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Abstract
Attachment of endometrial epithelial cells (EECs) and endometrial stromal cells (ESCs) to
peritoneal mesothelial cells (PMCs) with and without inhibition of N- and O- linked glycosylation,
viability of EECs and ESCs, and expression of CD44 surface density was evaluated. Inhibition of
CD44 N- and O-linked glycosylation by using tunicamycin and/or B-GalNAc, significantly
inhibits endometrial cell attachment to peritoneal mesothelial cells suggesting a role in
establishment of early endometriotic lesions.
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The pathogenesis of endometriosis remains poorly understood. Sampson’s Theory proposes
that retrograde menstruation is the source of endometrial tissue that implants in the pelvis.
Peritoneal cells secrete hyaluronan (HA), a glycosoaminoglycan. CD44, the primary
receptor for HA, is a transmembrane glycoprotein which aids in cellmigration and adhesion.
(3,4) Alternate splicing and post-translational glycosylation of CD44 is one regulatory step
in CD44 binding to HA.(5,6) CD44 glycosylation either increases or decreases affinity to
HA depending on specific glycosylation and cell type.(7,8)

The process of attachment of endometrial cells to peritoneal mesothelial cells (PMCs) is
assisted by extracellular interactions. This is a possible novel target for pharmacologic
therapy aimed to inhibit ectopic endometrial cells from adhering to PMC’s.

Dechaud reported decreased adhesion of endometrial cells to PMCs after hyaluronidase
treatment suggesting a role for CD44/HA in the attachment of endometrial cells to PMCs.(9)
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No prior study has assessed glycosylation in attachment of endometrial cells to PMCs. The
purpose of this study was to evaluate the role of N- and O-linked glycosylation in
attachment of endometrial cell lines to PMCs.

This study was approved by the Institutional Review Board at the University of Texas
Health Science Center San Antonio.

A human immortalized cell line of endometrial epithelial cells (EECs), EM42, were grown
in MCDM 131:Medium 199:alpha-MEM, 40:40:20, containing 10% fetal bovine serum
(FBS) at 37°C. (10–12)

Immortalized human endometrial stromal cells (ESCs), CRL-4003 were grown in DMEM/
F12 10% FBS, 1% BD Insulin, Transferrin, Selenous (ITS) +Premix Universal Culture
Supplement (Catalog#354352, BD, Franklin Lakes, NJ), at 37°C. (13,14)

PMCs (LP9 line) were obtained from National Institutes of Health Aging Cell Repository
Coriell Institute for Medical Research, Camden, NJ and grown in MCDB-131/Medium 199
(1:1) (Sigma-Aldrich, St. Louis, MO), epidermal growth factor (20 ng/mL), L-glutamine (2
μM), hydrocortisone (400 ng/mL), 1% antibiotic/antimycotic, and 15% FBS at 37°C.
(10,15–17)

The attachment assay was performed as previously described.(10,15,18–19) Briefly, cells
were harvested using non-enzymatic cell dissociation solution (Sigma-Aldrich, Catalog
#5914). Viable cells were labeled with 5 uM Calcein-AM (Invitrogen) for 20 minutes at
37°C, and then were plated at 20,000 cells/well in 100 μl of charcoal stripped heat-
inactivated 10% fetal bovine serum media (SHIS), over confluent PMC’s in 96-well plates
and cultured at 37° C for 1 hour. Fluorescence was determined using a Thermo-Forma
Fluoroskan fluorometer with Ascent Software (Thermo-Fisher Scientific, Milwaukee, WI).
The plates were submerged and inverted in a bath of phosphate-buffered saline containing
calcium and magnesium (Invitrogen), and incubated at 37 °C for 15 minutes on an orbital
mixer (Barnstead/Thermolyne, Dubuque, IA) at 20 rpm, allowing non-adherent endometrial
cells to precipitate. SHIS (100 μl) was added to each well and fluorescence was assessed.

Cells were grown to subconfluence and treated with benzyl 2-acetamido-2-deoxy-α-D-
galactopyranoside (B-GalNAc), an O-linked glycosylation inhibitor (78 μg/ml, 156 μg/ml,
or 233 μg/ml), or tunicamycin (Tunica), an N-linked glycosylation inhibitor (0.5 μg/ml, 1
μg/ml, or 5 μg/ml) for 24 hours on 96-well plates with SHIS media. The fluorocein-
conjugated lectin (20 μg/ml), Artocarpus integrifolia (Jacalin) which binds selectively to O-
linked glycosylated sites was added to wells treated with B-GalNAc for 30 minutes at 37 °C.
Similarly, Ricinus communis agglutinin-1 (RCA; 20 μg/ml) which binds N-linked sites was
added to wells treated with Tunica. Plates were washed with PBS containing calcium and
magnesium (Invitrogen, Carlsbad, CA), andfluorescence was assessed..

Cell viability was assessed using CellTiter-Glo® Luminescent Cell Assay (Promega,
Madison WI). This assay determines the number of viable cells based on quantification of
the ATP. (20) The cells were grown to sub-confluence on 96well plates with SHIS media.
The concentrations of B-GalNAc (78, 156, and 233 μg/ml) and Tunica (0.5, 1.0, 5.0 μg/ml)
were similar to previously reported studies.(21,22) Cells were lysed with the addition of 100
μl of the CellTiter-Glo® assay mixture for 30 minutes at room temperature, and
luminescence was assayed.

CD44 surface density was assessed by flow cytometry. Cellswere treated with B-GalNAc or
Tunica for 24 hours. Flasks were harvested, washed, and treated with CD44 monoclonal
antibody, 5F12 clone (Lab Vision, Thermo Fisher Scientific), 0.6 μg/106 cells, followed by
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CY-5 fluorescent conjugated secondary antibody staining (Jackson ImmunoResearch, West
Grove, PA).

Each assay was run with 12 replicates. Analysis of variance (ANOVA) and Tukey’s post-
hoc analysis were preformed where appropriate.

The attachment of both lines to PMCs was decreased after Tunica treatment (p<0.01). There
was a 4%, 25%, and 32% decrease in attachment of EECs compared to controls after
treatment with the 0.5, 1, and 5 μg/ml doses of Tunica, respectively. There was a 54%, 68%,
and 64% decrease in attachment of ESCs to PMC’s after treatment with the 0.5, 1, and 5 μg/
ml doses, respectively.

The attachment of EEC’s (p<0.01) and ESC cells (p<0.01) to PMCs was decreased after B-
GalNAc treatment. There was a 21%, 31%, and 25% decrease in attachment of EECs after
treatment with the 78, 156, and 233 μg/ml doses of B-GalNAc,. There was a 16%, 21%, and
34% decrease in attachment of ESCs to PMCs after treatment with the 78, 156, and 233 μg/
ml doses, respectively. When both Tunica and B-GalNAc were used to treat cell lines at the
middle doses, there was a significant decrease in attachment compared to the control, but it
was not more than either drug individually.

Both lines showed a decrease in glycosylation after Tunica treatment (p<0.001). There was a
10%, 31%, and 54% decrease in glycosylation of EECs after treatment with increasing
doses. There was a 39%, 42%, and 48% decrease in glycosylation after treatment of ESC
cells with increasing doses.

Both lines showed a decrease in glycosylation after B-GalNAc treatment (p<0.001). There
was a 12%, 37%, and 34% decrease in glycosylation after treatment of EECs with increasing
doses. There was no significant difference with the 78 μg/ml dose of B-GalNAc; however,
there was an 18% and 12% decrease in glycosylation after treatment of ESC cells with the
156 and 233 μg/ml doses.

There was a decrease in proliferation following Tunica treatment in both EECs and ESCs.
There was a 4%, 12%, 21% decrease in proliferation of EECs with increasing doses. ESCs
showed a decrease of a 26%, 22%, and 23% in proliferation with increasing doses. B-
GalNAc did not decrease proliferation of EECs or ESCs.

There were no differences in expression of CD44 surface density on either cell line with
Tunica or B-GalNAc.

This study demonstrates that inhibition of N- and O-linked glycosylation inhibits EEC and
ESC attachment to PMCs. We confirmed deglycosylation with lectins that specifically bind
to N- and O-linked glycosylation sites. B-GalNAc and Tunica did not affect cell surface
expression of CD44. B-GalNAc did not affect cell proliferation; however, Tunica did
decrease proliferation. While Tunica decreases the cell viability, this does not affect the
attachment or glycosylation results and analysis since only viable cells are used in these
assays.

Glycosylation of the CD44 molecule causes conformational changes which may affect its
ability to bind to HA. Different splice variants will have a differing quantity and type of
glycosylation sites.(23,24) The exact mechanism whereby glycosylation of CD44 affects
binding to HA is unclear. Several studies have found that N-linked glycosylation is an
important regulator of binding in several cell lines. N-linked glycosylation inhibition can
either increase or decrease binding depending on the cell line. Lesley found that CD44
expression did not correlate with binding to HA in ovarian cancer cell lines, but treatment
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with Tunica decreased the adhesion to hylauronan.(25,26). They concluded that
glycosylation of CD44 was more important than the amount of CD44 expression in
determining adhesive potential, but these results could not be replicated in other cell types.
(26,27) Katoh found that treatment of ovarian cells with a degylcosylating enzyme
decreased CD44 binding to HA.(28) Bartolazzi reported that inmelanoma cells, mutation the
CD44 N-linked glycosylation sites inhibited CD44 binding to HA.(6) O-linked glycosylation
is also important in the interaction between CD44 and HA.(29–32) Dasgupta reported that
blocking O-linked glycosylation in colon carcinoma cells, increased CD44 binding to HA.
(29)

While there is still much to discover about these unique extracellular interactions, there is
growing evidence that the interaction between CD44 and HA is involved in the attachment
of endometrial cells to PMCs.(9,33) We recently demonstrated that there is increased
expression of CD44 variant isoforms 6,7,8, and 9 in menstrual endometrium from women
with endometriosis compared to women without endometriosis.(34) The additional exons
increase glycosylation sites which may lead to increased ability to attach to PMCs.

In summary, deglycosylation of N- and O-linked sites decreases attachment of EECs and
ESCs to PMCs. These findings suggest a role for CD44 N- and O-linked glycosylation in the
development of early endometriotic lesions and has potential to lead to novel pharmacologic
therapy to treat or prevent endometriosis.
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