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Density-functional expansion methods: Evaluation of LDA, GGA,
and meta-GGA functionals and different integral approximations
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We extend the Kohn–Sham potential energy expansion (VE) to include variations of the kinetic
energy density and use the VE formulation with a 6-31G* basis to perform a “Jacob’s ladder” com-
parison of small molecule properties using density functionals classified as being either LDA, GGA,
or meta-GGA. We show that the VE reproduces standard Kohn–Sham DFT results well if all inte-
grals are performed without further approximation, and there is no substantial improvement in us-
ing meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA
functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect
of using integral approximations to compute the zeroth-order energy and first-order matrix elements,
and the results suggest that the origin of the short-range repulsive potential within self-consistent
charge density-functional tight-binding methods mainly arises from the approximations made to the
first-order matrix elements. © 2010 American Institute of Physics. [doi:10.1063/1.3515479]

I. INTRODUCTION

The development of fast, accurate quantum methods are
central to modeling biochemical reactions through molecu-
lar simulation. There has been considerable progress in the
advancement of methods based on density-functional theory
(DFT) in recent years,1 including the development of im-
proved functionals for the exchange-correlation energy, and
robust parameterizations for chemical applications. Nonethe-
less, the sheer size and complexity of many biocatalysis ap-
plications precludes the use of so-called ab initio DFT meth-
ods with the extensive sampling required. Consequently, for
many biochemical problems, one must take recourse into the
use of much faster approximate quantum models in molecular
simulations.

As a result, the development of improved semiempirical
and approximate DFT methods is an area of ongoing inter-
est and activity. There have been a host of advancements in
the field ranging from improved parameterization of existing
models,2–5 to the development of new models that more ro-
bustly capture correct chemical behavior of systems.5–17 To
date, there have been a number of aspects of conventional
semiempirical and approximate density-functional methods
that have been identified as problematic. These include the re-
alistic modeling of electronic response properties,13, 18 proper
inclusion of dispersion interactions,9, 14, 19 accurate represen-
tation of electrostatics, and inclusion of the effects of orthog-
onalization of molecular orbitals.20 As the field progresses,
there is growing interest to develop next-generation mod-
els that overcome these problems and provide an improved
description of chemical processes. A particularly promising
method is the self-consistent charge density-functional tight-
binding (SCC-DFTB) model.21, 22 This method is based on a
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second-order expansion of the Kohn–Sham potential energy
in terms of the electron density (and spin density), and has re-
cently been extended to third order.11, 12 A comparison of the
first-generation SCC-DFTB method with neglect of diatomic
differential overlap (NDDO)-based semiempirical methods
has been made for organic compounds.23 There remains many
challenges, however, with regard to which directions may be
the most fruitful to pursue in developing next-generation ap-
proximate DFT methods that deliver even higher accuracy
and robustness, while maintaining the tremendous compu-
tational advantages these methods have over ab initio DFT
methods.24

In order to facilitate the development of such new meth-
ods, we systematically explore the effect of different approx-
imations inherent in the SCC-DFTB method, and discuss
potential new directions for methodology development. The
purpose of this manuscript is fourfold: (1) we extend the
Kohn–Sham potential energy expansion (VE) to include vari-
ations of the kinetic energy density, (2) we use the VE for-
mulation to perform a “Jacob’s ladder” comparison25 of small
molecule properties using density functionals classified as be-
ing either LDA, GGA, or meta-GGA, (3) we show that the
VE reproduces standard Kohn–Sham DFT results well if all
integrals are performed without further approximation, and
(4) we explore the effect of common integral approximations
to compute the zeroth-order energy, first-order matrix ele-
ments, and second-order terms.

II. METHODS

A. Expansion of the Kohn–Sham potential energy

This section expresses the Kohn–Sham potential energy
as a functional of the density and kinetic energy density and
derives the VE energy as a Taylor expansion of the Kohn–
Sham potential energy to second order in density response

0021-9606/2010/133(24)/244107/10/$30.00 © 2010 American Institute of Physics133, 244107-1

http://dx.doi.org/10.1063/1.3515479
http://dx.doi.org/10.1063/1.3515479
http://dx.doi.org/10.1063/1.3515479


244107-2 T. J. Giese and D. M. York J. Chem. Phys. 133, 244107 (2010)

and first order in kinetic energy density response. The mini-
mization of the energy in orbital variations is described and
expressions for the Fock matrix are given.

The total Kohn–Sham energy is

E[ρ, ω, τ, θ ] = T [τ ] + V [ρ, ω, τ, θ ], (1)

where T and V are the noninteracting kinetic energy and
potential energy, respectively, and take as functional ar-
guments the total electron density ρ(r) = ρα(r) + ρβ(r),
spin density ω(r) = ρα(r) − ρβ(r), kinetic energy density
τ (r) = τα(r) + τβ(r), and kinetic energy spin density θ (r) =
τα(r) − τβ(r). The above representation can be alternately
mapped into one that uses the individual spin-resolved elec-
tron and kinetic energy density components through the re-
lations: ρα(r) = [ρ(r) + ω(r)] /2, ρβ(r) = [ρ(r) − ω(r)] /2,
τα(r) = [τ (r) + θ (r)] /2, and τβ(r) = [τ (r) − θ (r)] /2. The
spin-resolved densities can be expressed in the basis of atomic
orbitals {χi }, herein assumed to be real, as

ρσ (r) =
∑
i, j

Pσ
i, jχi (r)χ j (r), (2)

τσ (r) = 1

2

∑
i, j

Pσ
i, j∇χi (r) · ∇χ j (r), (3)

where Pσ is the spin-resolved single-particle density matrix
in the atomic orbital (AO) basis.

The kinetic and potential energies are

T [τ ] =
∫

τ (r)d3r =
∑
i, j

Pi, j Ti, j , (4)

V [ρ, ω, τ, θ ] =
∫

ρ(r)v(r)d3r + J [ρ] + Exc[ρ, ω, τ, θ ],

(5)

where

Ti, j = −1

2

∫
χi (r)∇2χ j (r)d3r, (6)

P is the single-particle density matrix in the AO basis, v(r) is
the external potential (e.g., the electrostatic potential due to
the nuclei),

J [ρ] = 1

2

∫ ∫
ρ(r)ρ(r′)
|r − r′| d3rd3r ′ (7)

is the electron–electron Coulomb repulsion, and
Exc[ρ, ω, τ, θ ] is the exchange correlation energy.

We now consider the reference state defined by reference
densities ρ0(r), τ0(r) and reference spin densities ω0(r) =
0, θ0(r) = 0, which we henceforth denote collectively by a
“0” subscript outside functional derivatives. Expansion of
V [ρ, ω, τ, θ ] about the reference state to second-order re-
sponse in ρ(r) and ω(r) and first order response in τ (r) and
θ (r) produces

E[ρ0 + δρ, δω, τ0 + δτ, δθ ] = T + V (0) + V (1) + V (2), (8)

where the terms on the right hand side of the equation are the
kinetic energy, zeroth-order reference potential energy, and
first and second order potential energy corrections, respec-
tively.

The zeroth-order reference potential energy is

V (0) = V [ρ0, 0, τ0, 0]

=
∫

ρ0(r)v(r)d3r + J [ρ0] + Exc[ρ0, 0, τ0, 0]. (9)

The first-order potential energy is

V (1) =
∫ [

δV

δρ(r)

]
0

δρ(r)d3r +
∫ [

δV

δτ (r)

]
0

δτ (r)d3r

=
∑
i, j

(
Pi, j − P0

i, j

) (
V (1,0,0,0)

i, j + V (0,0,1,0)
i, j

)
, (10)

where P0 is the reference single-particle density matrix which
reconstructs the reference density from the AO basis. δρ(r)
and δτ (r) are

δρ(r) =
∑
i, j

(
Pi, j − P0

i, j

)
χi (r)χ j (r), (11)

δτ (r) = 1

2

∑
i, j

(
Pi, j − P0

i, j

) ∇χi (r) · ∇χ j (r), (12)

and V (1,0,0,0)
i, j and V (0,0,1,0)

i, j are

V (1,0,0,0)
i, j =

∫ [
δV

δρ(r)

]
0

χi (r)χ j (r)d3r, (13)

V (0,0,1,0)
i, j = 1

2

∫ [
δV

δτ (r)

]
0

∇χi (r) · ∇χ j (r)d3r. (14)

The first-order functional derivatives of V [Eq. (5)] are[
δV

δρ(r)

]
0

= v(r) + φ0(r) +
[

δExc

δρ(r)

]
0

, (15)

[
δV

δτ (r)

]
0

=
[

δExc

δτ (r)

]
0

, (16)

where φ0(r) is the classical electrostatic potential of the ref-
erence electron density ρ0(r). The contributions to the first-
order energy due to variations in ω(r) and θ (r) vanish with our
choice of expansion reference, i.e., ω0(r) = 0 and θ0(r) = 0.

The second-order energy (neglecting terms involving τ

and θ ) is

V (2) = 1

2

∫
δρ(r)

∫ [
δ2V

δρ(r)δρ(r′)

]
0

δρ(r′)d3r ′d3r

+1

2

∫
δω(r)

∫ [
δ2V

δω(r)δω(r′)

]
0

δω(r′)d3r ′d3r

= 1

2

∑
i, j

(
Pi, j − P0

i, j

)
V (2,0,0,0)

i, j

+ 1

2

∑
i, j

(
Pα

i, j − Pβ

i, j

)
V (0,2,0,0)

i, j , (17)

where

V (2,0,0,0)
i, j =

∫
χi (r)χ j (r)

×
∫ [

δ2V

δρ(r)δρ(r′)

]
0

δρ(r′)d3rd3r ′, (18)
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V (0,2,0,0)
i, j =

∫
χi (r)χ j (r)

×
∫ [

δ2V

δω(r)δω(r′)

]
0

δω(r′)d3rd3r ′, (19)

and [
δ2V

δρ(r)δρ(r′)

]
0

= 1

|r − r′| +
[

δ2 Exc

δρ(r)δρ(r′)

]
0

, (20)

[
δ2V

δω(r)δω(r′)

]
0

=
[

δ2 Exc

δω(r)δω(r′)

]
0

. (21)

Note that the mixed functional derivative δ2V/δρ(r)δω(r′) is
zero when using the reference ω0(r) = 0, and we have chosen
for the sake of simplicity to limit the expansion of the kinetic
energy densities to first order.

The energy [Eq. (8)] is minimized with respect to vari-
ations in the orbitals under orthonormality constraints using
the standard self-consistent field (SCF) procedure to solve the
Kohn–Sham equations, where the σ -spin Fock matrix is

Fσ
i, j = Ti, j + V (1,0,0,0)

i, j + V (0,0,1,0)
i, j

+ V (2,0,0,0)
i, j + (−1)δσ,β V (0,2,0,0)

i, j . (22)

B. Computational details

This section describes several models based on the
method described in the previous section and provides com-
putational details used in their evaluation and of the calcula-
tion of reference data. The description of the models consists
of (1) the density functionals, (2) the basis set, (3) the choice
of reference density, and (4) the integral approximations.

We consider the LDA functional SVWN5,26 the GGA
functionals PBE27 and HCTH147,28 and the meta-GGA func-
tionals τ -HCTH29 and M06L.30 Unless otherwise specif-
ically stated, we use the SPW9227 functional to evaluate
the exchange-correlation second functional derivatives in
Eqs. (20) and (21).

In this work, we consider the reference state to be a su-
perposition of atomic electron and kinetic energy densities.
In order to evaluate the integrals in the previous section, one
must obtain atomic orbitals, a reference density matrix, and a
corresponding reference density. The reference atomic elec-
tron and kinetic energy densities were obtained from numeri-
cal solution of the restricted open-shell Kohn–Sham equations
using a spherical harmonic 6-31G* basis whilst enforcing
spherical symmetry of the density through uniform occupa-
tion of degenerate orbitals. These atomic calculations do not
involve the VE approximations; however, the resulting atomic
orbitals and reference densities are used as input to the VE.
The atomic calculations use the same density functional as
that used in the VE.

In Tables I–VIII, we will refer to three variants of the
VE method: “VE”, “VE0,” and “VE1.” The VE model is the
base model that results from solution of the equations verba-
tim as written in the previous section using reference densities
formed from the sum of atom-centered atomic densities. The

VE0 and VE1 models involve approximations that have cer-
tain computational advantages, as described below.

The VE0 model is like VE, but employs a two-center
cluster approximation to V (0), i.e.,

V (0) =
∑

a

V [ρ0,a, 0, τ0,a, 0]

+
∑
b>a

{V [ρ0,a + ρ0,b, 0, τ0,a + τ0,b, 0]

− V [ρ0,a, 0, τ0,a, 0] − V [ρ0,b, 0, τ0,b, 0]}, (23)

where ρ0,a and τ0,a are the reference electron and kinetic en-
ergy atomic densities of atom a and similarly for b. Note that
the VE0 model is equivalent to the VE model for any two-
atom system.

The VE1 model, like VE0, employs Eq. (23) as an ap-
proximation to V (0) but further applies a two-center approx-
imation for the reference density within the V(1,0,0,0) and
V(0,0,1,0) matrix elements, i.e.,

V (1,0,0,0)
i, j =

⎧⎨
⎩

∫ [
δV

δρ(r)

]
a0

χi (r)χ j (r)d3r, if i, j ∈ a,∫ [
δV

δρ(r)

]
a0+b0

χi (r)χ j (r)d3r, if i ∈ a, j ∈ b,

(24)

where the reference state denoted by a0 is the atomic density
centered on atom a, and the reference state denoted by a0 + b0

is the sum of atomic densities centered on atoms a and b.
The VE1 integral approximation to V(0,0,1,0) is analogous to
Eq. (24); the functional derivatives are taken with respect to
δτ (r) instead of δρ(r).

In the next section, we compare covalent bond lengths,
angles, molecular dipole moments, and homolytic bond dis-
sociation energies for 52 small molecules31 taken from the
G2/97 neutral small molecule test set.32 Our test set con-
sists of 25 dimers, 11 three-atom molecules, 7 four-atom
molecules, and 9 five-to-eight atom molecules, and the multi-
plicities of these molecules include 35 singlets, 11 doublets,
and 6 triplets. We proceed by describing the calculation de-
tails for these molecules.

The VE, VE0, and VE1 models are compared against
MP2(FULL) and standard DFT results (Tables I–III) using
a spherical harmonic 6-31G* basis, and each molecule was
geometry optimized for every model. All geometry optimiza-
tions were performed using the GAUSSIAN 03 program33

patched with the MN-GFM34 module using tight convergence
criteria. The MN-GFM module allowed us to use the M06L30

functional. The VE, VE0, and VE1 geometry optimizations
were performed using numerical gradients computed via a fi-
nite difference displacement of 0.001 bohr.

The VE, VE0, and VE1 calculations compute all in-
tegrals fully numerically using atom centered quadrature
grids composed of the outer product of 150 radial Gauss–
Laguerre35 and 590 angular Lebedev36–38 quadrature points
(88 500 points per atom). The molecular quadrature grid is
partitioned using Becke’s fuzzy voronoi, including his use
of Bragg–Slater radii.39 The standard LDA and GGA calcu-
lations run with GAUSSIAN 03 used the “ultrafine” pruned
quadrature grid for the evaluation of the exchange-correlation;
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TABLE I. Bond length error statistics (Å) using 114 data points.

Functional Model μSE σSE μUE σUE Max.
Errors relative to standard MP2(FULL)/6-31G* calculations. Avg. = 1.312 Å

SVWN5 Std. 0.006 0.022 0.017 0.016 −0.162 Na2

SVWN5 VE 0.006 0.022 0.017 0.016 −0.159 Na2

PBE Std. 0.010 0.013 0.013 0.009 −0.080 Na2

PBE VE 0.012 0.013 0.015 0.009 −0.071 Na2

HCTH147 Std. 0.005 0.010 0.009 0.007 0.044 CN
HCTH147 VE 0.006 0.010 0.010 0.007 0.046 CN
τ -HCTH Std. 0.003 0.010 0.008 0.007 0.042 CN
τ -HCTH VE 0.007 0.011 0.011 0.008 0.048 Na2

M06L Std. −0.002 0.010 0.007 0.008 −0.047 Li2
M06L VE 0.010 0.021 0.018 0.014 0.105 Li2

Errors relative to standard PBE/6-31G* calculations. Avg. = 1.322 Å
PBE VE 0.002 0.002 0.002 0.001 0.009 Na2

PBE VE0 −0.013 0.014 0.014 0.013 −0.078 C2H6

PBE VE1 −0.473 0.199 0.473 0.199 −1.339 Na2

whereas the standard meta-GGA calculations were run with
an unpruned grid with every atom containing 120 radial and
590 angular grid points.

The tables in this paper contain error statistics, including
the mean signed and unsigned errors (μSE and μUE, respec-
tively), the standard deviation of the signed and unsigned er-
rors (σSE and σUE, respectively), the maximum error (Max.),
the molecule which produced the maximum error, and the av-
erage reference value (Avg.). The abbreviation “Std.” refers
to a standard, as opposed to a VE-based, calculation.

Tables IV and V compare bond lengths and bond disso-
ciation energies for several small molecules containing Zn.
The 6-31G* basis is inadequate for calculations involving Zn,
therefore, the reference values are taken directly from Ref. 40,
whom performed CCSD(T) calculations using a relativistic
effective core potential (ECP) and the B2 basis40–43 for Zn
and a MG3S44 basis for the remaining elements. All other re-
sults within Tables IV and V, which are computed as a part of
this work, do not use a ECP but do use the spherical harmonic
B2 and MG3S basis sets. The VE calculations in these tables
were performed using the procedure described above, i.e., for

the construction of the atomic orbitals and reference densi-
ties, but with the B2 and MG3S basis instead of the 6-31G*
basis.

Table VI explores the effect of reference density
confinement45 on the H–O–H angle of water when using the
PBE VE1 model. The atomic orbitals and reference densi-
ties for the models denoted by VE1[x Rcov] have been con-
structed by solving the regular Kohn–Sham equations for
the isolated atoms while applying a radial confinement po-
tential that modifies the energy so that the Kohn–Sham ef-
fective Hamiltonian matrix elements contain the additional
term∫

χi (r)χ j (r)

(
r

x Rcov

)2

d3r, (25)

where x is some factor, which in this work is either 3, 4, or
5, and Rcov is the covalent radius46–50 of the atom. Solution
of the Kohn–Sham equations with the confinement potential
yields confined orbitals and reference densities; however, we
note that, since we use the entirety of the 6-31G* basis, the
total space spanned by the confined orbitals is the same as that

TABLE II. Angle error statistics (degrees) using 98 data points.

Functional Model μSE σSE μUE σUE Max.
Errors relative to standard MP2(FULL)/6-31G* calculations. Avg. = 112.745◦

SVWN5 Std. −0.009 0.863 0.531 0.681 3.143 CH2

SVWN5 VE 0.013 0.967 0.636 0.729 3.832 CH2

PBE Std. −0.199 0.642 0.416 0.528 −2.146 PH3

PBE VE −0.205 0.821 0.554 0.640 2.596 CH2

HCTH147 Std. −0.161 0.624 0.402 0.503 2.460 CH2

HCTH147 VE −0.201 0.809 0.567 0.611 −2.399 NH2

τ -HCTH Std. −0.170 0.639 0.436 0.497 −1.997 NH2

τ -HCTH VE −0.236 0.764 0.536 0.593 −2.591 NH2

M06L Std. −0.188 0.520 0.385 0.396 −1.706 PH3

M06L VE −0.321 0.943 0.670 0.737 −2.899 PH3

Errors relative to standard PBE/6-31G* calculations. Avg. = 112.5◦

PBE VE −0.006 0.340 0.177 0.290 2.229 CH4S
PBE VE0 −0.629 1.152 0.858 0.993 −3.940 CH4O
PBE VE1 0.785 16.155 10.666 12.159 78.425 HOCl
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TABLE III. Dipole moment error statistics (atomic units) using 52 data points.

Functional Model μSE σSE μUE σUE Max.
Errors relative to standard MP2(FULL)/6-31G* calculations. Avg. = 0.539 a.u.

SVWN5 Std. −0.032 0.089 0.048 0.081 −0.425 CN
SVWN5 VE −0.039 0.100 0.055 0.092 −0.457 CN
PBE Std. −0.042 0.081 0.048 0.078 −0.421 CN
PBE VE −0.050 0.094 0.057 0.090 −0.483 CN
HCTH147 Std. −0.039 0.074 0.044 0.071 −0.394 CN
HCTH147 VE −0.046 0.087 0.054 0.082 −0.474 CN
τ -HCTH Std. −0.044 0.077 0.049 0.073 −0.368 CN
τ -HCTH VE −0.045 0.083 0.054 0.077 −0.469 CN
M06L Std. −0.018 0.054 0.029 0.049 −0.275 CN
M06L VE −0.042 0.087 0.052 0.081 −0.491 CN

Errors relative to standard PBE/6-31G* calculations. Avg. = 0.496 a.u.
PBE VE −0.007 0.019 0.012 0.016 −0.076 LiH
PBE VE0 −0.005 0.024 0.015 0.019 −0.076 LiH
PBE VE1 0.120 0.571 0.373 0.449 1.847 HOCl

of the unconfined orbitals. The VE1 models which employ
the confined orbitals and reference densities use the confined
reference in all aspects of the model except for the one-center
terms appearing in Eq. (24), which instead evaluates the first-
order potential arising from the unconfined atomic densities.
This usage of unconfined atomic densities has been chosen to
mimic SCC-DFTB’s use of free-atom eigenvalues for these
matrix elements [see, e.g., Eqs. (22) and (23) in Ref. 45].

Tables VII and VIII compare adiabatic bond ener-
gies between VE, VE0, and VE1 relative to the standard
PBE/6-31G* results. These energies are differences in SCF
energies, i.e., they do not contain enthalpic, entropic, nor
zero-point corrections to the energy. The bond energies in
Table VII correspond to the cleavage of a homolytic bond in
a symmetric molecule to form two identical radical species,
and the molecules were chosen because both the molecules
and radical fragments were included within the test set used
to generate Tables I–III. Table VIII differs from Table VII by
saturating the molecular fragments with hydrogens and sub-
sequently mass balancing with hydrogen molecules so that all
species have a closed shell electronic structure.

Table IX compares dipole moments computed by stan-
dard PBE and various models based on the VE using the PBE
functional. For this table, the dipole moments are computed

using the geometries obtained from standard PBE. A list of
the various models appearing in this paper are summarized
below with their respective abbreviations:

VE: The base model that results from solution of the equa-
tions verbatim in Sec. II A using reference densities
formed from the sum of atom-centered atomic densi-
ties.

VE0: The VE0 model is like VE, but employs a two-center
cluster approximation to V (0) as in Eq. (23).

VE1: The VE1 model is like the VE0 model, with the ad-
ditional two-center approximation on the reference den-
sity as indicated in Eq. (24).

VEJ: The VE model excluding the exchange-correlation
contribution to V (2), i.e., this is a second-order Coulomb
approximation without the use of an auxiliary basis.

VE1J: The VE1 model with a second-order Coulomb ap-
proximation without the use of an auxiliary basis.

VEJ(S): The VEJ model, but the molecular dipole mo-
ments are computed from Mulliken-partitioned charges.

VE1J(S): The VE1J model, but the molecular dipole mo-
ments are computed from Mulliken-partitioned charges.

VEJ/S: The VEJ model where the second-order Coulomb
energy is computed with an auxiliary basis of Slater

TABLE IV. Bond lengths (Å) of Zinc-containing small molecules. Shown are the CCSD(T) results from reference 40, and the signed errors of each method
with respect to the CCSD(T) reference. The Zn−X bond lengths in ZnF2 and ZnCl2 are identical by symmetry. All calculations use a B2 basis for Zn and
MG3S basis for O, F, S, and Cl. Molecules with an even number of electrons are computed with singlet multiplicity; doublet multiplicity otherwise.

Functional Model ZnF ZnF2 ZnCl ZnCl2 ZnO ZnS Zn2 μSE μUE

CCSD(T) Std. 1.775 1.723 2.151 2.078 1.711 2.066 4.104 — —
SVWN5 Std. −0.011 −0.016 −0.031 −0.031 −0.039 −0.043 −1.254 −0.204 0.204
SVWN5 VE −0.010 −0.015 −0.033 −0.030 −0.038 −0.042 −1.268 −0.205 0.205
PBEPBE Std. 0.031 0.021 0.017 0.011 −0.005 −0.004 −0.912 −0.120 0.143
PBEPBE VE 0.033 0.021 0.017 0.010 −0.005 −0.004 −0.938 −0.124 0.147
HCTH147 Std. 0.036 0.023 0.037 0.017 −0.004 −0.001 −0.321 −0.030 0.063
HCTH147 VE 0.033 0.021 0.027 0.014 −0.006 −0.000 −0.402 −0.045 0.072
τ -HCTH Std. 0.028 0.016 0.031 0.012 −0.011 −0.011 −0.795 −0.104 0.129
τ -HCTH VE 0.017 0.009 0.017 0.006 −0.016 −0.010 −0.832 −0.116 0.130
M06L Std. 0.022 0.012 0.008 −0.002 −0.007 −0.023 −0.868 −0.122 0.135
M06L VE 0.026 0.016 0.007 −0.002 −0.012 −0.027 −0.854 −0.121 0.135
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TABLE V. Bond dissociation energies (kcal/mol) of zinc-containing small molecules. Shown are the CCSD(T) results from reference 41, and the signed errors
of each method with respect to the CCSD(T) reference. The ZnF2 and ZnCl2 correspond to the reaction ZnX2 → ZnX + X. Isolated atoms are computed using
their ground state electronic configuration.

Functional Model ZnF ZnF2 ZnCl ZnCl2 ZnO ZnS Zn2 μSE μUE

CCSD(T) Std. 63.90 116.77 45.88 99.11 29.14 27.87 0.43 — —
SVWN5 Std. 26.33 25.97 17.55 17.88 36.52 26.03 4.68 22.14 22.14
SVWN5 VE 26.82 26.46 16.85 17.42 39.45 26.97 4.82 22.68 22.68
PBEPBE Std. 10.63 5.31 6.99 2.59 16.72 11.09 1.28 7.80 7.80
PBEPBE VE 15.68 12.59 8.26 6.31 25.80 16.99 1.30 12.42 12.42
HCTH147 Std. 5.69 5.82 0.29 0.14 8.99 3.01 0.04 3.43 3.43
HCTH147 VE 15.07 11.23 5.61 2.53 23.38 12.48 −0.04 10.04 10.05
τ -HCTH Std. 9.91 8.13 4.99 1.77 10.58 7.07 1.09 6.22 6.22
τ -HCTH VE 19.59 15.97 8.75 5.41 28.42 15.90 1.08 13.59 13.59
M06L Std. 3.64 4.03 6.46 8.40 4.37 8.77 1.37 5.29 5.29
M06L VE 24.45 23.74 13.15 14.23 33.95 22.89 1.27 19.10 19.10

monopoles of Mulliken-partitioned charges. The Slater
ζ -exponent was chosen such that the self-Coulomb
energy of Slater function reproduces the atom’s ex-
perimental hardness. Unlike VEJ(S), VEJ/S affects
the Fock matrix and resulting SCF-converged den-
sity matrix. The dipole moments are computed from
Mulliken-partitioned charges. The Slater functions are
represented by a contracted Gaussian containing four
primitive functions.

VE1J/S: The VE1J model where the second-order
Coulomb energy is computed with an auxiliary basis
(see VEJ/S).

VE1TB: The VE1 model where the second-order energy
is zero, i.e., there is no SCF procedure.

VE1TB(S): The VE1TB model where the dipole mo-
ments are computed from Mulliken-partitioned charges.

VE1[xRcov]: The VE1 model that uses confined orbitals
and reference densities, where the term in square brack-
ets defines the magnitude of the radial confinement po-
tential as shown in Eq. (25).

III. RESULTS AND DISCUSSION

A. Comparison between LDA, GGA,
and meta-GGA functionals

It is well established that GGA functionals are more re-
liable, especially for predicting hydrogen bonding, than LDA
functionals, and that meta-GGA functionals can offer a mod-

TABLE VI. Water O−H bond (Å) and H−O−H angle (degrees) errors for
PBE VE1 models with and without the use of reference atomic density con-
finement [Eq. (25)]. The errors are reported as signed differences defined by
error = model − reference, where the reference values result from standard
PBE/6-31G* calculations. Entries marked “frozen” indicate partial geometry
optimization with the coordinate fixed at the PBE/6-31G* value.

Model O−H H−O−H
VE1 −0.297 29.007
VE1 Frozen −5.831
VE1[5Rcov] Frozen −3.034
VE1[4Rcov] Frozen −2.466
VE1[3Rcov] Frozen −2.189

est improvement over GGA functionals, particularly for tran-
sition metal systems,41, 51 when statistics over a large dataset
are examined. In this section, we explore the degree to which
Kohn–Sham VE models follow this trend, i.e., to answer the
question: does a meta-GGA VE offer any advantage over a
GGA VE?

Table I displays covalent bond length error statistics rel-
ative to MP2 reference data, and shows that standard DFT
agrees with MP2 to within a μUE of 0.02 Å. The largest errors
occur for Na2 and Li2, which also have exceptionally large
bond lengths: 3.16 and 2.78 Å, respectively. The VE models
yield error statistics very similar to what is seen for standard
DFT; their differences in bond length μUE values are typi-
cally below 0.004 Å. The exception to this are the M06L VE
results, which yield the largest bond length μUE value for any
method (0.018 Å).

With respect to the bond angles, the standard DFT re-
sults show a 0.4◦–0.5◦ μUE relative to the reference MP2 re-
sults (Table II), and the VE models are slightly worse by an
additional 0.1◦–0.2◦, typically, but with the M06L VE be-
ing the exception. The M06L VE μUE is 0.3◦ larger than
the standard M06L μUE and yields the highest μUE of any
method. VE’s based on GGA and meta-GGA functionals tend
to yield slightly better angle error statistics than the LDA VE,
but the differences are small (typically 0.1◦) and there is no
clear improvement of meta-GGA functionals relative to GGA
functionals.

One of the largest and most common maximum errors re-
ported in Table II is the H–C–H angle in 3 B1 CH2. MP2 pre-
dicts this angle to be 131.6◦, whereas the standard DFT results
are 134.8◦ (SVWN5), 133.6◦ (PBE), 134.1◦ (HCTH147),
133.3◦ (τ -HCTH), and 130.9◦ (M06L). The VE angles are
slightly larger than their standard DFT counterparts, typically
by 0.3◦–0.5◦, except for the M06L VE result which is 133.7◦.
The CH2 angle has been experimentally measured via laser
magnetic resonance and found to be 133.8◦,52 and so the DFT
and VE results are in better agreement with experiment than
the MP2 reference.

There is almost no distinction between LDA, GGA, and
meta-GGA dipole moments relative to the MP2 reference
(Table III), with all models yielding a μUE of approximately
10% of the average MP2 reference value. A large difference
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TABLE VII. Error statistics (kcal/mol) for homolytic bond dissociation energy of symmetric molecules to form identical radical species using PBE/6-
31G* reference data (six data points) corresponding to the reactions: C2H6 → 2CH3, C2H4 → 2CH2, C2H2 → 2CH, N2H4 → 2NH2, Si2H6 → 2SiH3,
and H2O2 → 2OH. The computed energies are SCF energy differences without zero-point energy nor other approximate thermochemical corrections. The
average reference dissociation energy is 125.378 kcal/mol.

Functional Model μSE σSE μUE σUE Max.
PBE VE 9.445 2.607 9.445 2.607 14.322 C2H4 → 2CH2

PBE VE0 26.683 10.337 26.683 10.337 42.148 C2H6 → 2CH3

PBE VE1 1201.001 222.306 1201.001 222.306 1612.073 H2O2 → 2OH

in dipole moment can be an indicator of a difference in ge-
ometries, and Tables I and II suggested minor differences in
geometries only. The largest difference in dipole moments
between all methods and the MP2 results are for the 2+

CN radical; however, all DFT methods predict fairly similar
dipole moments relative to each other. HF and MP2 tend to
predict a CN dipole moment that is one and a half to two
times larger than what DFT methods predict, and this overes-
timation of the dipole moment is not particularly sensitive to
the size of the basis set. The dipole moment predicted by the
DFT methods is in good agreement with those obtained from
Stark effect measurements.53

B. Analysis of errors for Zn-containing compounds

We have selected some small Zn-containing compounds
for further analysis (Tables IV and V) in order to assess to
what extent a meta-GGA versus a GGA-based VE affects the
results for transition metal systems. These molecules were se-
lected due to the availability of their recently reported high-
level benchmark results.40, 41 We observe larger bond length
errors in Zn-containing molecules (Tables IV) for all func-
tionals other than HCTH147; however, the standard and VE
calculations are in good agreement with each other, as was
observed in Table I. The errors of PBE and the meta-GGA
functionals are very similar and the LDA errors are almost
twice as large in comparison.

Standard HCTH147 has the smallest bond dissociation
energy μUE in Table V, and the standard meta-GGA’s μUE

are 2–3 kcal/mol larger. Unlike the bond lengths, angles, and
molecular dipole moments, the bond dissociation energy er-
ror statistics show discrepancies between standard DFT and
VE calculations, except for the LDA calculations; however,
the Zn2→ 2Zn calculation shows close agreement between
the standard and VE calculations. This reaction is the only
calculation in Table V that results from singlet molecule con-
stituents only. With this in mind and the fact that the standard
and VE LDA calculations are always in close agreement sug-
gests that the discrepancies between standard and VE calcu-

lations when computed with the GGA and meta-GGA func-
tionals results from the LDA treatment of the V (2) energy
[Eq. (17)].

C. Effect of integral approximations

In the previous sections standard DFT and VE results
were compared with respect to the class of functional used,
i.e., LDA, GGA, and meta-GGA. The VE method used in the
comparison performed the integrals described in the Methods
section verbatim; however, the Kohn–Sham VE is typically
only used as a motivational starting point to which further and
more severe approximations are made in the interest of reduc-
ing computational effort21 and thus form the foundation for
a semiempirical model. The VE method requires the calcula-
tion of nonadditive multicenter integrals, but a more tractable
model, such as SCC-DFTB,21 approximates the multicenter
integrals by a series of two-center integrals whose results can
be pretabulated and stored as cubic splines, but at the detri-
ment of requiring parameterization within the framework of
the model via ad hoc corrections. This section explores the
effect of integral approximations to the zeroth and first-order
terms in the expansion without including additional ad hoc
corrections.

Error statistics resulting from the comparison of the VE,
VE0, and VE1 models relative to the standard PBE calcula-
tions are summarized at the bottom of Tables I–III. In general,
VE is a very good approximation, with μUE values of 0.002 Å
(bond lengths), 0.290◦ (bond angles), and 0.012 a.u. (dipole
moments). The VE0 model shows some breakdown resulting
from the two-center cluster approximation to V (0) [Eq. (23)].
More concerning, however, is the significant deterioration of
the VE1 model, which utilizes the two-center approximation
for the reference density when computing the first-order inte-
grals [Eq. (24)]. This approximation is a cornerstone for the
practical implementation of approximate density-functional
expansion methods, since it allows the first-order integrals to
be precomputed and tabulated on numerical splines, and then

TABLE VIII. Error statistics (kcal/mol) for relative homolytic bond dissociation energy (with respect to H2) using PBE/6-31G* reference data (six data points)
corresponding to the closed-shell reactions: C2H6 + H2 → 2CH4, C2H4 +2H2 → 2CH4, C2H2 +3H2 → 2CH4, N2H4 + H2 → 2NH3, Si2H6 + H2 → 2SiH4,
H2O2 + H2 → 2H2O. The computed energies are SCF energy differences without zero-point energy nor other approximate thermochemical corrections. The
average reference dissociation energy is −50.587 kcal/mol.

Functional Model μSE σSE μUE σUE Max.
PBE VE 0.076 0.282 0.221 0.191 0.636 C2H2 + 3H2 → 2CH4

PBE VE0 −8.408 15.610 11.708 13.314 −38.400 C2H2 + 3H2 → 2CH4

PBE VE1 369.505 445.538 511.706 270.546 887.490 H2O2 + H2 → 2H2O
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TABLE IX. Dipole moment error statistics (atomic units) relative to standard PBE/6-31G*. All calculations use the PBE functional and the standard
PBE/6-31G* optimized geometries. The statistics include 52 data points and the average reference value is 0.496 a.u.

Model μSE σSE μUE σUE Max.
VE −0.007 0.019 0.012 0.016 −0.077 LiH
VEJ −0.043 0.079 0.051 0.074 −0.420 LiH
VEJ(S) −0.067 0.363 0.176 0.324 −1.908 LiH
VEJ/S −0.174 0.413 0.236 0.381 −1.914 NaCl

VE1 0.078 0.233 0.179 0.169 0.565 PH2

VE1J 0.050 0.262 0.184 0.193 −0.805 LiH
VE1J(S) −0.136 0.468 0.249 0.419 −2.101 LiH
VE1J/S −0.115 0.352 0.185 0.321 −1.641 LiH

VE1TB 0.355 0.341 0.358 0.337 1.088 SiO
VE1TB(S) 0.122 0.364 0.242 0.298 −1.153 LiH

efficiently rotated into the molecular orientation using Slater–
Koster tables or spherical tensor gradient operator methods.54

The VE and standard PBE yield almost identical cova-
lent bond lengths, whereas the VE0 yields bond lengths that
are too small by 0.01 Å. The VE1 model, however, results in
bond lengths that are completely artificial (i.e., too small by
0.473 Å).

The VE0 angles exhibit errors four times larger than
the VE results when compared to standard PBE, and the
VE1 angle errors are 50–60 times larger than those ob-
served for VE. We observe VE1 geometry optimizations
causing nonlinear molecules to become either linear (e.g.,
HOCl) or severely bent (e.g., H2Si), which is anecdotally
why the VE1 μSE and μUE’s differ. The VE1 μUE value
of 10.666◦ may seem surprising because SCC-DFTB an-
gles have previously been shown23 to agree with MP2 re-
sults to within 1.5◦, and it may not be obvious that a
short-ranged pairwise repulsive potential would account for
such a discrepancy. It has been our experience, through par-
tial geometry optimizations in which the bond lengths are
held fixed, that the errors in the angles are significantly
coupled to the errors in the bond lengths. This coupling
can be seen by comparing the first two rows of Table VI,
and our interpretation is that the coupling occurs through
the first-order energy, as opposed to the zeroth-order energy.
There are other differences between the VE1 model presented
in this work and the SCC-DFTB model used in Ref. 23: The
VE1 model uses an all-electron 6-31G* basis and calculates a
numerically accurate V (2) energy, whereas SCC-DFTB uses a
minimal valence basis and employs a Slater monopole auxil-
iary basis. Another difference is that SCC-DFTB uses atomic
reference densities that have been confined by a radial po-
tential. We address the use of confined reference densities in
Table VI, which displays the error of water’s angle for several
VE1 models which employ confined atomic densities. The re-
sults support the idea that the VE1 angle errors are reduced
when (1) the errors in the bond lengths are small, (2) the
one-center terms in Eq. (24) are evaluated using the poten-
tial arising from the unconfined reference density, and (3) the
remainder of the model is computed using confined reference
densities. Thus, one should not be overly pessimistic when
interpreting the VE1 results in Table II.

The comparison of VE, VE0, and VE1 dipole moment
error statistics relative to standard PBE follow similar trends.

The VE model yields the smallest errors, VE0 produces
slightly larger errors, and VE1 results in very large errors, and
this can be explained by noting that the dipole moments are
coupled to the quality of the molecular geometry, and the VE1
geometries are quite poor, whereas the VE0 geometries com-
pare much more reasonably with VE and standard PBE.

The coupling of the properties to the quality of the geom-
etry is also apparent in Table VII, which compares the adia-
batic bond energies for a small set of reactions corresponding
to the homolytic cleavage of symmetric molecules into radi-
cal fragments. Like Table V, Table VII displays large errors
for VE because of our LDA treatment of V (2). Table VIII cir-
cumvents this approximation by saturating the radical frag-
ments with hydrogens to yield closed shell molecules. When
open-shell molecules are not involved, the VE μUE drops from
9.445 to 0.221 kcal/mol, which is less than the chemical ac-
curacy of PBE.

Overall, the error statistics for the VE1 model relative to
the full Kohn–Sham PBE results suggest that straightforward
application of the two-center approximation to the reference
density will require considerable reliance on other forms of
empiricism to develop highly accurate models.

Up to this point, we have yet to discuss nonbonded inter-
actions, therefore we address this here by comparing geom-
etry optimized water dimer structures computed from stan-
dard PBE, VE, VE0, and VE1 in Fig. 1. The VE and standard
PBE structures agree almost identically, following the good
agreement observed in Tables I and II. We have compared VE
and standard DFT using other functionals as well (not shown)
and similar good agreement is found. For example, standard
SVWN5/6-31G* does not predict a hydrogen bonding struc-
ture to be a minimum, but instead produces a “parallel dis-
placed” structure in which the planes formed by each water
are parallel to each other, and yet the SVWN5 VE faithfully
reproduces this erroneous dimer structure.

In Tables I and II, we found that the pairwise integral ap-
proximation to V (0) produced only minor changes in the co-
valent bond lengths and angles; however, Fig. 1 suggests that
this approximation can greatly affect the geometries of non-
bonded complexes. The PBE VE0 water dimer structure is
qualitatively similar to what we observe from standard LDA
calculations. To investigate the role of many-body effects, we
performed a test whereby the water dimer structure was com-
puted from a model which we describe as being a PBE VE
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FIG. 1. Optimized water dimer geometries using VE (top), VE0 (middle),
and VE1 (bottom) superimposed onto the standard PBE/6-31G* geometry
(green). The water dimers are bound by 8.84 (standard PBE), 8.79 (VE),
16.77 (VE0), and 477.58 (VE1) kcal/mol.

model whose V (0) energy is computed by a nonadditive LDA
V (0) [Eq. (9)] term and then having subtracted a LDA cluster
approximant V (0) [Eq. (23)] and added a PBE cluster approxi-
mant V (0) [Eq. (23)]. In this way, the model contains one- and
two-body PBE V (0) and many-body LDA V (0). This model
does predict the hydrogen bonded structure as the global min-
imum, albeit not with the accuracy of the VE model. This
result was intriguing to us because, if one were to construct
an ab initio-like expansion model, it would be advantageous
to perform quadrature evaluation of an LDA functional, as
opposed to a GGA functional, and then supplement the calcu-
lation with one- and two-body GGA corrections which can be
precomputed on numerical splines. Alas, when we construct
a model described as a PBE VE whose first-order matrix ele-
ments are computed from a nonadditive LDA [Eq. (10)] and
which includes one- and two-body [Eq. (24)] GGA correc-
tions, the global minimum of the water dimer is similar to the
LDA optimized structure.

The VE1 water dimer structure is poor and defies physi-
cal intuition. This is not entirely unexpected, because the ap-
proximation to the first-order matrix elements [Eq. (24)] ig-
nores the fact that the system is composed of atoms, except for
those atoms involved in the basis function product. Therefore,
as an example, the basis function product involving the hydro-
gens of water ignore the first-order potential arising from the

oxygen. This is not to say that a semiempirical model based
on these approximations cannot be constructed; even the
additive molecular mechanical TIP3P water model predicts
hydrogen bonding.55 These observations only imply that pa-
rameterization of such a model would be necessary and likely
coupled to some basis. Furthermore, the observation that the
VE1 bond lengths are substantially too small suggests the
need for an ad hoc repulsive potential, i.e., the repulsive po-
tential used in SCC-DFTB largely results from the approx-
imation for the first-order integrals. We are not the first to
attribute the presence of a repulsive potential to mask other
approximations within a DFTB-based model, and we direct
the reader to Refs. 56 and 57 and references therein for fur-
ther discussion.

Given the importance of including an ad hoc repulsive
potential to retain good geometries when integral approxima-
tions are used, let us suppose that we have modified the VE
energy expressions to include an “ideal” repulsive potential
that is not a functional of the electron density response and
which causes the VE models to reproduce the standard PBE
geometries exactly. Then, under this supposition, we can ex-
plore how different integral approximations affect the dipole
moments by performing single point calculations at the stan-
dard PBE geometries. The dipole moments resulting from this
scenario are shown in Table IX for a variety of approxima-
tions. We observe that VE reproduces standard DFT well and
then progressively increases in error as the following approx-
imations are applied: Coulomb approximation (VEJ), Mul-
liken partitioning of the final density matrix [VEJ(S)], and
inclusion of Mulliken partitioned Slater-charge electrostatics
(VEJ/S). The extent to which the errors increase suggest that
using a Slater monopole auxiliary basis increases the errors
much more than using a Coulomb approximation for V (2), and
therefore an avenue of future development may be to incorpo-
rate a more complete auxiliary basis, such as Gaussian mul-
tipole expansions,58 for the second-order density response. If
the model is based on VE1 (or VE1J), then a complete aux-
iliary basis can do no better than VE1 (or VE1J), which does
not use an auxiliary basis. We see that VE1J/S has a μUE very
close to that of VE1J, so using a more complicated auxiliary
basis may only serve to reduce the σUE and maximum error
to that of VE1J. One could therefore hypothesize that a VE1J
model with a more complicated auxiliary basis may result in
a more costly method that does not offer great advantage over
VE1J/S.

IV. CONCLUSION

We have explored the use of approximate density-
functional models based on the Kohn–Sham potential energy
expansion in both the electron and kinetic energy densities
and spin densities, and investigated the effect of base density
functional and various integral approximations on the accu-
racy of the models. It has been demonstrated that the VE to
second order, with no additional approximations, reproduces
very well the full Kohn–Sham results for a variety of systems.
A large source of error, however, is introduced when the first-
order integrals are computed using a two-center approxima-
tion for the reference densities. The Coulomb approximation
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for the second-order integrals does not introduce substantial
error to molecular dipole moments; however, this work does
not explore its effect on geometry. For the cases examined
here, there seems to be no substantial advantage to using mod-
els based on meta-GGA functionals relative to GGA function-
als, both of which are substantially better than LDA function-
als for some properties, including hydrogen bonding. Overall,
the results indicate that a potentially promising direction for
further development of fast, approximate DFT models may in-
volve consideration of atomic orbital basis functions beyond
a minimal basis set, and extension of the electrostatic repre-
sentation of the second-order term to include a more complete
auxiliary basis; however, the benefits of doing so would only
be garnered via significant recourse in empiricism or remov-
ing the other integral approximations altogether.
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