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ATP : fructose 6-phosphate 1-phosphotransferase (PFK, EC
2.7.1.11), using ATP (Stryer, 1995). PFP can also catalyse
this reaction but employing PPi rather than ATP (Fig. 2). It
has already been demonstrated in black mustard (Brassica
nigra) suspension cells that PFP activity is increased under P
deficiency and its activity falls to below the level of PFK as
solute P levels increase (Duff et al., 1989). Furthermore, it
was shown that the a-subunit of PFP has a regulatory role
over the b-subunit and that its activity is tightly regulated by
intracellular Pi status (Theodorou et al., 1992). Our results
demonstrate that a switch to alternative pathways during gly-
colysis occurs at an early stage of P deficiency in perennial
ryegrass.

Cell-wall metabolism

One class of genes stands out as being abundant within the list
of transcripts significantly up-regulated in leaf tissue under P

deficiency, particularly in the Cashel-P genotype. These are
genes involved in cell-wall synthesis and remodelling.
Previous reports have also reported the up-regulation of genes
involved in cell-wall synthesis under P-limiting conditions
(Wasaki et al., 2003). We identified the up-regulation of five
genes encoding the catalytic subunit of cellulose synthase
(CESA) between both genotypes: four in Cashel-P and one in
IRL-OP-02538-P. Ten CESA genes are reportedly present in
the Arabidopsis genome and the role of these in cell-wall syn-
thesis has previously been described by Scheible and Pauly
(2004). The significant up-regulation of this gene family
points to an increased production of cellulose during the early
stages of P deficiency. However, the gene with the highest
increase in expression under P deficiency in Cashel-P leaves
encodes an ENDO-1, 4-beta-xylanase (EC 3.2.1.8), a xylan
hydrolase. Together, these results may suggest a remodelling
of cell walls, with cellulose content increasing and xylan
content decreasing, although direct evidence is still needed to
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corroborate this. The exact role, if any, that this modification
could have under P deficiency remains unknown. Interestingly,
it has been recently demonstrated that the over-expression of a
wall-bound purple acid phosphatase from tobacco (NtPAP12)
resulted in an increased deposition of cellulose in transgenic
cells (Kaida et al., 2009). Transcripts coding for acid
phosphatases (purple acid phosphatase precursor and acid phos-
phatase 1) are up-regulated in both genotypes in our study. The
induction of acid phosphatases is regarded as a universal
symptom/response of P limitation (Duff et al., 1994) and their
role in hydrolysing Pi from mono-esters makes them important
in intracellular and extracellular Pi salvage systems (Plaxton,
2004).

Signalling mechanisms

The microarray results indicated changes in the expression
levels of genes involved in signal transduction that may also
be involved in the leaf response to P deprivation. A gene
encoding phospholipase C (PLC, EC 3.1.4.3) was significantly
up-regulated in the leaf tissue of both genotypes. PLC cata-
lyses the hydrolysis of phosphatidylinositol 4,5-bisphosphate
[PI(4,5)P2] into diacylglycerol (DAG) and inositol tripho-
sphate (IP3), the latter diffusing through the cytosol releasing
calcium from intracellular stores or being converted to inositol
hexakisphosphate (IP6), both of which may play roles as sig-
nalling molecules (Meijer and Munnik, 2003).

We also identified the up-regulation of an ids4-like gene in
both genotypes, which has been identified in previous tran-
scriptomic studies as being enhanced under P deficiency
(Misson et al., 2005; Guo et al., 2008). The ids4-like gene
up-regulated here shares most significant homology with
At2g45130 from Arabidopsis that contains an SPX domain, a
region in PHO1 genes identified as being important for inor-
ganic phosphate homeostasis (Wang et al, 2004). This gene,
AtSPX3, has recently been proposed to play a role in a
phosphate-signalling network (Duan et al., 2008). It was
shown that when AtSPX3 was repressed by RNAi it resulted
in augmentation of P-deficient symptoms and altered allo-
cation of internal P, leading to the conclusion that AtSPX3
plays an important role in plant adaptation to P deficiency
(Duan et al., 2008). The high induction of an AtSPX3 homol-
ogue in the early stages of P deficiency in both genotypes of
our study indicates it may have a similar role to play in adap-
tation to P deficiency in perennial ryegrass.

Aromatic secondary metabolites

A common physiological response in a wide variety of
plants to long-term P limitation is the increase in anthocyanin
content in leaf tissue (Hammond et al., 2004) and a number of
studies have demonstrated the up-regulation of genes involved
in anthocyanin biosynthesis during P deficiency (Hammond
et al., 2003; Misson et al., 2005). It is thought that anthocyanin
helps protect the photosynthetic machinery during leaf senes-
cence (Hoch et al., 2001). The biosynthesis of anthocyanins
involves the shikimate pathway to produce phenylalanine,
which eventually leads to flavonoid biosynthesis (Fig. 2).
The accumulation of anthocyanin is generally a feature of
long-term P deficiency and the majority of the genes are

specifically induced during long-term deficiency (Misson
et al., 2005). In IRL-OP-02538-P leaves after 24 h of P
deficiency, two transcripts involved in phenylalanine and fla-
vonoid biosynthesis (anthranilate phosphoribosyltransferase,
EC 2.4.2.18; and flavonol synthase/flavanone 3-hydroxylase,
EC 1.14.11.9) were up-regulated, which may suggest the
early onset of a secondary metabolite response in this
genotype.

Summary

Although most metabolic profiling reports aimed at studying
the responses of plants to P deficiency have not been per-
formed at early stages of the response, it seems that a signifi-
cant degree of metabolic control is evident in the early stages
of such response. This was particularly evident in the leaves,
suggesting that P sensing mechanisms readily signal to the
leaf tissue eliciting a metabolic response. We also observed
significant changes in the transcriptome, which pointed to
the utilization of glycolytic bypasses, remodelling of lipid
membranes and P-scavenging mechanisms under early P
deficiency. Although at an early stage, these studies are provid-
ing insights at the biochemical and genetic level that will
undoubtedly facilitate hypotheses testing via transgenic meth-
odologies and ultimately identify a way forward to improve
P-use efficiency in ryegrass by employing candidate genes
and marker-assisted breeding approaches.

SUPPLEMENTARY DATA

Supplementary data are available online at w.aob.oxford-
journals.org and consist of the following files. (1) Mean
values for Pi removal from solution by 34 ecotypes and two
cultivars. (2) Primer sequences used in real-time RT-PCR to
verify array results. (3) Metabolomics quality control and
PCA. (4) Genes significantly regulated (.two-fold, P ,
0.05) by P deficiency in leaf tissue. (5) Genes significantly
regulated (.two-fold, P , 0.05) by P deficiency in root tissue.
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