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Racial disparities in infant mortality: what has birth
weight got to do with it and how large is it?
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Abstract

Background: It has been hypothesized that birth weight is not on the causal pathway to infant mortality, at least
among “normal” births (i.e. those located in the central part of the birth weight distribution), and that US racial
disparities (African American versus European American) may be underestimated. Here these hypotheses are tested
by examining the role of birth weight on racial disparities in infant mortality.

Methods: A two-component Covariate Density Defined mixture of logistic regressions model is used to
decompose racial disparities, 1) into disparities due to “normal” versus “compromised” components of the birth
cohort, and 2) further decompose these components into indirect effects, which are associated with birth weight,
versus direct effects, which are independent of birth weight.

Results: The results indicate that a direct effect is responsible for the racial disparity in mortality among “normal”
births. No indirect effect of birth weight is observed despite significant disparities in birth weight. Among
“compromised” births, an indirect effect is responsible for the disparity, which is consistent with disparities in birth
weight. However, there is also a direct effect among “compromised” births that reduces the racial disparity in
mortality. This direct effect is responsible for the “pediatric paradox” and maybe due to differential fetal loss.
Model-based adjustment for this effect indicates that racial disparities corrected for fetal loss could be as high as 3
or 4 fold. This estimate is higher than the observed racial disparities in infant mortality (2.1 for both sexes).

Conclusions: The results support the hypothesis that birth weight is not on the causal pathway to infant mortality
among “normal” births, although birth weight could play a role among “compromised” births. The overall size of
the US racial disparities in infant mortality maybe considerably underestimated in the observed data possibly due
to racial disparities in fetal loss.

Background
It has been argued that birth weight may not be on the
“causal pathway” to infant mortality [1-3]. The best
developed argument, originating with the Wilcox-Russell
hypothesis [2,4,5], is supported by qualitative analyses
using directed acyclic graphs [6]. Both of these
approaches are based on simple graphical observations
of the response of birth weight and birth weight specific
infant mortality to exogenous stressors, such as smoking
or altitude. The Wilcox-Russell hypothesis [2,4,5] sug-
gests that in response to a stressor, the birth weight spe-
cific infant mortality curve and birth weight distribution

appear to shift right or left together resulting in no
change in total mortality. Consequently, there is no
indirect effect of the stressor due to the shift in birth
weight. Any changes in mortality due to the stressor are
hypothesized to be due to the entire mortality curve
shifting up or down independently of birth weight, i.e.
direct effects of the stressor. Complementary analyses
using directed acyclic graphs identify three plausible
models which could account for the dynamics of birth
weight specific mortality [6]. One model supports the
Wilcox-Russell hypothesis [2,4,5], while the other two
include birth weight on the “causal pathway” [6].
The three plausible directed acyclic graphs are illu-

strated in Figure 1. Figure 1a assumes that the stressor
has direct effects on birth weight and mortality and
birth weight has direct effects on infant mortality. In
this case, an interaction between the stressor and birth
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Figure 1 Three directed acyclic graphs considered to be plausible models of the relationship of birth weight to infant mortality in
response to a stressor (adapted from [6]). Model (a) assumes that the stressor has direct effects on birth weight and mortality, birth weight
has direct effects on infant mortality, and an interaction of the stressor and birth weight are assumed to account for the reverse-J-shaped birth
weight specific mortality curve. Model (b) also assumes that the stressor has direct effects on birth weight and mortality, birth weight has direct
effects on infant mortality, and unobserved covariates U account for the reverse-J shape. Model (c) assumes that the stressor has direct effects
on birth weight and mortality, the reverse-J shape is the result of unobserved covariates U, but birth weight does not have direct effects on
mortality.
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weight is assumed to be responsible for the reverse-J
shape of the birth weight specific infant mortality curve.
Hernández-Diaz et al. [6] consider this the least likely
model since the interaction would need to be complex.
Figure 1b also assumes that the stressor has direct
effects on birth weight and mortality and birth weight
has direct effects on infant mortality. In this case, unob-
served covariates U are assumed to account for the
reverse-J-shaped birth weight specific mortality.
Although an interaction between the stressor and birth
weight could also contribute to the reverse-J-shaped
curve. Finally, Figure 1c assumes that the stressor has
direct effects on birth weight and mortality, but birth
weight does not have direct effects on mortality. In this
case, the reverse-J shape is entirely the result of unob-
served covariates U. Figure 1c corresponds to the
Wilcox-Russell hypothesis [2,4,5]. The direct effect of
the stressor on mortality is responsible for a simple
increase or decrease in mortality independent of birth
weight. The direct effect of the stressor on birth weight
is responsible for a shift right or left in the birth weight
density, and the mortality curve shifts with it because
birth weight does not affect mortality. In Figures 1a and
1b, birth weight does affect mortality and hence the
birth weight density and birth weight specific mortality
curve are not coupled. This uncoupling could be due to
a simple differential shift in the birth weight density and
birth weight specific infant mortality curve as assumed
in the Wilcox-Russell hypothesis [2,4,5]. Or, as sug-
gested by Hernández-Diaz et al. [6], it could also be due
to a change in the shape of the birth weight specific
mortality curve due to an interaction of the stressor and
birth weight on infant mortality. Wilcox and Russell
[2,4,5] assume the shape of the birth weight specific
mortality curve is constant.
If birth weight is not on the “causal pathway”, i.e. it does

not mediate the effect of race on infant mortality (Figure
1c), then the US national policy of reducing infant mortal-
ity [7] in general, and racial disparities in particular, by
reducing the low birth weight rate might not be effective.
On the other hand, the Wilcox-Russell hypothesis [2,4,5]
only applies to “normal” births (which they defined as
those in the central part of the birth weight distribution)
and not all births [5], so birth weight could still mediate
the effect of race on infant mortality among the remaining
births. An initial quantitative statistical test of the Wilcox-
Russell [2,4,5] and Hernández-Diaz et al. [6] hypotheses
using Covariate Density Defined mixture of logistic regres-
sions (CDDmlr) with maternal age as a stressor supports
the argument that birth weight is not on the causal path-
way to infant mortality for either “normal” or the remain-
ing “compromised” births [8].
Wilcox and others [5,9-11] have also argued that racial

disparities in infant mortality may be underestimated.

This view is based on the simple graphical observation
that lower birth weight African American births have
better survival than their European American peers with
similar birth weight despite much higher mortality over-
all, i.e. the racial “birth weight or pediatric paradox”.
The hypothesis is that unmeasured (and hence uncon-
trolled) heterogeneity between the racial groups might
mask part of the true racial disparities. It has been
shown that CDDmlr isolates the race “pediatric para-
dox” within the “compromised” subpopulation, allowing
better control of this phenomenon [10].
The objective of this paper is to quantitatively docu-

ment the role that birth weight plays in racial disparities
in infant mortality using the 2001 United States non-
Hispanic African and European American birth cohorts
controlling for sex. In particular, we statistically test the
hypothesis that birth weight is on the “causal pathway”
to infant mortality and decompose racial disparities in
infant mortality into effects, which are independent of
birth weight (direct effects of race) and effects, which
are due to the racial disparities in birth weight (indirect
effects of race mediated by birth weight). A secondary
aim is to estimate the magnitude of the racial disparities
in infant mortality while controlling for the “pediatric
paradox”. We do not propose that “race” is the cause of
these disparities, but simply a proxy for a collection of
stressors (e.g. socio-economic status, education, and
genetic etc, some of which may be unobserved), which
are the underlying causes of these differences.

Methods
Data Source
The data for this analysis are obtained from 2001 NCHS
Birth Cohort Linked Birth/Infant Death data set. Race
and ethnic origin are based on mother’s reported race
and ethnic origin. Approximately 6.4% and 8.7% of the
non-Hispanic European and non-Hispanic African
American births, respectively, are excluded from this
analysis due to missing information or LMP gestational
age <20 weeks or birth weight <500 grams. Summary
statistics for the samples used are presented in Table 1.
These data are public use samples, freely distributed by
NCHS and used with permission.

Statistical Model - CDDmlr
Covariate Density Defined mixture of logistic regressions
(CDDmlr), while a generally applicable statistical proce-
dure, was specifically designed to test the Wilcox-Russell
hypothesis [8]. It decomposes the birth weight distribu-
tion into a number of subpopulations, using standard
mixture of Gaussian distributions, and simultaneously
fits a separate birth weight specific mortality curve to
each of the subpopulations identified by the birth weight
density submodel [10]. A two-component CDDmlr
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model using Gaussian distributions (truncated at 500
grams) and logistic regressions (a 2nd degree polynomial
of birth weight) is the parsimonious model, that fits
birth weight distributions [12] and birth weight specific
mortality curves [9,10] remarkably well. One subpopula-
tion accounts for most births in the center of the birth
weight distribution and appears to identify “normal”
births, while the other accounts for most low and
macrosomic births, and is hence called “compromised”
births [9,10,12]. Clearly the “compromised” subpopula-
tion represents a heterogeneous group, i.e. births “com-
promised” by a variety of potential factors. However,
increasing the number of subpopulations does not
resolve the “compromised” subpopulation into separate
groups [13] and placing constraints on the fitting pro-
cess [4] simply reduces the goodness of fit. The model
represents the maximum likelihood division of the birth
weight distribution given the assumption that the
birth weight distribution is the sum of two Gaussian
subpopulations. Furthermore, the “compromised” subpo-
pulation differs slightly from Wilcox’s “residual” subpo-
pulation [4] given that it also accounts for births in the
normal birth weight range, where as Wilcox’s “residual”
births [4] were restricted to the lower tail. However, a
number of clinicians have argued that “compromised”
births do occur in the normal birth weight range, but
are not recognized as “compromised” when using the
arbitrary low birth weight standards (i.e. <2500 grams)
and are hence understudied [14,15]. Given that the
Reverse-J-shaped birth weight specific mortality curves
fitted to each of the two subpopulations (i.e. “normal”
and “compromised”) is parsimonious [9,10], we assume
that the reverse-J shape is due to other unspecified cov-
ariates and not a “causal” effect of birth weight. This is
consistent with Hernández-Diaz and her colleagues’
assumption [6] that the reverse-J shape of the mortality
curve is due to other unmeasured covariates, such as
the theory of Basso and Wilcox [16,17] that the reverse-
J shape is due to confounding. Here, we use CDDmlr to
statistically examine the Wilcox-Russell [2,4,5] and
Hernández-Diaz et al. [6] hypotheses for both “normal”
and “compromised” births. In addition, since the “pedia-
tric paradox” is associated with the “compromised”

subpopulation [10], CDDmlr can control for this phe-
nomenon as well.
The model employed here is an extension of the two-

subpopulation birth weight only CDDmlr model of
infant mortality [10]. In brief, a stratified CDDmlr
model is constructed by defining the five parameters
(referred to collectively as θ) in the birth weight density
submodel and the six parameters (referred to collectively
as b or b*, representing the two 2nd degree polynomials
of birth weight or standardized birth weight, respec-
tively) in the mortality submodel of the basic CDDmlr
model [10] as linear functions of a dummy variable (e.g.
race). Thus this stratified model can quantify the differ-
ences in the birth weight distribution (i.e. the proportion
of “compromised” births, and the means and standard
deviations of both subpopulations) and the (standar-
dized) birth weight specific mortality characteristics
between African and European American birth cohorts.
In this study, birth weight is standardized (Z-scored) for
each subpopulation based on the subpopulation specific
mean and variance. This step essentially breaks the asso-
ciation of race and birth weight so that we can estimate
the birth weight independent effect (direct effect) and
any remaining birth weight dependent effect [18,19].
The latter may be potentially due to a direct effect of
birth weight on infant mortality, or uncontrolled con-
founding between birth weight and infant mortality, or
an interaction of race and birth weight on infant mortal-
ity. In particular, we investigate the effects of race on:

(i) the logit of minimum mortality (i.e. a vertical
shift of the mortality curve by race, the direct effect
of race);
(ii) the optimal standardized birth weight (i.e. a hori-
zontal shift of the mortality curve by race, the indir-
ect effect of race described by Wilcox-Russell
[2,4,5]); and
(iii) the particular shape of the reverse-J-shaped
standardized birth weight specific mortality curve (i.
e. a second possible indirect effect of race, not con-
sidered by Wilcox-Russell [2,4,5] but equivalent to
the interaction of the stressor and birth weight pro-
posed by Hernández-Diaz et al. [6] as a possible
alternative cause of the reverse-J shape of birth
weight specific infant mortality).

This second indirect effect of race through birth
weight (iii) occurs when a change in the variance of
birth weight is not reflected in a compensatory change
in the shape of the birth weight specific mortality curve.
So that the standardized birth weight specific mortality
curve changes by race. Finally, the mixing proportion
may contribute to the overall observed racial disparities
in infant mortality. This is an additional effect of race,

Table 1 Descriptive statistics for the 2001 sample
populations

Birth Cohort # Births # Deaths CDR Birth Weight (grams)

Min Mean Median Max

Eur. Am. F. 1,023,583 3,558 3.48 500 3342 3365 6350

Eur. Am. M. 1,076,814 4,880 4.53 500 3461 3487 7858

Af. Am. F. 255,758 1,865 7.29 500 3092 3135 7002

Af. Am. M. 264,130 2,545 9.64 500 3200 3260 7220

Eur. = European; Af. = African; Am. = American; F. = females; M. = males.

CDR = Crude death rate (death per 1000 births).
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which was not discussed in the Wilcox-Russell hypothesis
[2,4,5] or its extension by Hernández-Diaz et al. [6]. How-
ever, it is similar to the concept of “confounding” in Basso
and Wilcox [16,17]. The mixing proportion does involve
the birth weight density, nonetheless, the role of birth
weight in this case is unclear, depending upon whether
birth weight is the cause or the effect of being “compro-
mised.” In summary, the CDDmlr provides a reasonable
statistical examination of the Wilcox-Russell hypothesis
[2,4,5] concerning the potential effects of a stressor, i.e. its
direct and/or indirect effects on infant mortality among
“normal” as well as “compromised” births [8]. It can poten-
tially distinguish between the “plausible” directed acyclic
graphs identified by Hernández-Diaz et al. [6] (Figure 1).
The likelihood function for the basic birth weight (x)

only CDDmlr model (i.e. CDDmlr without any exogen-
ous covariate) of infant mortality (y) is formally defined
as a product of the conditional mortality submodel f2(y|
x; θ, b) and the birth weight density submodel f1(x; θ):

f x y f y x f x, ; , | ; , ;    ( ) = ( ) ⋅ ( )2 1 (1)

In the case of two truncated Gaussian subpopulations,
the birth weight density submodel f1(x; θ) is given by

f x N x N xs s s s p p1
2 21; ; , ; ,      ( ) = ⋅ ( ) + −( ) ⋅ ( )  (2)

logit s s ( ) = (3)

πs, the mixing proportion, is defined as the proportion
of births belonging to the less numerous of the two sub-
populations, that is, the secondary subpopulation (s,
“compromised” subpopulation) as opposed to the pri-
mary subpopulation (p, “normal” subpopulation). The
reparameterization of πs (Eq. 3) transforms the 0 and 1
bounds on πs to minus and plus infinity, respectively.
For i = s and p, N x i i; ,  2( ) represents the Gaussian
density, truncated at 500 grams, with mean μi and var-
iance  i

2 . The conditional mortality submodel f2(y|x; θ,
b) with two subpopulations is given by

f y x q x P y x q x P y xs s s s p p2 1| ; , ; | ; ; | ;     ( ) = ( ) ⋅ ( ) + − ( )⎡⎣ ⎤⎦ ⋅ ( ) (4)

where qs(x; θ) is the probability that an infant with birth
weight x belongs to the s subpopulation. For i = s and p,
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The birth weight density submodel f1(x; θ) (Eq. 2)
determines that
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Overall, there are 11 parameters, five defining the
birth weight distribution, and six defining the subpopu-
lation-specific mortalities.
In this study, the basic CDDmlr model is extended in

two ways. First, we have used European American births
as the default and defined the African American “race”
effect as an indicator variable (z) on each of the 11 para-
meters in the basic CDDmlr model. Second, for i = s
and p, standardized birth weight ( xi

* , i.e. x is standar-
dized according to the respective subpopulation mean
and standard deviation) is used in the corresponding
logistic regression function. Thus

f x z z N x z z z N x zs s s s p p1 1| ; ; , ; ,      ( ) = ( ) ⋅ ( ) ( )( ) + − ( )⎡⎣ ⎤⎦ ⋅ ( )  zz( )( ) (7)

logit z z zs s s s   ( )( ) = ( ) = + ⋅, ,0 1 (8)
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  i i iz z( ) = + ⋅, ,0 1 (10)
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C z C z Ci i i
*

,
*

,
*( ) = + ⋅0 1 (14)

This extended model includes 22 parameters, 11
representing the characteristics of European American
births, and 11 representing the differences of African
compared to European American birth outcomes, that
is, the “race” effect. The 5 indicator variable terms in
the density submodel (i.e. h1, μi, 1, and si, 1 for i = s and
p) account for the effects of “race” on the birth weight
distribution, while the 6 indicator variable terms in the
mortality submodel (i.e. Ai,

*
1 , Bi,

*
1 , and Ci,

*
1 for i = s

and p) account for the racial difference in the standar-
dized birth weight specific mortality curves.
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Model Fitting
The birth weight density and mortality submodels are
fitted simultaneously to individual level data using the
method of maximum likelihood (ms() in the SPLUS sta-
tistical library [20]). The likelihood functions, as defined
by Eqs. 7-14, are used except that the 2nd degree poly-
nomial of standardized birth weight specific mortality
curves are fitted in linear form, and then transformed to
non-linear form after fitting. This significantly reduces
the computational resources necessary to fit the model.
The resulting parameter estimates are presented in
Table 2. This model shows no evidence of lack of fit
based on the Hosmer-Lemeshow statistic (with a
p-value of 0.66 and 0.41 for females and males, respec-
tively). Bias-adjusted 95% confidence intervals are
estimated from 200 bootstrap samples of 200,000 births
each, which are randomly generated from the entire
birth cohort (as opposed to the more conventional pro-
cedure of re-sampling with replacement from the origi-
nal sample a sample the same size as the original
sample). The conventional procedure requires excessive
computational resources. An independent study using
maternal education as a binary exposure variable

suggests that our bootstrap results are consistent with
results from the conventional bootstrap method.

Decomposition of the Racial Disparity
Decomposition of the racial disparity is carried out in
two steps. First, the total absolute racial disparity in
infant mortality is decomposed into deaths attributable
to differences in the mixing proportion and rate effects
for “normal” and “compromised” births using standard
Kitagawa decomposition [21].
The subpopulation specific disparities (rate effects) are

further decomposed into direct (independent of birth
weight) and indirect (potentially causal through birth
weight) effects by factoring the subpopulation relative
risks into direct and indirect multiplicative components.
The probability of infant death for a European American

birth with xi
* is given by
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e
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And the overall infant mortality for the i subpopula-
tion of European American births is the weighted aver-
age probability of infant death across all birth weights,
that is
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For an African American birth with xi
* in the i sub-

population, the probability of death for an African
American birth with is given by
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And the overall infant mortality for the i subpopula-
tion of African American births is the weighted average
probability of infant death across all birth weights, that
is
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The overall relative risk of infant death for African
American births as compared to European American
births in the i subpopulation is given by
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Table 2 Parameter estimates for the 2001 sample
populations

Birth Cohort z = 0 z = 1 z = 0 z = 1

Eur. Am. F. Af. Am. F. Eur. Am. M. Af. Am. M.

hs, 0 -2.75 -2.62

hs, 1 0.46 0.35

μs, 0 2678 2739

μs, 1 -639 -706

ss, 0 1098 1098

ss, 1 205 238

μp, 0 3380 3509

μp, 1 -211 -221

sp, 0 455 474

sp, 1 0+ -2+

A*s, 0 -7.12 -7.11

B*s, 0 1.06 1.29

C*s, 0 0.77 0.68

A*s, 1 -1.73 -0.83+

B*s, 1 0.36+ 0.11+

C*s, 1 0.54 0.62

A*p, 0 -6.85 -6.57

B*p, 0 0.97 1.22

C*p, 0 0.25 0.20

A*p, 1 0.75 0.69

B*p, 1 -0.15+ -0.44

C*p, 1 0.01+ 0.05+

Eur. = European; Af. = African; Am. = American; F. = females; M. = males.
+: = not significantly different from zero based on the bias-adjusted 95% CI.
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Fi,1 is referred to as the direct factor of “race” in the i
subpopulation. It is a constant, and independent of birth
weight. Fi,2 is referred to as the indirect factor of “race”.
It represents the combined effect of all birth weight
related factors on the racial disparity in infant mortality
of the i subpopulation. In particular, birth weight related
factors include differences in the shape and the horizon-
tal shift of the reverse-J-shaped standardized birth
weight specific mortality curve, the non-linear transfor-
mation between the probability, and the logit of infant
death at any standardized birth weight, as well as the
difference in the truncating value of the standardized
birth weight distributions between African and Eur-
opean American births.

Results
Characteristics of Race Specific Birth Weight Distributions
and Infant Mortality
The qualitative characteristics of the birth weight distri-
butions and birth weight specific infant mortality are
similar for both races (Table 3). The “normal” subpopu-
lation accounts for 90.6-94.0% of births, while the

remaining births are classified as “compromised”. The
“normal” subpopulation has mean birth weight in the
normal birth weight range, 3169-3509 grams, and a rela-
tively small standard deviation in birth weight, 455-474
grams. On the other hand, the “compromised” subpopu-
lation has a lower mean birth weight, 2034-2739 grams,
and a very large standard deviation in birth weight,
1098-1336 grams. Although it represents less than 10%
of births in either race, the “compromised” subpopula-
tion accounts for the majority of low birth weight and
macrosomic births (Figures 2a and 3a). Further the
“compromised” subpopulation has generally lower birth
weight specific infant mortality (Figures 2c-2d, and 3c-
3d) but a higher death rate overall (Table 3). This is due
to Simpson’s paradox, that is, because the “compro-
mised” subpopulation accounts for the majority of low
birth weight and macrosomic births, where mortality
tends to be higher. Overall, the “normal” subpopulation
generally accounts for 49.0-63.1% of total infant deaths,
while the “compromised” subpopulation accounts for
the remaining deaths (Table 3).

Racial Differences in Birth Weight Distributions
Race has substantial effects on the distribution of birth
weight (Table 3 Figure 2a-2b, and 3a-3b). For both
sexes, the proportion of “normal” births is approxi-
mately 3% smaller and the means of both subpopula-
tions are significantly smaller in African American
births compared to European American births. The

Table 3 Model-estimated birth weight distribution and mortality characteristics for the 2001 sample populations

Birth Cohort Eur. Am. F. Af. Am. F. Eur. Am. M. Af. Am. M.

estimate LCI UCI estimate LCI UCI estimate LCI UCI estimate LCI UCI

“Normal” Subpopulation

Proportion (%) 94.0 (93.5; 94.3) 90.7 (90.5; 91.0) 93.2 (92.7; 93.6) 90.6 (90.5; 90.8)

Mean (g) 3380 (3378; 3382) 3169 (3168; 3170) 3509 (3507; 3512) 3288 (3287; 3289)

Standard Deviation (g) 455 (453; 457) 455 (454; 457) 474 (472; 476) 472 (471; 473)

LBW Rate (%) 2.8 (2.7; 2.9) 7.0 (6.9; 7.0) 1.8 (1.7; 1.9) 4.8 (4.7; 4.9)

Death Rate # 2.3 (2.1; 2.6) 4.4 (4.2; 4.5) 2.9 (2.7; 3.2) 5.2 (5.0; 5.4)

Percent of Total DR (%) 63.1 (58.2; 67.8) 54.7 (53.5; 56.1) 60.5 (55.6; 65.0) 49.0 (47.5; 50.5)

“Compromised” Subpopulation

Proportion (%) 6.0 (5.7; 6.5) 9.3 (9.0; 9.5) 6.8 (6.4; 7.3) 9.4 (9.2; 9.5)

Mean (g) 2678 (2630; 2730) 2039 (1995; 2072) 2739 (2684; 2785) 2034 (1995; 2072)

Standard Deviation (g) 1098 (1067; 1126) 1303 (1289; 1320) 1098 (1076; 1121) 1336 (1323; 1350)

LBW Rate (%) 42.3 (40.4; 43.8) 58.5 (57.7; 59.2) 40.4 (38.7; 42.4) 58.3 (57.5; 59.1)

Death Rate # 21.2 (18.3; 24.9) 35.5 (33.7; 37.1) 26.3 (23.0; 30.0) 52.4 (50.3; 55.0)

Percent of Total DR (%) 36.9 (32.2; 41.8) 45.2 (43.9; 46.5) 39.5 (35.0; 44.4) 51.0 (49.5; 52.5)

Total Population

LBW Rate (%) 5.2 (5.1; 5.3) 11.8 (11.7; 11.9) 4.5 (4.4; 4.6) 9.8 (9.8; 9.9)

Death Rate # 3.5 (3.2; 3.7) 7.3 (7.1; 7.4) 4.5 (4.3; 4.8) 9.6 (9.4; 9.9)

Eur. = European; Af. = African; Am. = American; F. = females; M. = males.

LCI = lower 95% confidence interval; UCI = upper 95% confidence interval; LBW = low birth weight (i.e. <2500 grams); DR = death rate.
#: death per 1000 births.
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Figure 2 Model-estimated birth weight distributions and (standardized) birth weight specific infant mortality curves with bias-
adjusted 95% confidence intervals for European American females (Eur. Am. F.) and African American females (Af. Am. F.). Panel (a)
presents the subpopulation specific birth weight densities, while panel (b) shows the total birth weight densities. Panel (c) represents the
standardized birth weight specific infant mortality of “normal” births, while panel (d) presents the standardized birth weight specific infant
mortality of “compromised” births. Panel (e) shows the total birth weight specific infant mortality. Finally panel (f) compares the total birth
weight specific infant mortality with and without ( As,

*
1 0= ) the direct effect in the “compromised” Af. Am. F. subpopulation and the total

mortality curve for Eur. Am. F. is also presented.
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Figure 3 Model-estimated birth weight distributions and (standardized) birth weight specific infant mortality curves with bias-
adjusted 95% confidence intervals for European American males (Eur. Am. M.) and African American males (Af. Am. M.). Panel (a)
presents the subpopulation specific birth weight densities, while panel (b) shows the total birth weight densities. Panel (c) represents the
standardized birth weight specific infant mortality of “normal” births, while panel (d) presents the standardized birth weight specific infant
mortality of “compromised” births. Panel (e) shows the total birth weight specific infant mortality. Finally panel (f) compares the total birth
weight specific infant mortality with and without ( As,

*
1 0= the direct effect in the “compromised” Af. Am. M. subpopulation and the total

mortality curve for Eur. Am. M. is also presented.
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standard deviation of “compromised” African American
births is significantly larger compared to European
American births. However, there is no difference in the
standard deviation of the “normal” subpopulation
between African and European American infants of the
same sex. Collectively these differences account for the
larger low birth weight rates generally observed in Afri-
can American birth weight distributions (Table 3) [7,22].

Racial Differences in Infant Mortality
There are substantial racial differences in infant mor-
tality as well (Table 3 Figures 2c-2e, and 3c-3e). The
subpopulation specific results show that African Amer-
ican birth weight specific “normal” mortality is larger
than European American mortality (Figures 2c and 3c),
while African American birth weight specific “compro-
mised” mortality is generally smaller than European
birth weight specific mortality (Figures 2d and 3d).
Birth weight specific total mortality shows the “pedia-
tric paradox”, that is significantly smaller African
American mortality at lower birth weights but larger
mortality in the larger birth weight range (Figures 2e
and 3e). The lower mortality of African Americans at
smaller birth weights is accounted for by the lower
mortality of “compromised” African American births
compared to European American births at the smaller
birth weights where the “compromised” subpopulation
predominates (Figures 2d and 3d). Similarly the excess
mortality of African Americans in the normal birth
weight range is accounted for by the larger mortality
of African American “normal” births compared to Eur-
opean American “normal” births in the central part of
the birth weight range where “normal” births predomi-
nate (Figures 2c and 3c).
The estimated racial disparity can be decomposed

into a mixing proportion effect and two rate effects (in
particular, one for the “normal” subpopulation and the
other for the “compromised” subpopulation) by apply-
ing Kitagawa decomposition analysis [21] to the model
predicted death rates (Table 3). The results are pre-
sented in Table 4. All three effects carry absolute risks
of substantial magnitude. The mixing proportion effect

is due to the difference in the proportion of “normal”
to “compromised” births between African and Eur-
opean American births of the same sex. It accounts for
0.8-0.9 death/1000 in the racial disparities of infant
mortality (3.8-5.1 death/1000). The remaining disparity
is split between the “normal” and “compromised” sub-
populations, about equally in males, while the “normal”
subpopulation dominates in females. Thus the mixing
proportion and the subpopulation rate effects all
account for substantial absolute proportions of the
overall racial disparity.

Birth Weight and the Racial Disparity
A further decomposition of the subpopulation specific
racial disparities into direct (independent of birth
weight) and indirect (potentially causal through birth
weight) effects based on relative risks is summarised in
Table 5. The overall racial disparities are also presented.
We used the method of direct standardization of death
rates to calculate the infant mortalities and the relative
risks. In particular, we used the European American
birth cohorts as the reference (standard) population and
applied its distribution in estimating the mortalities of
both European and African American births. Therefore,
the relative risks in this table do not necessarily match
the results in Table 3 due to the truncation at 500
grams. This does not affect the “normal” births, because

Table 4 Kitagawa decomposition of the observed racial
disparities in infant mortality (death per 1000 births)

Decomposition Females Males

estimate LCI UCI estimate LCI UCI

Mixing Proportion Effect 0.81 (0.67; 0.95) 0.90 (0.72; 1.08)

Rate Effect

“Compromised” 1.09 (0.79; 1.37) 2.11 (1.75; 2.48)

“Normal” 1.90 (1.67; 2.19) 2.08 (1.77; 2.39)

Total Disparity 3.81 (3.53; 4.07) 5.09 (4.81; 5.40)

LCI = lower 95% confidence interval; UCI = upper 95% confidence interval.

Table 5 Subpopulation specific racial effect (relative risk)
of infant mortality # decomposed into direct and indirect
multiplicative factors

Racial Effect Females Males

estimate LCI UCI estimate LCI UCI

“Normal” Subpopulation

Relative Risk 1.89 (1.71; 2.14) 1.77 (1.63;
1.98)

Direct Factor 2.11 (1.87; 2.49) 2.00 (1.71;
2.68)

Indirect Factor 0.89 (0.78; 1.01)
*

0.88 (0.71;
1.00)*

“Compromised”
Subpopulation

Relative Risk 5.19 (4.29; 6.16) 5.12 (4.37;
6.08)

Direct Factor 0.18 (0.01; 0.69) 0.43 (0.11;
1.55)*

Indirect Factor 29.38 (13.83;
91.15)

11.80 (4.31;
33.46)

Total Birth Cohort

Relative Risk 3.10 (2.83; 3.41) 3.09 (2.89;
3.37)

#: mortalities are calculated by the method of direct standardization using
European American births as the reference (standard) population.

LCI = lower 95% confidence interval; UCI = upper 95% confidence interval.

*: relative risk or factor is not significantly different from 1 based on the bias-
adjusted 95% CI.
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the truncation occurs at about six standard deviations
below the mean. But it does affect the “compromised”
subpopulations, which have lower means and large var-
iances of birth weight, and thus the total relative risks as
well.
Among “normal” births, there is a significant direct

effect of being African American that contributes to
excess mortality in African American births (Table 5).
The indirect effect among “normal” births is marginally
insignificant in both males and females and tends to
reduce African American mortality! The direction of
this association is surprising given that mean birth weight
of “normal” African American births is significantly
smaller than that of European Americans (Table 3,
Figures 2a and 3a).
Among “compromised” births, on the other hand, the

indirect effect is significant and contributes to the excess
African American infant mortalities (Table 5). This
excess infant mortality is consistent with expectation,
that is higher mortality is associated with a significantly
lower birth weight (Table 3). In addition, a direct effect
among “compromised” African American births reduces
infant mortality (Table 5). It is significant for females,
but not for males. Since the direct and indirect effects
tend to compensate for each other the true size of these
effects may exceed the absolute effect predicted for each
subpopulation.
Overall, a direct effect on the “normal” subpopulation

is responsible for the higher infant mortality of African
American births in the normal birth weight range
(Figures 2e and 3e), while a direct effect on the “compro-
mised” subpopulation is responsible for the lower infant
mortality of African American births at lower birth
weights (Figures 2e and 3e). As a result, the race “pedia-
tric paradox” (i.e. African Americans have lower mortal-
ity at lower birth weights compared to their European
American peers), is due to this beneficial direct effect of
being an African American “compromised” birth (Figure
2f and 3f). Finally, a large indirect effect occurs in the
“compromised” subpopulation (Table 5).

Discussion
CDDmlr was designed to examine the Wilcox-Russell
hypothesis [2,4,5], and its extensions, e.g. Hernández-
Diaz et al. [6], and to provide quantitative estimates of
the direct effects, which are independent of birth weight
and the indirect effects that may operate through birth
weight. As described above we have implemented the
same assumptions as Wilcox-Russell [2,4,5] and Hernán-
dez-Diaz et al. [6]. Nevertheless, application of a quanti-
tative model has some additional limitations over
qualitative models, e.g. data quality and quantity, as well
as the details of the implementation.

The analyses are based on the public use samples of
the NCHS linked birth death files. These have very large
sample sizes (Table 1) so there are unlikely to be issues
with power. Birth weight is considered to be reliably
measured. Mortality estimates may be slightly biased
due to problems associated with linking birth and death
certificates. However, these are the same data, with the
same problems, that most representative analyses of the
US are based upon. For our purposes the most troubling
defects are that births at <500 grams and LMP gesta-
tional ages <20 weeks are not consistently reported by
all states [23]. Following many analyses of these data we
have truncated the data to avoid this problem. Conse-
quently, we have used Gaussian distributions truncated
at 500 grams to match the data.
One technical difficulty in models of this kind is esti-

mating unbiased direct and indirect effects. The qualita-
tive analysis in Hernández-Diaz et al. [6] is based on the
assumptions of counterfactuals [24-26]. Here we take an
alternative approach, developed from statistical decision
theory [18]. In our case, we have modelled the birth
weight density as the sum of two Gaussian distributions
and the subpopulation specific mortality curves as a 2nd

degree polynomial of Z-scored birth weight standardized
with respect to these Gaussians. This eliminates the main
effects (associations) of race and birth weight and the
logistic regressions can then estimate the direct effect of
race on infant mortality versus potential interaction
effects of race and birth weight on infant mortality.
Direct and indirect effects can be estimated using proce-
dures similar to direct standardization [18]. The result is
called a “generated direct effect” by Geneletti [18], which
is similar to Pearl’s “natural direct effect” [24]. Since the
“normal” and “compromised” subpopulations are defined
as Gaussian distributions, the appropriate distribution is
theoretically available for direct standardization. In this
regard, truncation of the data at 500 grams creates a sig-
nificant truncation difference in the standardized birth
weight distributions between African and European
American “compromised” births. Consequently, the
results based on a common reference population (i.e. the
European American distribution, Table 5) may be pre-
ferred. Identification issues concerning “generated direct
effects” are discussed by Geneletti [18].
One advantage of the decision theory approach is that

the assumptions concerning the existence of counterfac-
tuals are not necessary. However, like counterfactual
methods, the same strong unmeasured covariate
assumptions are required. In particular; a) no unmea-
sured covariates which affect the stressor (race in this
case) and the racial disparities in infant mortality, b) no
unmeasured confounding of race and birth weight, and
c) no unmeasured confounding of birth weight and
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infant mortality. Assumption a is necessary to estimate
total racial disparities, all three are needed to estimate
“generated direct effects” [18].
These assumptions may be less of a problem with race

than with other variables such as smoking, which have
more precise definitions. Race is typically considered to
be socially constructed and defined as that collection of
variables (some of which may be observable and some
of which are currently unobservable) that are associated
in some way with reported race. Given this view, all
confounders of racial effects on birth weight or infant
mortality, are integral parts of the definition of race.
This is the assumption generally used when reporting
total “racial disparities”, such as those presented in
Table 1. Of course it is possible to partial out the effects
of measured confounders on racial disparities, e.g. the
effects of maternal age, but what are left in this case are
simply all the unmeasured and unknown effects of race.
The results presented above are uncorrected for con-
founders, and consequently represent the sum total of
all direct and indirect effects associated in some way
with race. This should be considered when interpreting
the results.
Based on the “pediatric paradox”, Wilcox has argued

that racial disparities may be underestimated due to
unmeasured confounding [5,9-11]. Gage has hypothe-
sized that the lower birth weight specific mortality of
African compared to European American “compro-
mised” birth cohorts[10] is due to the heavier fetal loss
and selection documented among African Americans
[27,28]. If this assumption is correct, then differential
fetal loss is associated with the direct effect of being
African American in the “compromised” subpopulation
and with the “pediatric paradox”. This interpretation is
also consistent with Platt et al.’s finding [29] that the
race “birth weight paradox” disappears when observable
fetal deaths (total fetal loss is not observable) are
included (as well as live births and infant deaths) in the
analysis of racial disparities in infant mortality. Should
this selection bias be included in the definition of “race”
or should differential fetal loss be excluded from the
definition of race? The answer depends upon the ques-
tion, but CDDmlr potentially makes it possible to cor-
rect for this “unmeasured” source of confounding.
Model-based adjustment of this effect yields relative

risks of 4.2 and 3.6 for African American female and
male births, respectively. These are higher than the pre-
dicted total relative risks in Table 5, and much higher
than the observed relative risk of 2.1 for both sexes
derived from Table 1. This adjusted racial disparity
needs to be considered with some caution, since it
assumes that the direct effect in the “compromised” sub-
population is completely due to selection bias and can
be reduced to zero while all other modelled effects

remain the same. Nevertheless, it is possible that a sub-
stantial part of the racial disparity in infant mortality is
hidden by differential fetal loss.
We assume that unmeasured confounding of birth

weight and infant mortality (assumption c) is responsi-
ble for the reverse-J shape of the birth weight specific
mortality curve [16,17] and that the reverse-J shape is
not a “causal” effect of birth weight. We have implemen-
ted the characteristic reverse-J shape of birth weight
specific infant mortality using a second-degree polyno-
mial to account for this unmeasured confounding. This
could cause some error if it cannot adequately represent
the shape determined by the unmeasured covariates
assumed to be responsible for this phenomenon (Figure 1).
A 2nd degree polynomial, however, is a relatively flexible
function, and is considered to provide an optimal fit
to birth weight specific mortality in the homogeneous
case [30].
Moreover, the CDDmlr model corrects for some

unmeasured confounding of birth weight and infant
mortality, referred to as “normal” versus “compromised”
births. It is unlikely that dividing birth cohorts into two
Gaussian subpopulations will account for all of the
unmeasured confounding between birth weight and
infant mortality. Nevertheless, the two subpopulations
display significantly different mortality patterns indicat-
ing that the CDDmlr model accounts for some other-
wise unmeasured heterogeneity [9,10]. In particular, we
have argued that the generally higher “normal” birth
weight specific mortality compared to “compromised”
birth weight specific mortality is due to greater fetal loss
among “compromised” births, resulting in a highly
selected “compromised” sample at live birth [9,10] simi-
lar to the hypothesis concerning the “pediatric paradox”.
If correct, this effect would violate assumption c, unless
the two subpopulations are examined separately, as they
are here.
The statistical results presented above (Tables 2 and

5) are consistent with the Wilcox-Russell hypothesis
[2,4,5], and its extensions [6] (Figure 1c) that suggest
that birth weight is not on the “causal pathway” to
infant mortality at least for “normal” births. The racial
disparity in birth weight has no significant association
with the racial disparity in infant mortality after control-
ling for the other paths in Figure 1c. There is no evi-
dence of any residual difference in infant mortality
between birth weight and infant mortality over and
above the direct effect and the reverse-J shape of the
standard population, European American births in this
case. It is unlikely that this result is compromised by
uncontrolled confounding of birth weight and infant
mortality, since this would require that the sum total of
associations generated by uncontrolled confounding
equal zero. It is more likely that all of the effects of race
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on infant mortality in this subpopulation operate
through pathways that do not include birth weight.
On the other hand, there is a substantial indirect

effect, which disadvantages African American infant
mortality among “compromised” births (Table 5). The
results in Table 2 indicate that this association is largely
due to a change in shape of the reverse-J-shaped birth
weight specific mortality curve between the races. This
could be due to an interaction of race and birth weight
on infant mortality, or due to a violation of no unmea-
sured confounding assumptions b or c. It is also equiva-
lent to the interaction [6] required by Figure 1a and also
possible in Figure 1b, both of which require that birth
weight be on the “causal pathway” to infant mortality.
In any event an association between birth weight and
infant mortality can not be excluded, and it remains
possible that birth weight has a “causal” effect on infant
mortality among these “compromised” births.
Overall, the findings suggest that interventions with

respect to birth weight will not reduce racial disparities
in mortality among “normal” births, but might reduce
them among “compromised” births. Identification of the
exact mechanisms and whether birth weight plays a
“causal” role conditional on “compromised” birth will
require additional analysis, i.e. control of potential con-
founding. The “compromised” subpopulation accounts
for about 29-41% of the observed racial disparity for
females and males respectively (Table 4).
If our hypothesis concerning the selection effects of

fetal loss on observed racial disparities is correct, then
the total racial disparity is higher than observed, and the
proportion of the disparity due to the “compromised”
subpopulation is larger than observed. The confounding,
represented by the mixing proportion, accounts for an
additional 17-21% of the observed racial disparity for
males and females, respectively (Table 4). Nevertheless,
completely eliminating the “compromised” subpopulation
would a) reduce both the low and the macrosomic birth
weight rates, which are generally associated with elevated
infant mortality in both African and European American
birth cohorts, b) reduce the size of the racial disparity if
direct standardization based on the European American
distribution are accepted, c) reduce the size of the dispar-
ity yet again if our hypothesis concerning the selection
effects of fetal loss in the “compromised” subpopulation
is correct and included as a potential bias, but d) still
result in a population with a racial disparity of 1.9 and
1.8 for females and males, respectively (Table 5), about
the level of the relative risk currently observed in the raw
data (2.1 for both sexes, Table 1).

Conclusions
Our results support the Wilcox-Russell [2,4,5] and Her-
nández-Diaz et al. [6] arguments that birth weight is not

on the causal pathway to infant mortality at least among
“normal” births. Improvements in birth weight may not
necessarily impact infant mortality for these births! How-
ever, birth weight cannot be eliminated as a potential
cause of infant mortality among a small subpopulation of
“compromised” births, generally accounting for less than
10% of the birth cohort. Improvements in birth weight
may reduce infant mortality among certain births.
The true racial disparity in infant mortality between

African and European American birth cohorts may be
obscured by unobserved heterogeneity. This heterogene-
ity may be due to differential fetal loss, which appears
to account for the “pediatric paradox”. The true racial
disparities may also be obscured by lack of consistently
reporting births at below 500 grams in the NCHS linked
birth death files.
Part of the racial disparity is due to mixing proportion

effects, i.e. a larger number of “compromised” births
among African Americans than European Americans.
Reducing the disparity in the size of “compromised”
births will somewhat reduce racial disparities. If all
“compromised” births could be eliminated (i.e. eliminat-
ing all possible statistically significant birth weight
dependent effects), the racial disparities would decrease
slightly (1.9 and 1.8 for females and males, respectively)
from the currently observed level (2.1 for both sexes).
Therefore, the complete elimination of racial disparities
in infant mortality requires the elimination of birth
weight independent (i.e. direct) effects, as well as any
birth weight dependent (i.e. indirect) effects.
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