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Genome-wide association of breast cancer: composite
likelihood with imputed genotypes

Ioannis Politopoulos1, Jane Gibson1, William Tapper1, Sarah Ennis1, Diana Eccles2 and Andrew Collins*,1

We describe composite likelihood-based analysis of a genome-wide breast cancer case–control sample from the Cancer Genetic

Markers of Susceptibility project. We determine 14 380 genome regions of fixed size on a linkage disequilibrium (LD) map,

which delimit comparable levels of LD. Although the numbers of single-nucleotide polymorphisms (SNPs) are highly variable,

each region contains an average of B35 SNPs and an average of B69 after imputation of missing genotypes. Composite

likelihood association mapping yields a single P-value for each region, established by a permutation test, along with a maximum

likelihood disease location, SE and information weight. For single SNP analysis, the nominal P-value for the most significant

SNP (msSNP) requires substantial correction given the number of SNPs in the region. Therefore, imputing genotypes may not

always be advantageous for the msSNP test, in contrast to composite likelihood. For the region containing FGFR2 (a known

breast cancer gene) the largest v2 is obtained under composite likelihood with imputed genotypes (v2
2 increases from 20.6 to

22.7), and compares with a single SNP-based v2
2 of 19.9 after correction. Imputation of additional genotypes in this region

reduces the size of the 95% confidence interval for location of the disease gene by B40%. Among the highest ranked regions,

SNPs in the NTSR1 gene would be worthy of examination in additional samples. Meta-analysis, which combines weighted

evidence from composite likelihood in different samples, and refines putative disease locations, is facilitated through defining

fixed regions on an underlying LD map.
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INTRODUCTION

Genome-wide association mapping studies based on large case–con-
trol samples1,2 have identified common genetic variants associated
with increased risk of breast cancer. Most analyses of genome-wide
case–control data sets employ tests based on individual single-nucleo-
tide polymorphisms (SNPs).3 Meta-analysis (combining evidence
across samples) is facilitated by imputation of ‘missing’ SNP geno-
types, using the HapMap samples (http://www.hapmap.org/) as a
reference population.4 An alternative approach to single SNP tests5,6

undertakes composite likelihood analysis of multiple SNPs in a region
and determines a location for a putative disease influencing variant on
an underlying linkage disequilibrium unit (LDU) map.7 When plotted
against physical (kb) locations the LDU map describes the underlying
pattern of linkage disequilibrium (LD) as a series of plateaus (strong
LD) and steps (where LD is breaking down, such as at the location of
recombination hot spots). The LDU map provides a framework for
characterising small chromosome regions, which may differ substan-
tially in physical size but share comparable levels of LD. Modelling the
pattern of association with disease at multiple markers in a region
generates a single P-value for disease association, a disease location, SE
and corresponding information weight. As there is just one statistical
test in a region, there is a reduced Bonferroni correction relative to
single SNP-based tests, which require consideration of the number of
tests made at nearby SNPs. Gibson et al5 evaluated the composite
likelihood approach using relatively low-density genotype data

(B200K SNPs) in a relatively small sample (403 cases and 395
controls) with an undisclosed disease phenotype. Larger and more
comprehensively genotyped samples are now available. The genome-
wide breast cancer association analysis by Hunter et al2 utilised
samples from 1145 postmenopausal women of European ancestry
with invasive breast cancer contrasted with 1142 controls analysed
with 528 173 SNPs. These data are made available through the Cancer
Genetic Markers of Susceptibility (CGEMS) project data portal
(http://cgems.cancer.gov/). The data are valuable for comparing
composite likelihood and single-marker analyses and for developing
strategies for meta-analysis. These data present significant evidence
for a now well-established breast cancer gene, FGFR2, which has been
verified in several studies.1 We describe the application of a composite
likelihood modelling approach to this higher-density SNP sample,
evaluate relative power for composite likelihood and single SNP-based
tests and test the impact of increasing marker coverage through
genotype imputation. The chromosome region-based approach used
in composite likelihood, with regions defined on the underlying LDU
map, is highly suited to meta-analysis, which is essential to increase
the sample size for the identification of novel causal variants.

MATERIALS AND METHODS

Data preparation and quality control
Following successful application for permissions, data comprising 1145 cases

and 1142 controls and genotypes for 555 148 SNPs were downloaded from the
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CGEMS data portal. Data files were converted into PLINK format8 and quality

control (QC) procedures undertaken. Samples rejected through the QC

employed by Hunter et al2 had already been excluded in the downloaded data

set from an original set of 1183 cases and 1185 controls. The QC we applied

resulted in the removal of 93 SNPs with inconsistent or ambiguous kilobase

locations, 8648 SNPs with a high proportion (410%) missing genotypes,

53 615 SNPs with minor allele frequencies lower than 0.05 and a further 4308

SNPs with large deviations from Hardy–Weinberg (w2
Z10) in the controls

(Supplementary Table 1). In addition, one individual with 410% missing

genotypes was excluded at the QC stage. To minimise biases created by

population stratification, we identified individuals with possible non-Caucasian

ancestry through multidimensional scaling cluster analysis8 (Supplementary

Figures 1 and 2) using 73 560 ‘LD-independent’ SNPs from CGEMs and

HapMap. A total of 12 907 of these SNPs showed strand mismatches and were

flipped accordingly. No A/T or G/C SNPs were genotyped in the CGEMS data

because of the chemistry of the genotyping beadchip (Infinium II; Illumina,

Inc., San Diego, CA, USA). This cluster analysis identified four individuals who

were judged to be outside the CEU cluster, suggesting admixture, and were

excluded from further analysis at this point. Following QC, we analysed a total

of 498 786 SNPs in 1143 cases and 1139 controls.

Genotype imputation
After flipping strands for 94 489 SNPs, to ensure strand concordance of the two

SNP data sets, a combined CGEMS and HapMap (CEU, phase 3) data set was

produced for genome-wide genotype imputation using the PLINK software.

Accepting the suggested thresholds for ‘sufficiently imputed’ markers (http://

pngu.mgh.harvard.edu/~purcell/plink/haplo.shtml), (INFO values 40.8 and

imputation rate across the combined sample Z0.9), we retained 544 683

imputed SNPs (B34% of all imputed genotypes). Further QCs applied to

the aggregated data set identified 308 imputed SNPs with 410% missing

genotypes, 49 019 SNPs with minor allele frequencies o0.05 and 6800 SNPs

deviating significantly from Hardy–Weinberg in the controls. These 56 127

QC-failed SNPs were removed leaving a total of 488 991 imputed SNPs to be

analysed in combination with the original genotypic data (Supplementary

Figure 3).

Composite likelihood tests
The program CHROMSCAN9 develops the model described by Maniatis et al10

utilising data from SNPs in a chromosome region to compute a maximum

likelihood location, S, for a causal variant, SE, a 95% confidence interval and a

permutation-based P-value. The underlying LD structure is incorporated into

the model through LDU maps, which represent the association mapping

analogue of the linkage map.11 Disease mapping on the underlying LDU scale

has been shown to increase fine mapping resolution and power relative to the

physical (kilobase) map.9 We constructed LDU maps from the CEU sample

from HapMap Phase II based on physical locations from build 36 of the human

genome sequence (University of California, Santa Clara, March 2006).

Genome-wide LDU maps12 are available on request from the authors.

The association test reduces the 3�2 table of SNP genotype counts by

disease affection status at the ith SNP to the corresponding 2�2 table of allele

counts by affection status, with cell totals a, b, c, d, giving n haplotypes from n/2

diplotypes. Association of disease phenotype with SNPs in a region is modelled

using a composite likelihood approach. Observed association with disease at

the ith SNP is: ẑi ¼ ða�dÞ�ðb�cÞ
ða+bÞ�ðb+dÞ , with information Kzi

¼ n� ða+bÞ�ðb+dÞ
ða+cÞ�ðc+dÞ.

Expected association, zi, is modelled using the Malecot equation:10

zi ¼ 1� Lð ÞMe�ejSi�Sj+L, where Si is the location of the ith SNP in LDU

and the S parameter represents the LDU map location showing maximal

association with disease. The e parameter describes the decline of association

with map distance and has a value B1 for LDU maps,9 M is the intercept and

L is the asymptote, representing association not due to linkage, which is

estimated (L) or predicted (Lp). The predicted asymptote is taken as the mean

absolute value of a standard normal deviate, weighted by information Kz.
9

Composite likelihood is defined as: lk¼e�L/2, where L ¼
P

i Kz
i

ẑi � zið Þ2.

CHROMSCAN evaluates the composite likelihood for two subhypotheses to

test the evidence for a disease-associated variant in a region. Within a given

region the null hypothesis (‘model A’) assumes only ‘background’ association

and no relationship between the affection status and SNPs with: L¼Lp, M¼0.

As the null model does not test association with disease, there is no location

estimate, S. The null model, which estimates no parameters, is contrasted with

‘model D’, which estimates three parameters: a disease location (S), an intercept

(M) and background association (L).

The association test statistic for each region is the difference X¼LA�LD.

The difference is computed for the real data (H1) and a large number of

replicates (H0), as Xj for the jth replicate, in which the disease phenotype is

randomised (shuffled). The distribution of P-values under H0 is obtained from

fractional ranks in a large sample of replicates. From each of the replicate,

P-values the corresponding w3
2 for the contrast between models ‘A’ and ‘D’ is

obtained from the GNU Scientific Library (GSL) function gsl_cdf_chisq_Pinv

(http://www.gnu.org/software/gsl/), and hence the variance for the jth replicate

is: V ¼ X
w2

3
. Variances for replicates, Vj, are used to predict, by regression,

variance V (H1) and hence w3
2 (H1). The computation of V (H1) requires a

sorted subset of replicates, which are centred on the value X (H1), and the

model: lnVj¼A+B lnXj, with X centred between the 20 closest replicates with

XjrX and the corresponding 20 with XjZX; if X is an outlier, the 20 closest

values are taken. From this model V (H1) is estimated as exp(A+BlnX), and

w3
2(H1)¼X/V.

Simultaneous estimates of M, S and L give an information matrix, which is

inverted to provide the nominal variance (U) for location S. Using V (H1), the

information weight, W, about disease gene location, S, is computed as:

W ¼ 1=U
V=3 and the SE of S is: SE ¼

ffiffiffiffiffiffiffiffiffiffi
1=W

p
. We revised CHROMSCAN to

increment the number of replicates adaptively to ensure that the P-value (H1)

predicted from the replicates is accurately determined, with a minimum of 50

replicates and maximum of 20 000 per region (or more for refining evidence in

a significant region of interest). Gibson et al,5 in their analysis of a relatively

low-density SNP data, used non-overlapping regions spanning at least 10 LDUs

and containing a minimum of 30 SNPs. More recent high-density panels enable

analysis in smaller regions and higher resolution with reduced possibility of con-

founding adjacent independent signals. We used regions of fixed LDU size, which

facilitates combination of evidence in meta-analysis. Regions of four LDUs contain

an average of over 30 SNPs in a B550 000 SNP scan, assuming B60 000 LDUs in

the CEU genome.12 However, there is wide variation in the number of SNPs per

region, although coverage is increased with genotype imputation (Table 1).

Single SNP tests
For single SNP tests, we identify the most significant SNP (msSNP) in a region,

from the nominal w1
2 (from the 2�2 table between affection and the two SNP

alleles). Selecting the msSNP from a large number of SNPs in a region biases

the nominal P-value (Pn), computed on the null hypothesis. To correct for the

number of SNPs, we first grouped four-LDU regions into ranges, which show

relatively limited diversity in the number of SNPs they contain (Table 1). The

ranges (SNP range, Table 1) were defined to include approximately similar

numbers of four-LDU regions, with the exception of regions containing 4250

SNPs. This enabled the relationship between T (the observed mean number of

SNPs in the range) and R (the effective mean number of SNPs in the range) to

be characterised in the tail of the distribution. We determined the distribution

of numbers of SNPs in each of 28 750 four-LDU regions (original and

imputation-inclusive data sets combined) and computed the weighted mean

number of SNPs, T, in a range (for each range T ¼
P

fimiP
fi

, where f is the

number of four-LDU regions containing m SNPs, with summation over i¼1, N

regions; Table 1). Under the null hypothesis P-values for random SNPs have

expectation w2
2¼2lnP, with an expected variance of four and a mean of two.5

For each range we computed, R, the effective number of independent SNPs

(Table 1) by regula falsi. Bonferroni correction assumes a corrected P-value:

Pc¼1�(1�Pn)R. To correct P-values from single SNPs, we determined the

relationship between R and T by regression such that a value R could be

assigned to each four-LDU region, given T. Regression through the origin

gives Rs¼(0.306239�T)�(0.000248�T2), (model R2¼0.96), which enables

Bonferroni corrected values Pc to be computed. The Bonferroni correction

greatly reduces the significance of the nominal P-values. Composite likelihood

tests do not require this correction as P-values are based on a permutation test.
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Following correction of msSNP P-values for the variable number of SNPs in

individual four-LDU regions, the means (m) of the corrected w2c
2 from the

msSNPs (m¼2.5 and 2.2 for original and imputation data sets respectively) and

the w2
2 from permutation-based P-values in composite likelihood analyses

(m¼1.9 for both original and imputation inclusive data sets) were multiplied by

2/m to correct the deviation from the expected mean of 2.

RESULTS

CHROMSCAN analysis yields 14 370 four-LDU regions containing at
least one SNP from the original genotype data and 14 380 from the
data containing imputed genotypes. The distribution of SNPs in each
region is very variable (Table 1, Figure 1). Many regions contain
r20 SNPs and, as the LDU map describes regions with comparable
levels of LD, this suggests that a substantial proportion of the genome
may be poorly screened by this set of genotypes. Coverage is increased
by imputation of missing genotypes, with the mean number of SNPs
per region increasing from 34.7 to 68.6 (Figure 1). However, following
imputation B15% of the regions still have r20 SNPs and may be
poorly represented by both single SNP and composite likelihood tests.
SNP panels with more uniform coverage of markers on the LDU,
rather than kilobase scale, would reduce the possibility of overlooking
regions associated with disease. In higher SNP density panels, the
magnitude of the Bonferroni correction required for single SNP
analysis will be greater. In contrast, more comprehensive genotyping
may increase power for composite likelihood tests because one
permutation-based P-value is obtained for every region.

The distribution of nominal single SNPs (w1
2) in the FGFR2 gene

region (Figure 2) show a cluster of SNPs localised in a region with
extensive LD represented as a plateau on the underlying LDU map.
Composite likelihood mapping in this region (Table 2) indicates that,

after imputation adds B64% more SNPs, there is an increase in w2
2

from 20.6 to 22.7. The 95% confidence interval for the location of the
causal variant decreases by 40% from 1.5 to 0.9 LDUs using the more
densely genotyped imputation data set. This reduction in the
confidence interval, which spans intron 2 of FGFR2, is reflected in
the composite likelihood surface (Figure 3), which shows the differ-
ence in X¼LA�LD between the A (null) and D (causal variant
location) models for the original and imputation inclusive data sets.

Table 3 is ordered by the 10 most significant regions identified using
composite likelihood in the imputed data set. The FGFR2 region is
highest ranked for both composite likelihood and single SNP tests.
Power, as indicated by �2lnP (¼w2

2), appears relatively lower in these
data for single SNP tests compared with the composite likelihood-
based analysis. There is quite strong correspondence between ranks in
the original and imputed data sets for the five highest-ranked regions
but less agreement for regions ranked 6–10. There is reduced corre-
spondence between single SNP and composite likelihood tests,
although the neurotensin receptor 1 (NTSR1) gene region has
relatively high ranks for both tests.

DISCUSSION

Comparison of composite likelihood and single SNP tests suggest
higher power of the former for the FGFR2 association, which is well
established as breast cancer-risk gene. Power is further increased with
imputation of missing genotypes (Table 2). None of the other genes
identified in Table 3 contain well-established breast cancer-risk
variants, although it is notable that the NTSR1 gene ranks highly in
both composite likelihood and single SNP tests. NTSR1 is a candidate
risk factor involved in ductal breast cancer progression.13 The authors
note that in breast cancer cells functionally expressed NT1 receptor
coordinates transforming functions including cellular migration and
invasion. High expression of NTSR1 is associated with the tumour
grade, size and number of metastatic lymph nodes. Given that the
well-established breast cancer genes only account for a small propor-
tion of the familial genetic risk, regions that fail to achieve genome-
wide significance, but rank highly, are worthy of examination in larger
samples. A worthwhile focus of future analyses includes screening
highly ranked variants in breast cancer phenotypic subtypes, including
those that describe tumour characteristics.14
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Figure 1 The distribution of SNPs in each four-LDU window in the original

and imputed data sets.

Table 1 The distribution of SNPs within four-LDU regions

SNP range N T R

1–5 1120 2.22 1.67

6–10 1285 7.13 4.58

11–14 1243 11.57 6.98

15–18 1449 15.52 9.28

19–22 1595 19.52 10.46

23–25 1223 23.01 12.32

26–28 1284 25.97 14.13

29–32 1735 29.50 15.83

33–36 1647 33.50 17.24

37–39 1171 36.96 16.88

40–43 1433 40.49 18.74

44–48 1723 44.96 20.10

49–53 1496 49.98 23.68

54–59 1442 55.45 20.91

60–66 1436 61.86 24.56

67–75 1526 69.81 25.51

76–87 1536 80.19 28.04

88–104 1391 94.40 27.52

105–136 1527 117.71 30.70

137–250 1348 171.24 37.33

251–550 135 300.16 55.64

551–800 5 656.80 97.20

Total 28750 — —

Abbreviations: N, total number of four-LDU regions containing the number of SNPs in range;
R, mean effective number of SNPs in the range (Bonferroni correction); T, weighted mean
number of SNPs in the range.
Table contains regions from original and imputation data sets combined.
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Hunter et al2 describe the original analysis of these data and the
identification of SNPs in the FGFR2 gene as highly associated with
sporadic postmenopausal breast cancer. These findings were confirmed
by the authors in a second sample. Although strong evidence for the
involvement of FGFR2 is a feature of our analysis, comparison with the
results presented by Hunter et al is difficult. Differences in the QC

procedures employed (Supplementary Table 1), their use of additional
phenotypic data (details of age and hormone replacement therapy use)
and differences in analytical methods employed, including their use of
logistic regression models, underlie the difficulty of comparison.

In the FGFR2 gene region, the apparent higher power for composite
likelihood tests must be achieved partly by modelling association at
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Figure 2 Nominal single SNPs w2 for association and the LDU map of the FGFR2 region.

Table 2 Composite likelihood analysis in the FGFR2 region

Number of SNPs S LDU W 95% CI in LDU 95% CI in Kb �2lnP

Original data set 33 2379.66 (0.36) 7.65 2378.9–2380.4 (1.5) 123311.2–123357.4 (46.2) 20.63

Imputation data set 54 2379.67 (0.24) 17.55 2379.2–2380.1 (0.9) 123315.6–123347.9 (32.3) 22.68

Abbreviations: S LDU, maximum likelihood location for disease gene (LDU), SEs in brackets; W, information weight for location S (LDU); 95% CI, 95% confidence interval for disease gene, size in
brackets; �2lnP, �2 log P-value for association with disease Bw2
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in the FGFR2 gene region.
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multiple SNPs simultaneously. Alternative approaches that combine
data from multiple SNPs include haplotype-based tests.15 Such
approaches have the advantage of modelling correlations between
markers, potentially increasing power, along with the characterisation
of genetic effects on different haplotypic backgrounds. The disadvan-
tages include the difficulty in deciding how to define haplotype
‘windows’, the heavy computational requirements, lack of a clearly
defined disease interval that is refined with accession of data and the
difficulty of combining evidence across samples. Imputation of
genotypes, which can usefully increase coverage and potentially
provide further increases in power, must also increase the computa-
tional and multiple-testing burden for haplotype tests, which is in line
with single SNP-based analyses.

Some authors have found that imputing genotypes is rather
accurate,16 but note that power increases only slightly as imputation
‘results in modest gain in genetic coverage, but worsens the multiple
testing penalties’. This penalty is likely to further erode power when
using more comprehensive SNP panels and with imputation at higher
densities, as might be achieved (for example) using data from the
1000 genomes project (http://www.1000genomes.org/page.php).
Other authors note that the typical imputation error rates of
2–6%17 may substantially decrease power and so the utility of this
technique may be questioned for single SNP-based analyses.

As individual genetic effect sizes are generally low for common
variants involved in complex traits, meta-analysis combining evidence
across studies, is an important strategy to increase power and identify
novel targets for further follow-up.4 A composite likelihood-based
approach, in which association evidence from different genome-wide
association samples is combined across corresponding regions,
provides a test in which individual samples are weighted according
to their information (W, Table 2). This approach also gives an estimate
of disease gene location, which becomes more precise as further
evidence is combined.18 The methods presented here provide a
strategy for the analysis of component samples in such a meta-analysis
taking advantage of genotype imputation to increase coverage without
increasing the multiple-testing penalty.

Polymorphisms in intron 2 of the FGFR2 gene have been implicated
as increasing risk of breast cancer in European and Asian populations.
Easton et al1 reported two SNPs, rs2981582 and rs7895676 (at the
upstream and downstream boundaries respectively of intron 2), as the
most strongly associated and suggested that the latter was most likely
to be a causal variant as it showed the strongest association with breast
cancer risk. Recently, Boyarskikh et al,19 studying a West Siberian
population, noted that rs2981582 explained association with disease

much more strongly than rs7895676. The authors hypothesised
that the actual causal variant lies somewhere within the LD block
that includes these two SNPs. Although rs7895676 (location
123323.987 kb) is not represented in the imputation-inclusive data
set, and rs2981582 does not have the highest single-marker w2 in the
sample (Table 3), these markers flank the cluster of associated SNPs in
the intron 2 LD block (Figure 2). Given that intron 2 lies within a
strong LD block, fine mapping to confirm the location of the causal
variant will be facilitated by meta-analysis in which the appropriately
weighted accessions of data should enable further reduction of the
target confidence interval.
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