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ABSTRACT

Motivation: Biological networks are often modeled by random
graphs. A better modeling vehicle is a multigraph where each
pair of nodes is connected by a Poisson number of edges.
In the current model, the mean number of edges equals the
product of two propensities, one for each node. In this context
it is possible to construct a simple and effective algorithm for
rapid maximum likelihood estimation of all propensities. Given
estimated propensities, it is then possible to test statistically for
functionally connected nodes that show an excess of observed
edges over expected edges. The model extends readily to directed
multigraphs. Here, propensities are replaced by outgoing and
incoming propensities.
Results: The theory is applied to real data on neuronal connections,
interacting genes in radiation hybrids, interacting proteins in a
literature curated database, and letter and word pairs in seven
Shaskespearean plays.
Availability: All data used are fully available online from their
respective sites. Source code and software is available from
http://code.google.com/p/poisson-multigraph/
Contact: klange@ucla.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Random graph theory has proved vital in modeling the internet
and constructing biological and social networks. In the original
formulation of the theory by Erdös and Rényi (1959, 1960), there
are three key assumptions: (a) a graph exhibits at most one edge
between any two nodes; (b) the formation of a given edge is
independent of the formation of other edges; and (c) all edges form
with the same probability. There is a general agreement that this
simple model is too rigid to capture many real-world networks
(Albert and Barabasi, 2002; Strogatz, 2001). The surveys (Barabasi
and Albert, 1999; Durrett, 2006; Newman et al., 2001) summarize
some of the elaborations and applications of two generations of
scholars, with emphasis on power laws, phase transitions and
scale-free networks. In the current article, we study a multigraph
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extension of the Erdös–Rényi model appropriate for very large
networks. Our model specifically relaxes assumptions (a) and (c).
With appropriate alternative assumptions in place, we derive and
illustrate a novel maximum likelihood algorithm for estimation of
the model parameters. With these parameters in hand, we are then
able to find statistically significant connections between pairs of
nodes.

In practice many graphs are derived from multigraphs. To simplify
analysis, the multiple edges between two nodes of a multigraph are
collapsed to a single edge. The movie star example in reference
(Newman et al., 2001) is typical. In the movie star graph, two actors
are connected by an edge when they appear in the same movie.
Some actor pairs will appear in a movie mostly by chance. Other
actor pairs will be connected by multiple edges because they are
intrinsically linked. Classic pairs such as Abbot and Costello, Loy
and Powell, and Lewis and Martin come to mind.

The well-studied neural network of Caernorhabditis elegans is
a prime biological example. Here neuron pairs are connected by
multiple synapses. Because collapsing edges wastes information,
it is better to tackle the multiplicity issue directly. Thus, we will
deal with random multigraphs. For our purposes, these exclude
loops and fractional edge weights. Instead of a Bernoulli number
of edges between any two nodes as in the Erdös and Rényi model,
we postulate a Poisson number of edges. This choice can be viewed
as unnecessarily restrictive, but it is worth recalling that a Poisson
distribution can approximate a binomial or normal distribution.
Furthermore, the Poisson assumption allows an arbitrary mean
number of edges.

In relaxing assumption (c) above, we want to introduce as few
parameters as possible but still capture the capacity of some nodes
to serve as hubs. Thus, we assign to each node i a propensity pi
to form edges. The random number of edges Xij between nodes i
and j is then taken to be Poisson distributed with mean pipj . Node
pairs with high propensities will have many edges, pairs with low
propensities will have few edges, and pairs with one high and one
low propensity will have intermediate numbers of edges. Later, we
will show that these choices promote simple and rapid estimation of
the propensities. Another virtue of the model is that it generalizes to
directed graphs where arcs replace edges. For directed graphs, we
postulate an outgoing propensity pi and an incoming propensity qi
for each node i. The number of arcs Xij from i to j is taken to be
Poisson distributed with mean piqj . In the directed version of the
model, the two random variables Xij and Xji are distinguished. In
accord with assumption (b), the random counts Xij in either model
are taken to be independent.
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Protein and gene networks can involve tens of thousands of
nodes. Estimation of propensities under the Poisson multigraph
model for such networks is consequently problematic. Standard
algorithms for parameter estimation such as least squares, Newton’s
method and Fisher scoring require computing, storing and inverting
large Hessian matrices. Such actions are not really options in
high-dimensional problems. One of the biggest challenges in the
present article is crafting an alternative estimation algorithm that
remains viable in high dimensions. Fortunately, the MM (minorize–
maximize) principle (Lange, 2004; Lange et al., 2000) allows one to
design a simple iterative algorithm for the random multigraph model.
Large matrices are avoided and convergence is reasonably fast. In
the appendix, we prove that the new MM algorithm converges to
the global maximum of the likelihood.

Another strength of the model is that it permits assessment
of statistical significance. In other words, it helps distinguish
random connectivity from functional connectivity. The basic idea
is very simple. Every edge count Xij is Poisson distributed with
a parameterized mean. If we substitute estimated propensities for
theoretical propensities, then we can estimate the mean and therefore
approximate the tail probability p=Pr(Xij ≥xij) associated with
the observed number of edges xij between two nodes i and j.
The smaller this probability, the less likely these edges occur
entirely by chance. For instance, in the movie star example, the
actor pair Abbot and Costello would be flagged as significant in
any representative dataset of their era. In less obvious examples,
discerning functionally connected pairs is more challenging. In the
appendix (Supplementary Material), we show how to approximate
very low P-values under the Poisson distribution.

To test the model, we analyze five real datasets. Three of these
are biological and involve undirected graphs. The first is the neural
network of C.elegans (Watts and Strogatz, 1998; White et al., 1986)
already mentioned. The second is a network obtained by subjecting
a panel of radiation hybrids to gene expression measurements
(Ahn et al., 2009; Park et al., 2008). In the network two genes
are connected by an edge if a marker significantly regulates the
expression levels of both genes in the clones of the panel. Our
third biological example involves interacting proteins taken from
the curated Human Protein Reference Database (Keshava Prasad
et al., 2009). For directed graphs, we turn to literary analysis of a
subset of Shakespeare’s plays. Here, we look at letter pairs and word
pairs. Every time the first letter of a pair precedes the second letter
of a pair in a word, we introduce an arc between them. Likewise,
every time the first word of a pair precedes the second word of a pair
in a sentence, we introduce an arc between them. Other applications
such as monitoring internet traffic come immediately to mind but
will not be treated here.

Let us stress the exploratory nature of the Poisson multigraph
model. Its purpose is to probe large datasets for hidden structure.
Identifying hub nodes and node pairs with excess edges are primary
goals. The fact that the model is at best, a cartoon does not eliminate
these possibilities. For example, even if we do not take the P-values
generated by the model seriously, they can still serve to rank
important node pairs for further investigation and experimentation.
Computational biology is full of compromises between realistic
models and computational feasibility.

Before tackling these specific examples, we will briefly review
the MM principle and lay out the details of the model. Once this
foundation is in place, we show how a simple inequality drives

the optimization process. The MM principle is designed to steadily
increase the log-likelihood of the model given the data. This ascent
property is the key to understanding how the algorithm operates.

2 BACKGROUND ON THE MM ALGORITHM
As we have already emphasized, the MM algorithm is a principle
for creating algorithms rather than a single algorithm. There are
two versions of the MM principle, one for iterative minimization
and another for iterative maximization. Here, we deal only with
the maximization version. Let L(p) be the objective function we
seek to maximize. An MM algorithm involves minorizing L(p) by
a surrogate function g(p |pn) anchored at the current iterate pn of a
search. Minorization is defined by the two properties

L(pn) = g(pn |pn) (1)

L(p) ≥ g(p |pn), p �=pn. (2)

In other words, the surface p �→g(p |pn) lies below the surface
p �→L(p) and is tangent to it at the point p=pn. Construction of
the surrogate function g(p |pn) constitutes the first M of the MM
algorithm.

In the second M of the algorithm, we maximize the surrogate
function g(p |pn) rather than L(p). If pn+1 denotes the maximum
point of g(p |pn), then this action forces the ascent property
L(pn+1)≥L(pn). The straightforward proof

L(pn+1) ≥ g(pn+1 |pn) ≥ g(pn |pn) = L(pn),

reflects definitions (1) and (2) and the choice of pn+1. The ascent
property is the source of the MM algorithm’s numerical stability.
Strictly speaking, it depends only on increasing g(p |pn), not on
maximizing g(p |pn).

The celebrated EM algorithm (Dempster et al., 1977) is a special
case of the MM algorithm (Lange, 2004; Lange et al., 2000). The EM
algorithm always relies on some notion of missing data. Discerning
the missing data in a statistical problem is sometimes easy and
sometimes hard. In our Poisson graph model, it is unclear what
constitutes the missing data. In contrast, derivation of a reliable MM
algorithm is straightforward but ad hoc. Readers wanting a more
systematic derivation are apt to be disappointed. In our defense, it
is possible to codify several successful strategies for constructing
surrogate functions (Hunter and Lange, 2004; Lange, 2004; Lange
et al., 2000).

3 METHODS
Consider a random multigraph with m nodes labeled 1,2,...,m. A random
number of edges Xij connects every pair of nodes {i,j}. We assume that
the Xij are independent Poisson random variables with means µij . As a
plausible model for ranking nodes, we take µij =pipj , where pi and pj are
non-negative propensities. The log-likelihood of the observed edge counts
xij =xji amounts to

L(p) =
∑
{i,j}

(xij lnµij −µij − ln xij !)

=
∑
{i,j}

[xij(ln pi +ln pj)−pipj − ln xij !].

Inspection of L(p) shows that the parameters are separated except for
the products pipj . To achieve full separation of parameters in maximum
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likelihood estimation, we employ the majorization

pipj ≤ pn
j

2pn
i

p2
i + pn

i

2pn
j

p2
j

with the superscript n indicating iteration. Observe that equality prevails
when p=pn. This majorization leads to the minorization

L(p) ≥
∑
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pn

j

2pn
i

p2
i − pn

i

2pn
j
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= g(p |pn).

Maximization of g(p |pn) can be accomplished by setting

∂

∂pi
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xij
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j

(3)

is straightforward to implement and maps positive parameters to positive
parameters. When edges are sparse, the range of summation in

∑
j �=i xij can

be limited to those nodes j with xij >0. Observe that these sums need only
be computed once. The partial sums

∑
j �=i p

n
j =∑

j p
n
j −pn

i require updating
the full sum

∑
j p

n
j once per iteration.

A similar MM algorithm can be derived for a Poisson model of arc
formation in a directed multigraph. We now postulate a donor propensity
pi and a recipient propensity qj for arcs extending from node i to node j. If
the number of such arcs Xij is Poisson distributed with mean piqj , then under
independence we have the log-likelihood

L(p,q) =
∑

i

∑
j �=i

[xij(ln pi +ln qj)−piqj −ln xij !].

With directed arcs, the observed numbers xij and xji may differ. The
minorization

L(p,q) ≥
∑

i

∑
j �=i

[xij(ln pi +ln qj)

− qn
j
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now yields the MM updates

pn+1
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n
j

, qn+1
j =

√
qn

j

∑
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.

Again these are computationally simple to implement and map positive
parameters to positive parameters. It is important to observe that the log-
likelihood L(p,q) is invariant under the rescaling cpi and c−1qj for a positive
constant c and all i and j. This fact suggests that we fix one propensity and
omit its update.

To derive a reasonable starting value in the undirected multigraph model,
we maximize L(p) under the assumption that all pi coincide. This gives the
initial values

p0
k =

√ ∑
{i,j}xij

m(m−1)
.

The same conclusion can be reached by equating theoretical and sample
means. In the directed multigraph model, we maximize L(p,q) subject to the
restriction that all pi and qj coincide. Now we have

p0
k = q0

k =
√∑

i

∑
j �=i xij

m(m−1)
.

Note that the fixed parameter is determined by this initialization.

Fig. 1. Graph of a cluster of the radiation hybrid network with significant
connections (P<10−9). In this graph, node size is proportional to a node’s
estimated propensity. Also, the darker the edge, the more significant the
connection; red lines highlight the most significant connections. Edges
between this cluster and the rest of the network were removed for clarity.

4 RESULTS

4.1 Caernorhabditis elegans neural network
The neural network of C.elegans is a classic dataset first studied
by White et al. (1986) and later by Watts and Strogatz (1998). In
their paper, White et al. were able to obtain high-resolution electron
microscopic images. This allowed them to identify all the synapses,
map all the connections and to work out the entire neuronal network
of the worm. To use all known connections in our analysis, we
add as edges the electric junctions and neuromuscular junctions
observed by Chen et al. (2006). For consistency, we disregard the
directionality of the chemical synapses. In our opinion, the flexibility
of the model in accepting different definitions of edges should be
viewed as a strength. We declare a connection between two neurons
i and j to be functionally significant when Pr(Xij ≥xij)≤10−6.
Figure 1 in the Appendix (Supplementary Material) depicts the
network.

As recorded in Table 1, many of the most significant connections
extend between motor neurons. The model also captures the bilateral
symmetry between the right and left sides of the worm. Thus, the
connections between the pairs RIPR-IL2VR and RIPL-IL2VL and
between OLLL-AVEL and OLLR-AVER are all significant. Note
that an L or an R at the end of a neuron’s name signifies the left
and right side, respectively. The right neuron PDER appears twice
on the top 50 list and its left counterpart PDEL is missing, but
both have the same number of significant edges overall. Although
these dual connections are highlighted as about equally significant
in our analysis, the corresponding propensity estimates show a left–
right imbalance. The cause of these slight departures from bilateral
symmetry is obscure. In any event, the model is subtle enough to
distinguish between high edge counts and significant edge counts.
Thus, even though one pair of nodes may have more edges than
another pair, it does not necessarily imply that the first pair is more
significantly connected than the second pair.
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Table 1. List of the 20 most significant connections of the C.elegans dataset

Rank Neuron1 Neuron2 Obs. Exp. −Log P

1 VB03 DD02 37 0.7967 47.1265
2 VB08 DD05 30 0.382 45.1218
3 VB06 DD04 30 0.4653 42.5846
4 VB05 DD03 27 0.6609 33.1679
5 VD03 DA03 24 0.5834 29.6503
6 VA06 DD03 24 0.6495 28.5599
7 VA08 DD04 21 0.4289 27.6046
8 VD05 DB03 23 0.6934 26.3561
9 VA04 DD02 21 0.6325 24.1455
10 PDER AVKL 16 0.2738 22.4316
11 VB02 DD01 20 0.6488 22.4101
12 RIPR IL2VR 14 0.1702 21.7724
13 VA09 DD05 15 0.2934 20.2217
14 PDER DVA 16 0.3972 19.8949
15 OLLL AVER 18 0.6434 19.5152
16 VD03 AS03 14 0.2599 19.2348
17 VD03 DB02 16 0.4868 18.5184
18 VD01 DA01 14 0.3102 18.1794
19 RIPL IL2VL 11 0.1136 18.0317
20 VA03 DD01 18 0.7851 18.0170

To the right of each pair appear the observed number of edges, the expected number of
edges and minus the log base 10 P-value.

4.2 Radiation hybrid gene network
Radiation hybrids were originally devised as a tool for gene mapping
(Goss and Harris, 1975) at the chromosome level. The detailed
physical maps they ultimately provided (Cox et al., 1990) served as
a scaffolding for sequencing the entire human genome. To construct
radiation hybrids, one irradiates cells from a donor species. This
fragments the chromosomes and kills the vast majority of cells. A
few donor cells are rescued by fusing them with cells of a recipient
species. Some of the fragments, say 10%, get translocated or inserted
into the chromosomes of the recipient species. The hybrid cells have
no particular growth advantage over the more numerous unfused
recipient cells. However, if cells from the recipient cell line lack an
enzyme such as hypoxanthine phosphoribosyl transferase (HPRT)
or thymidine kinase (TK), both the unfused and the hybrid cells
can be grown in a selective medium that eliminates the unfused
recipient cells. This selection process leaves a few hybrid cells,
and each of the hybrid cells serves as a progenitor of a clone of
identical cells. Each clone contains a random subset of the genome
of the donor species. The presence or absence of a particular short
region can be assayed by testing for a donor marker in that region.
A given donor marker is present in a given clone in 0, 1 or 2
copies.

It turns out that one can exploit radiation hybrids to map QTLs
(quantitative trait loci). We measured the log intensities of 232 626
aCGH (array comparative genomic hybridization) markers and
20 145 gene expression levels in each of 99 mouse–hamster radiation
hybrids (Ahn et al., 2009; Park et al., 2008). In this case, a
mouse served as the donor and a hamster as the recipient. We
then regressed the mouse gene expression levels on the mouse
copy numbers recorded for each of the mouse markers. Altogether
this amounts to about 5×109 separate linear regressions. We
constructed a multigraph from the data by analogy with the movie

Fig. 2. Graph of a disjoint cluster of the HPRD dataset after analysis with
our method using a cutoff of P<10−6. Note that this cluster is featured in
the BiNGO analysis results displayed in Table 4.

star example, with genes corresponding to actors and markers
to movies. An edge is added between two genes if both genes
showed statistically significant dependence on the marker at the
level P ≤10−9. This strict P-value cutoff was chosen to produce an
easily visualized graph. Because the aCGH markers densely cover
the mouse genome, a quasi-peak finding algorithm was used to
delete the excess edges occurring under a common linkage peak.
Figure 2 in the Appendix (Supplementary Material) depicts the full
network. Here, node size is proportional to estimated propensity
and edge darkness is proportional to significance. Red edges
are the most significant. Even with a very stringent significance
level and elimination of edges by peak finding, there are still
729 169 significant connections.

Figure 1 shows an interesting subnetwork with highly significant
edges, genes (nodes) of large propensity, and genes with related
functions. The Dishevelled 1 (Dvl1) member of this subnetwork is
part of the wingless/Int (Wnt) signaling pathway. The Wnt pathway
has a reciprocal signaling relationship with the hedgehog pathway,
which requires oxysterols for optimal function (Corcoran et al.,
2009). The Wnt hedgehog connection is important in stem cell
renewal. Interestingly, oxysterol binding protein-like 3 (Osbpl3) is
a member of the subnetwork as well as Dvl1. Furthermore, the
subnetwork contains two membrane-associated proteins: mucolipin
3 (Mcoln3), a cation channel protein (Cuajungco and Samie, 2008)
and aquaporin 2 (Aqp2), a water channel protein (Carbrey and
Agre, 2009). An emerging theme in cancer research is the notion
of evolving genetic networks (Maxwell et al., 2008). Networks
constructed using the Poisson multigraph model can robustly
identify unexpected connections with known oncogene pathways
such as the Wnt pathway. These connections may ultimately suggest
novel therapeutic strategies.
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Table 2. Top 20 proteins with the most observed connections in the
literature-curated protein database

Rank Protein Obs. Sig. Prop.

1 TP53 358 6 1.2515
2 GRB2 291 3 1.0164
3 SRC 277 5 0.9674
4 YWHAG 249 0 0.8693
5 CREBBP 231 0 0.8063
6 EGFR 231 5 0.8063
7 EP300 231 0 0.8063
8 PRKCA 229 4 0.7993
9 MAPK1 213 4 0.7433
10 CSNK2A1 207 1 0.7223
11 FYN 205 4 0.7153
12 PRKACA 202 2 0.7048
13 ESR1 200 1 0.6978
14 SHC1 195 5 0.6803
15 SMAD3 193 0 0.6733
16 STAT3 190 10 0.6628
17 SMAD2 183 1 0.6384
18 RB1 169 2 0.5894
19 TRAF2 168 2 0.5859
20 SMAD4 166 0 0.5789

To the right of each protein is the observed number of connections, the number of
significant connections using P-value of 10−6, and the estimated propensity.

4.3 Protein interactions via literature curation
With the advent of high-throughput experimentation, an enormous
mass of information on protein interactions has accumulated.
Because there was initially no universal format for presenting
interactions, many of the early discoveries were useful only to the
originating labs. This bottleneck forced coordination and eventually
the construction of unified databases with fixed formats combining
all of the published information. A notable example of this process of
curation is the Human Protein Reference Database (Keshava Prasad
et al., 2009). We downloaded Release 7 of the database and analyzed
it with the random multigraph model.

Several interesting features of the data emerge under a P-value
cutoff of 10−6. For instance, the protein with the most observed
edges, TP53, turns out to be different from the protein with the most
significant edges, Stat3. In fact, none of the top five proteins ranked
by the most observed edges are in the top five proteins ranked by
the most significant edge counts. Thus, the hub nodes of the raw
data differ sharply from the hub nodes of the processed data. The
two most extreme cases, YWHAG and CREBBP, have no significant
edge counts despite being ranked fourth and fifth based on observed
edges (Tables 2 and 3). One should be cautious in interpreting such
results because molecular experiments are hypothesis driven and
generate very biased data. The value of looking for significance is
that it turns up hidden structure, not that it calls into question known
structure.

When we cluster proteins by significant edge counts, the TP53
protein is especially interesting. Consider the small component
containing TP53 shown in Figure 2. We analyzed this cluster using
the BiNGO addition to Cytoscape (Maere et al., 2005). BiNGO
computes the probability that x or more genes in a given set of
genes shares the same GO (gene ontology) category. Altogether
we found 30 significant GO categories with P<10−6; most of

Table 3. The 20 proteins with the most significant connections (P<10−6)
in the literature-curated protein database

Rank Protein Obs. Sig. Prop.

1 STAT3 190 10 0.6628
2 STAT1 162 9 0.565
3 MAPT 127 9 0.4427
4 PCNA 114 8 0.3973
5 RPS6KA1 59 7 0.2055
6 TP53 358 6 1.2515
7 MAPK3 148 6 0.5161
8 PTPN6 144 6 0.5021
9 DLG4 132 6 0.4602
10 MAPK14 107 6 0.3729
11 BTK 100 6 0.3485
12 HCK 82 6 0.2857
13 CREB1 59 6 0.2055
14 CDC25C 58 6 0.202
15 F2 57 6 0.1985
16 COPS4 31 6 0.1079
17 SRC 277 5 0.9674
18 EGFR 231 5 0.8063
19 SHC1 195 5 0.6803
20 LCK 156 5 0.544

To the right of each protein is the observed number of connections, the number of
significant connections, and the estimated propensity.

Table 4. BiNGO results of the small detached component around TP53
(Fig. 2) in the literature-curated protein database (Maere et al., 2005)

GO-ID −Log P GO term

7049 15.8761 Cell cycle
6974 12.6819 Response to DNA damage stimulus

279 12.2596 M phase
6281 12.1261 DNA repair

22403 11.5544 Cell-cycle phase
22402 11.5421 Cell-cycle process

6259 11.4597 DNA metabolic process
43283 9.3883 Biopolymer metabolic process
43687 8.9393 Post-translational protein modification

6796 8.2857 Phosphate metabolic process
6793 8.2857 Phosphorus metabolic process
7126 8.0123 Meiosis

51327 8.0123 M phase of meiotic cell cycle
51321 7.9706 Meiotic cell cycle

6464 7.6440 Protein modification process
6302 7.6216 Double-strand break repair
6310 7.5607 DNA recombination

43170 7.5607 Macromolecule metabolic process
43412 7.5186 Biopolymer modification

6468 7.5171 Protein amino acid phosphorylation
74 7.4559 Regulation of cell cycle

42770 7.3665 DNA damage response, signal transduction

Note here that the P-values reported in the column labeled −Log P are the BiNGO
P-values for clustering, not the P-values delivered by the Poisson model.

these categories are listed in Table 4. These results dramatically
illustrate the role of TP53 in regulating the cell cycle by (a) activating
DNA repair proteins; (b) arresting the cell cycle at the G1/S
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Table 5. Most significantly connected word pairs

Rank −Log P Obs. Exp. Pair

1 391.3236 355 10.7509 i am
2 332.9314 293 8.2031 my lord
3 220.4243 337 30.4288 i have
4 195.8137 286 23.9518 i will
5 173.4930 73 0.1179 lady macbeth
6 163.1923 105 1.1239 thou art
7 160.2825 215 15.5290 it is
8 159.2199 399 70.5448 in the
9 146.6971 111 2.0425 no more
10 128.5489 51 0.0600 re enter
11 124.9406 160 10.6422 i know
12 110.9513 109 4.1161 let me
13 107.6928 151 11.8937 you are
14 107.3818 66 0.6054 second lord
15 95.2465 168 19.1548 i do
16 94.4514 80 2.0708 they are
17 94.0240 83 2.4030 pray you
18 93.8222 61 0.6902 thou hast
19 93.6175 137 11.6537 i would
20 88.9511 43 0.1446 first soldier

Preceding each word pair is its minus log P-value, the observed number of edges, and
the expected number of edges.

checkpoint to permit repair; and (c) initiating apoptosis in extreme
circumstances.

4.4 Word pairs and letter pairs
Identifying frequently used word pairs in literary texts can be useful
in problems of literary attribution and in the identification of word
fossils. Vocabulary richness and frequencies of sets of words have
been studied in many different literary contexts using a variety of
methods, including, for example, Bayesian analysis and machine
learning to determine authorship of the Federalist papers (Holmes
and Forsyth, 1995; Mosteller and Wallace, 1984), and likelihood
ratio tests to study the Pearl poems (McColly and Weier, 1983).
Recent investigations of long texts (Bernhardsson et al., 2009) have
called into question Zipf’s law (Zipf, 1932), which postulates that
the frequency of any word is inversely proportional to its rank in
usage. Here, we apply the Poisson model of graph connectivity to
study pairs of words used consecutively in a set of Shakespeare’s
plays.

Our version of word pair analysis begins by scanning a literary
work and creating a dictionary of words found in the text. An arc
is drawn between two consecutive words, from the first word to
the second word of the text, provided the words are not separated
by a punctuation mark. The number of arcs between an ordered
pair of words is counted and stored in a square matrix with
dimensions equal to the number of unique words in the text. We
chose seven of Shakespeare’s plays, All’s Well that Ends Well, AsYou
Like It, Julius Caesar, King Lear, Macbeth, Measure for Measure
and Titus Andronicus, concatenated them, and analyzed them as a
whole. Contractions such as ‘o’er’ and ‘ta’en’ were replaced by
the corresponding full words, ‘over’ and ‘taken’, respectively. We
retained in our analysis word pairs constituting character names.

Table 6. Words observed as a pair and never as singletons

Pair Pair

hysterica passio ordered honorably
bosko chimurcho stinkingly depending
oscorbidulchos volivorco facit monachum
boblibindo chicurmurco stench consumption
suit’s unprofitable rustic revelry
quietly debated fellowships accurst
tu brute du vinaigre
ovid’s metamorphoses nec arcu
sectary astronomical penthouse lid
boarish fangs sun’s uprise
curvets unseasonably remained unscorched
cullionly barbermonger clothier’s yard
aves vehement parallels nessus
downfallen birthdom et tu
threateningly replies mort du
tick tack kerely bonto
kneaded clod whoop jug
brethren’s obsequies fa sol
revania dulche mastiff greyhound
tempestuous gusts throca movousus

We calculated the observed frequency of each word pair. Based
on the directed random multigraph model described in Section 3,
we estimated the outgoing and incoming propensities for each word
along with expected frequencies and P-values for each word pair.
Table 5 lists the most connected word pairs in the text ranked by
their P-values. This set is dominated by phrases that are commonly
used in the language of the day, such as ‘I am’ and ‘my lord’, and
by character names, such as ‘Lady Macbeth’ and ‘Second Lord’, in
each play.

One can identify several word pairs whose members almost never
occur separately by examining the ratio xij/(p̂iq̂j) of observed to
expected word pair frequencies. Table 6 lists several examples
ranked by this index. These word pair fossils are dominated by a
few phrases still in common use such as ‘pell mell’ and ‘tick tack’
as well as various Latin and Italian phrases, such as ‘et tu Brute’,
and other strange phrases specific to the context of particular plays,
such as ‘boarish fangs’ and ‘rustic revelry’.

In addition, we studied pairs of letters encountered consecutively
in the combined text of the Shakespearean plays. Figure 3 depicts
the letter pair connections using a very stringent P-value of 10−19

for display purposes. Table 7 lists the same results in tabular form.
The two most significant pairs are ‘th’ and ‘he’. One would expect
much more stability over time of letter pair usage than word pair
usage. This contention is borne out by our separate analysis of the
novel Jane Eyre by Charlotte Bronte.

5 CONCLUSIONS
Multigraphs are inherently more informative than ordinary graphs,
and random multigraphs offer rich possibilities for modeling
biological, social and communication networks. Our applications are
meant to be illustrative rather than exhaustive. Graphical models will
surely grow in importance as research laboratories and corporations
gather ever larger datasets and hire ever more computer scientists
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Fig. 3. Graph of the significant connections (P<10−9) in the letter pair
network. In this graph, a darker edge implies a more significant connection,
with the red edges highlighting the most significant connections.

Table 7. Most significantly connected letter pairs

Pair −Log P Obs. Exp.

th 10042 20308 2739
ou 3444 10452 2230
nd 3358 8125 1366
ll 2747 5404 703
yo 2257 4488 592
he 2098 15227 6085
ng 1974 3790 477
an 1775 10554 3769
ve 1717 5138 1082
in 1469 8825 3172
ow 1365 3113 489
er 1283 10264 4312
of 1186 3273 636
ha 1167 7665 2902
st 1069 5555 1823
my 999 2221 339
wi 835 3336 907
us 825 4134 1324
is 821 6346 2622
wh 778 3127 854
hi 692 5924 2573
ma 672 3585 1198
ur 659 4331 1641
fo 640 2855 843
om 619 2896 886

To the right of each pair appear the minus log P-value, the observed number of
connections, and the expected number of connections.

and statisticians to mine them. The Poisson model has many
advantages. It is flexible enough to capture hub nodes and functional
connectivity, generalizes to directed graphs, and sustains an MM
estimation algorithm capable of handling enormous numbers of
nodes. It is also very quick computationally as measured by total
iterations and total time until convergence. A glance at Table 1 of the
Appendix (Supplementary Material) suggests that 20–30 iterations
suffice for convergence. To thrive, data mining must balance model
realism with model computability. In our opinion, the Poisson model
achieves this end. Of course, other distributions for edge counts
could be tried, for instance the binomial or the negative binomial,
but they would be even less well motivated and less adapted to fast
estimation.

It is natural to place our advances in the larger context of
applied random graph theory. For instance, early on social scientists
married latent variable models and random networks (Holland
and Leinhardt, 1981). Stochastic blockmodels assign nodes either
deterministically or stochastically to latent classes (Airoldi et al.,
2008; Holland et al., 1983; Newman and Leicht, 2007; Nowicki
and Snijders, 2001; Wang and Wong, 1987). Alternatively, a latent
distance model sets up a social space and estimates the distances
between node pairs in this space (Hoff et al., 2002). It is possible
to combine features of both latent class and latent distance models
in a single eigenmodel (Hoff, 2008). The ‘attract and introduce’
model is another helpful elaboration (Fowler et al., 2009). None of
these models focuses on multigraphs. Furthermore, most classical
applications involve networks of modest size. However, under the
stimulus of large internet datasets, the field of random networks is
in rapid flux. Going forward it will be a challenge to turn the rising
flood of data into useful information. Importing more of the social
science contributions into biological research may pay substantial
dividends.

In practice, most large networks contain an excess of weak
interactions. The radiation hybrid data are typical in this regard.
To sift through the data, it is helpful to focus on hub nodes
and strong interactions. The Poisson multigraph model provides
a rigorous way of doing so. The model’s flexibility in allowing
different sorts of edges is appealing if not taken to extremes.
When confidence in edge assignment varies widely across edge
definitions, a weighted graph model might be a better modeling
device than a multigraph model. However, converting a multigraph
to a weighted graph has its own problems. For instance, there
is more than one way to make the conversion. An even bigger
disadvantage of weighted graph models is their tendency to ignore
the stochastic nature of node formation. This is a hindrance
in assessing functional connections and suggests an opportunity
for more nuanced modeling. To be competitive with Poisson
multigraphs, a good stochastic model for weighted graphs should
support fast estimation of parameters. One substitute for Poisson
randomness is to condition on the degree of each node (Chung
and Lu, 2002). Within these constraints, one can randomize edge
placement. This perspective lends itself to permutation testing
but not to parameter estimation (Maslov and Sneppen, 2002).
Unfortunately, the computational cost of generating the required
permutations limits the chances for approximating very small
P-values and hence ranking connections by P-values.

The random multigraph model raises as many questions as it
answers. How closely is it tied to the Poisson distribution? How
closely is it tied to the propensity parameterization of edge means?
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Can predictors be incorporated that determine propensities? More
importantly, what applications would benefit from this sort of
modeling? We are content to raise these issues, with the hope that
other computational and mathematical scientists can be enlisted
over time to resolve them and related problems beyond our current
understanding.
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