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Abstract
13C metabolic flux analysis (MFA) is the most comprehensive means of characterizing cellular
metabolic states. Uniquely labeled isotopic tracers enable more focused analyses to probe specific
reactions within the network. As a result, the choice of tracer largely determines the precision with
which one can estimate metabolic fluxes, especially in complex mammalian systems that require
multiple substrates. Here we have experimentally determined metabolic fluxes in a tumor cell line,
successfully recapitulating the hallmarks of cancer cell metabolism. Using these data, we
computationally evaluated specifically labeled 13C glucose and glutamine tracers for their ability
to precisely and accurately estimate fluxes in central carbon metabolism. These methods enabled
us to to identify the optimal tracer for analyzing individual fluxes, specific pathways, and central
carbon metabolism as a whole. [1,2-13C2]glucose provided the most precise estimates for
glycolysis, the pentose phosphate pathway, and the overall network. Tracers such as
[2-13C]glucose and [3-13C]glucose also outperformed the more commonly used [1-13C]glucose.
[U-13C5]glutamine emerged as the preferred isotopic tracer for analysis of the tricarboxylic acid
(TCA) cycle. These results provide valuable, quantitative information on the performance of 13C-
labeled substrates and can aid in the design of more informative MFA experiments in mammalian
cell culture.
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Introduction
13C metabolic flux analysis (MFA) is an effective tool for characterizing the metabolic
phenotype of organisms at the systems level. This technique has been described extensively
in the literature and typically involves the application of a labeled substrate to a biological
system, measurement of label incorporation within metabolite pools, and computational
estimation of intracellular fluxes that fit the observed data (Sauer, 2006, Tang et al., 2009b).
The acquisition of systemwide information on cellular metabolism enables identification of
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novel therapeutic targets for disease (Munger et al., 2008), provides information on substrate
utilization within specific metabolic pathways (Kharroubi et al., 1992, Neese et al., 1993),
and offers insight into key reactions of product synthesis (Kleijn et al., 2007, Antoniewicz et
al., 2007b). Regardless of the specific application, MFA must generate precise and accurate
flux data to effectively differentiate between cellular phenotypes (Tang et al., 2009a).

The choice of tracer dictates the mass isotopomer distribution (MID) of each metabolite for
a given set of fluxes. The sensitivity of the MIDs, in turn, to changes in the pathway fluxes
ultimately determines the confidence of flux estimates, which are as important as the flux
values themselves (Antoniewicz et al., 2006). Stationary MFA is conducted when the
labeled substrate is at isotopic steady state and does not utilize pool size or transient data; as
such, this technique is especially reliant upon the specific tracer used. Depending on the
particular bioreaction network, nonstationary MFA may be preferable and can also benefit
from a informed choice of tracer (Noh and Wiechert, 2006, Noh et al., 2006). The issue of
tracer choice is more complex in mammalian cell systems that utilize multiple carbon
sources (e.g., glucose and glutamine) and are grown in complex media. To probe specific
pathways, researchers have applied a wide array of isotopically labeled substrates, including
glucose, glutamine, or atypical substrates such as propionate or succinate (Burgess et al.,
2007, Yang et al., 2008, Yoo et al., 2008). For example, [1,2-13C2]glucose is commonly
employed for analysis of the pentose phosphate pathway (PPP) (Boros et al., 2005), whereas
[3-13C]glucose or [3-14C]glucose provide information on pyruvate oxidation (Holleran et
al., 1997, Munger et al., 2008). Many tracers effectively label metabolites in the
tricarboxylic acid (TCA) cycle, but the presence of anaplerotic reactions and glutamine
incorporation (through glutaminolysis or reductive carboxylation) make it difficult to
identify the optimal tracer for measuring all net and exchange fluxes within the network.

Systems biology concerns itself with the acquisition, integration, and analysis of complex
data sets. MFA was one of the first manifestations of systems-level analysis in complex,
biological systems and is unique among systems biology tools in that it allows determination
of actual enzyme function (i.e., fluxes) (Stephanopoulos and Vallino, 1991, Nielsen, 2003,
Hellerstein, 2004). Unlike concentration-based methodologies, MFA requires both
experimental measurement and computational models to elucidate these time-dependent
parameters (Sauer, 2006). As such, experimental design to maximize meaningful
information is crucial in MFA and requires model-based interpretation. Researchers have
recently described methods to optimize measurement sets for flux determination (Rantanen
et al., 2006, Chang et al., 2008); however, the choice of tracer is an equally important
parameter. Because the tracer strongly influences flux estimation quality and can usually be
chosen from a wide array of available isotopic substrates, judicious tracer selection is a
major component of this experimental design process. As a result, a systematic analysis of
available 13C-labeled tracers and associated confidence intervals (i.e., sensitivities) for each
estimated flux is warranted. Optimization of tracer choice will enable researchers to more
precisely measure specific fluxes in high-throughput applications that aim to screen the
metabolic effects of drugs in cells (Borner et al., 2007, Sekhon et al., 2008).

Some initial investigation has occurred in this area. Sriram and colleagues have conducted a
Monte Carlo-based analysis of experimental precisions (using standard deviations) when
using different combinations of [U-13C6]glucose, [1-13C]glucose, and naturally labeled
glucose in a mammalian network (Sriram et al., 2008). Similar studies have been performed
in microbial systems, which typically consume a single carbon source (Noh et al., 2006).
However, a detailed investigation of confidence intervals generated from different, unique
tracers in a two-substrate network has never been completed.
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Here we have experimentally determined the flux network in a carcinoma cell line and used
these data to calculate the confidence intervals for each flux when using different 13C-
labeled glucose and glutamine tracers. An elementary metabolite unit (EMU)-based method
was used to rapidly estimate flux profiles and confidence intervals from simulated
measurements in stationary MFA experiments (Antoniewicz et al., 2007a, Young et al.,
2008). We were able to quantitatively validate the effectiveness of specific 13C tracers in a
cancer cell network and identify the best choice for analysis of individual reactions and
pathways. A scoring algorithm was employed to determine the optimal tracer for the overall
model and for subnetworks representing glycolysis, the PPP, and the tricarboxylic acid
(TCA) cycle. These results may significantly improve the efficiency of MFA experiments in
high-throughput applications and clinical samples where biological material is limited
(Boros et al., 2003).

Materials and Methods
Cell culture and metabolite extraction

The A549 lung carcinoma cell line was obtained from ATCC and maintained in high-
glucose DMEM supplemented with 4 mM glutamine, 10% FBS, and 100 U ml−1 penicillin/
streptomycin (Invitrogen). For labeling experiments, semi-confluent cells in a 10-cm dish
were cultured in glucose-free DMEM (Sigma) with the above supplements and a 25mM 1:1
mixture of [U-13C6]glucose and [1-13C]glucose (Cambridge Isotope Laboratories) for 6
hours to achieve isotopic steady state. Spent medium was collected and analyzed for
glucose, lactate, and glutamine consumption on a YSI7100 analyzer. Cells were quenched
with 1 ml ice cold methanol, an equal volume of water was added, and cells were collected
with a cell scraper. Four volumes of chloroform were added, and the cells were vortexed and
held on ice for 30 minutes for deproteinization. After addition of 2 ml water, samples were
centrifuged at 3000 g for 20 minutes at 4°C. The aqueous phase was collected in a new tube
and evaporated under airflow at room temperature.

Derivatization and GC/MS measurements
Dried polar metabolites were dissolved in 60 µl of 2% methoxyamine hydrochloride in
pyridine (Pierce), sonicated for 30 minutes, and held at 37°C for 2 hours. After dissolution
and reaction, 90 µl MBTSTFA + 1% TBDMCS (Pierce) was added and samples were
incubated at 55°C for 60 minutes. Gas chromatography/mass spectrometry (GC/MS)
analysis was performed using an Agilent 6890 GC equipped with a 30m DB-35MS capillary
column connected to an Agilent 5975B MS operating under electron impact (EI) ionization
at 70 eV. One µl of sample was injected in splitless mode at 270°C, using helium as the
carrier gas at a flow rate of 1 ml min−1. The GC oven temperature was held at 100°C for 3
min and increased to 300°C at 3.5° min−1 for a total run time of approximately 60 min. The
MS source and quadrupole were held at 230°C and 150°C, respectively, and the detector
was operated in selected ion monitoring (SIM) mode. MIDs were obtained for each
measured metabolite and incorporated with extracellular flux measurements for flux
determination. The identity and values of these measured fragments and fluxes are listed in
Supplementary Table 1.

Flux estimation
Intracellular fluxes were estimated for a model reaction network by minimizing the lack of
fit between actual and simulated flux and GC/MS measurements. The network contained
simplified versions of glycolysis, the PPP, anaplerotic reactions, the TCA cycle, and amino
acid biosynthesis. (The Supplement lists specific assumptions regarding the network and
metabolism that were made for the sake of the flux analysis. Also see Supplementary Table
2 for a list of all network reactions and atom transitions.) We additionally calculated 95%
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confidence intervals for each flux using parameter continuation (Antoniewicz et al., 2006).
All flux simulation, estimation, and continuation in this study was conducted using Metran,
a flux analysis tool built upon an EMU framework (Antoniewicz et al., 2007a, Yoo et al.,
2008, Young et al., 2008). Some fluxes were virtually unidentifiable and approximate values
were obtained from the literature (Hofmann et al., 2008, Munger et al., 2008).

Tracer evaluation
The effects of 18 13C-labeled tracers (11 glucose and 7 glutamine) on flux estimation
precision were evaluated (see Table 1). Tracers were chosen if they were commercially
available or if they had been previously cited in literature. The effectiveness of each tracer
was gauged as follows:

1. A defined set of GC/MS and flux measurements was simulated for a given tracer
(see Supplementary Table 3).

2. Standard errors of 5% for external flux measurements and 0.1–1 mol% for GC/MS
MIDs were introduced randomly and normally.

3. Flux values and 95% confidence intervals were determined for each reaction.

The usefulness of a tracer was assumed to be directly linked to the precision with which it
was able to estimate fluxes of interest; i.e., tracers producing narrower confidence intervals
have greater value.

Precision scoring
To more easily compare estimate precision on a group basis, we created a precision scoring
metric. Similar optimality criteria have been used previously for experimental design (Noh
and Wiechert, 2006, Noh et al., 2006); however, these earlier methods have been based on
the parameter covariance matrix, which assumes linearity and does not always truly capture
the nonlinear, constrained systems studied in flux analysis. This precision scoring metric
relies on the more robust and accurate nonlinear confidence intervals obtained via parameter
continuation (Antoniewicz et al., 2006). First, a normalized range is calculated for each flux
using the formula

(1)

where vi, li, ui, and ri are the estimated flux, lower bound, upper bound, and normalized
range for the ith flux, and α is a cut-off parameter that prevents one excessively distant
bound from overly influencing the scoring. The individual ranges are next converted into
scores using a negative exponential function and summed into a final overall score via the
expression

(2)

where wi is a weighting parameter for the ith flux, β is a range-scaling parameter, and S is
the overall precision score. We empirically found that values of 1 and 3 for α and β result in
a good dynamic range of scores. If each wi can be simply zero or one (serving to either
exclude or include fluxes in the overall score), each flux’s precision score will range
between zero (unidentifiable) and one (perfectly identifiable). The overall score will then
range between zero and the number of fluxes under consideration.
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Because the upper and lower bounds of any given confidence interval are sensitive to the
random error introduced into the simulated measurements, the corresponding precision
scores will also vary for simulated experiments with different random errors. To account for
this, we conducted six simulated experiments for every tracer of interest and generated a
distribution of precision scores, allowing us to report a mean precision score and a precision
score standard deviation.

Results and Discussion
Experimental flux analysis

The metabolic phenotype of a cell is a key component of its overall behavior, and evidence
suggests that metabolism plays an important role in maintaining the tumor phenotype
(DeBerardinis et al., 2007). Metabolic analysis of cancer cells has again become an active
area of research, and technological improvements have expanded our ability to investigate
metabolism using stable isotopically labeled substrates. In this study we used the A549
cancer cell line as a model system for evaluating isotopic tracers in mammalian cells. This
line is often used in molecular and metabolic studies of cancer and exhibits aerobic
glycolysis, commonly known as the Warburg effect (Christofk et al., 2008, Hatzivassiliou et
al., 2005). To obtain baseline values for our metabolic network we estimated fluxes of semi-
confluent cells using an equimolar mixture of [U-13C6]glucose and [1-13C]glucose, a
combination of tracers commonly used in the literature (Noh et al., 2006, Sriram et al.,
2008). The actual proportion of each tracer and naturally labeled glucose from serum was
obtained from GC/MS measurements of extracellular glucose. Extracellular fluxes and
MIDs of intracellular metabolites were used to estimate the flux distribution (see
Supplementary Table 1 for all measurement data). The system possessed 101 redundant
measurements and the expected upper bound of the 95% confidence region is 130, assuming
that the minimized sum of squared residuals (SSR) followed a χ2 distribution. Flux
estimation resulted in a minimized SSR of 52, indicating that the fit was statistically
acceptable. Estimated values and 95% confidence intervals for each independent flux are
listed in Table 2. The overall metabolic network is depicted in Figure 1. Several exchange
fluxes were difficult to precisely determine; in these cases, values were culled from
literature.

As expected, the cancer cells displayed a high glycolytic flux and excreted most of the
carbon as lactate. Approximately 15% of the glucose flux was diverted to the pentose
phosphate shunt. However, these estimations did not include explicit measurements of
pentose phosphate intermediates; as such, exchange fluxes within this pathway were
unidentifiable (Table 2). TCA cycle fluxes were relatively low and largely driven by
glutamine consumption. Interestingly, we observed a net flux toward citrate for the isocitrate
dehydrogenase (IDH) reaction, indicating that this cell line undergoes reductive
carboxylation of α-ketoglutarate (Figure 1). Finally, we estimated a significant flux from
malate to pyruvate (malic enzyme) and a negligible flux through pyruvate carboxylase
(pyruvate to oxaloacetate). Malic enzyme flux, which regenerates NADPH, can be assumed
to compensate for the excessive NADPH requirements of fatty acid synthesis and any lost in
the reductive carboxylation pathway (Deberardinis et al., 2008). Our results successfully
described the metabolic phenotype of cancer cells and serve as a benchmark for our tracer
analysis below.

Tracer confidence intervals
We next calculated confidence intervals for every combination of tracer and flux. Results for
selected fluxes are shown in Figure 2, and the complete set of confidence intervals over all
fluxes is available in Supplementary Figures 1 and 2.
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Because the lower glycolytic fluxes consist primarily of stoichiometrically determined net
fluxes and completely unidentifiable exchange fluxes, tracers of any kind offer no benefit in
flux estimation and show little variation in confidence interval precision in this region of the
network. Tracers do generate results of more diverse quality in upper glycolysis (see Figures
2A and 2B for examples). Here, glutamine tracers are completely ineffective, since there is
no set of reactions by which any glutamine atom can travel to this portion of the network.
Uniformly labeled glucose also gives nominal precision; because there are no other carbon
sources feeding into glycolysis, all metabolites here are fully labeled by this tracer at
isotopic steady state regardless of the flux distribution.

Glucose tracers labeled at some combination of the 4th, 5th, and 6th carbons give results of
limited quality, primarily because these labeled atoms are trapped in a cycle. If Mi is the ith
atom of metabolite Mi the atomic transitions show that glucosei (where 4 ≤ i ≤ 6) will
distribute 13C to only G6Pi, F6Pi, P5Pi−1, S7Pi+1, E4Pi−2, GAPi−3, and DHAPi−3 before
permanently exiting glycolysis and the PPP (see highlighted atom transitions for [4]Gluc in
Figure 3B). This uniformity means that the key GC/MS fragment behind glycolysis flux
estimation (GLP) will only be labeled at a single carbon, reducing the potential
measurement diversity, which in turn reduces the sensitivity to fluxes. The 1st carbon of
glucose feeds into a comparable positional carbon cycle, leading to [3-13C]GLP and
similarly decreased sensitivity. Tracers labeled at the 2nd or 3rd carbons ([1,2]Gluc,
[2]Gluc, and [3]Gluc), however, capitalize on the atomic transitions of the subnetwork and
distribute significant label to each carbon in GLP, producing the greatest sensitivity and
most precise confidence intervals in glycolysis (see highlighted atom transitions for [2]Gluc
in Figure 3A).

The estimation quality of the PPP closely reflects that of upper glycolysis. Instead of GLP,
P5P is now the major contributing measurement. [U]Gluc and all glutamine tracers are again
completely noninformative (for the same reasons as before). [4], [4,5], [5], and [6]Gluc are
ineffective because label is once more restricted to a small subset of positions in the
network. Because [1]Gluc loses its label to CO2 in the oxidative PPP, P5P is predominantly
unlabeled and demonstrates little sensitivity. Glucose labeled at the 2nd and 3rd positions
are again the tracers that most confidently estimate fluxes. These behaviors are fairly
consistent through all individual net and exchange fluxes of the PPP. Specific examples are
shown in Figures 2D (transketolase net), 2E (transketolase exchange), and 2F (transaldolase
exchange).

Glutamine tracers, on the other hand, generally provided better estimations of the pyruvate
dehydrogenase flux, located at the junction between glycolysis and the TCA cycle (Figure
2C). Because both the 3rd and 4th carbons in glucose mostly transition to the 1st carbon of
pyruvate and exit the system as CO2 at this step, [3]Gluc, [3,4]Gluc, and [4]Gluc could not
precisely resolve the PDH flux, despite their common use and effectiveness in previous
experiments (Holleran et al., 1997, Munger et al., 2008). This discrepancy arises because
these previous studies measured labeling in CO2 while our analysis assumes no such
measurement. Importantly, one cannot exchange measurement sets of MFA experiments and
necessarily expect similar results or patterns when evaluating tracers.

While 13C glutamine and uniformly labeled glucose tracers offered minimal information for
glycolysis and the PPP, they demonstrated considerable utility in estimating TCA cycle and
anaplerotic fluxes. Net fluxes within the TCA cycle (succinate to fumarate and oxaloacetate
to fumarate) were best characterized when using glutamine tracers with two or more
carbons, specifically [1,2]Gln, [3,4]Gln, and [U]Gln (Figure 2G and Figure 2H). Because
the glutamine flux into the TCA cycle is significantly smaller than the incoming glucose
flux, multiply labeled glutamine tracers are presumably more useful because they introduce
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greater amounts label that are less easily diluted (see Figures 3C and 3D to compare atom
transitions for [3,4]Gln and [4]Gln). The effectiveness of these tracers was further
highlighted by the improved confidence intervals obtained for exchange fluxes in the TCA
cycle and malic enzyme reactions (Figures 2I–2L). Exchange between succinate, fumarate,
and oxaloacetate are key reactions within oxidative metabolism that also affect cofactor
levels and pyruvate cycling; therefore, precise estimation of these reactions are of paramount
importance for cancer research (Hatzivassiliou et al., 2005, Deberardinis et al., 2008).

To better describe the quality of data and simulations obtained from specific tracers, we
calculated precision scores for each tracer, covering both subnetworks and central carbon
metabolism in its entirety. Independent fluxes included in the scoring for each subnetwork
are described in Supplementary Figure 3. All glucose tracers except [U]Gluc scored well for
glycolysis, with [1,2]Gluc, [2]Gluc, and [3]Gluc performing significantly better than most
(Figure 4A). These three tracers provided the best scores (i.e., the most precise estimates)
for the PPP as well (Figure 4B). The highest scoring glucose tracer for TCA cycle analysis
was [U]Gluc (Figure 4C). Three glutamine tracers also generated similarly high scores and
precise estimates within the TCA cycle subnetwork; in particular, those tracers labeled at
two or more positions scored best ([1,2]Gln, [3,4]Gln, and [U]Gln). Finally, the best overall
tracer for analyzing the entire cancer cell flux network was [1,2]Gluc, followed by other
glucose tracers labeled at the 2nd or 3rd carbons (Figure 4D). Although these tracers did not
generate the best results for the TCA cycle, their unique ability to consistently characterize
fluxes throughout the entire network resulted in superior scores compared to other tracers.

Conclusion
The metabolic phenotype of tumors has reemerged as an important area of study and
potential clinical target (Kroemer and Pouyssegur, 2008). Fueled by advanced
computational software and technologies, researchers can now characterize cellular
metabolism in unprecedented detail. To better demonstrate the utility of isotopic tracers for
cancer research, we have quantitatively and comparatively described the precision of
uniquely labeled 13C glucose and glutamine tracers for flux determination in mammalian
cells. An EMU-based algorithm enabled the high-throughput flux estimations and
confidence interval calculations required for this description. Table 3 summarizes the
optimal tracers to use for estimating each flux, specific subnetworks, and central carbon
metabolism as a whole. [1,2]Gluc provided the highest level of precision for the overall
network, glycolysis, and the PPP, while [U]Gluc and multiply labeled glutamine tracers
were most informative for the TCA cycle. Specific instances of their use are present in the
literature (Boros et al., 2005, Munger et al., 2008, Yoo et al., 2008); however, we hope the
demonstrable improvements of precision described here help to propagate the use of more
effective tracer molecules in future MFA experiments.

The tracer evaluation process and accompanying results in this study provide a general
procedure for the experimental design of isotopic tracer studies. However, it should be noted
that specific cell types exhibit particular flux profiles, which in turn will affect the results
generated by simulated tracer studies such as those presented here. As such, our findings are
network dependent and therefore most relevant to the study of tumor cells. Furthermore, the
precision of our flux estimations are dependent upon the metabolites measured. As mass
spectrometry and other related technologies continue to improve, researchers will obtain
richer data sets to incorporate into the estimation process (Munger et al., 2008, Hofmann et
al., 2008). Nevertheless, our results should be valid for most mammalian systems given the
conserved nature of atom transitions in central carbon metabolism. In cells with significantly
different networks and/or flux distributions (e.g., gluconeogenic hepatocytes) these specific
tracer simulations may not apply (Yang et al., 2008). However, our methodology will still
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prove useful in optimizing experimental design, especially in complex systems where the
best tracer cannot be determined a priori. Future studies requiring more rigorous simulations
will aim to identify combinations of differentially labeled substrates that can further improve
the precision of flux estimations. In the meantime, these results can serve as a guide for
systems biologists to more effectively design experiments to study metabolism at a global
level.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Nomenclature

3PG 3-phosphoglycerate

6PG 6-phosphogluconate

AcCoA acetyl coenzyme A

AKG α-ketoglutarate

Ala alanine

Asp aspartate

Cit citrate

Cyt cytosolic

DHAP dihydroxyacetone phosphate

E4P erythrose 4-phosphate

Ext extracellular

F6P fructose 6-phosphate

FA fatty acids

Fum fumarate

G6P glucose 6-phosphate

GAP glyceraldehyde 3-phosphate

Gln glutamine

GLP glycerol 3-phosphate

Glu glutamate

Gluc glucose

Gly glycine

Lac lactate

Mal malate

Metallo et al. Page 8

J Biotechnol. Author manuscript; available in PMC 2011 January 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Mit mitochondrial

NTP nucleotide tri-phosphate

OAA oxaloacetate

P5P pentose 5-phosphate

Pyr pyruvate

S7P seduheptulose 7-phosphate

Ser serine

Suc succinate
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Figure 1.
Experimentally determined fluxes representing central carbon metabolism in tumor cells.
Extracellular fluxes and MIDs were measured and incorporated into the network shown (see
Supplementary Table 2). An acceptable fit was obtained with a sum of squared residuals
(SSR) of 52, well under the upper bound of the 95% confidence region for a χ2 distribution.
Net fluxes are listed first for each reaction and exchange fluxes are within parenthesis. Units
for all fluxes are nmol min−1 mg protein−1. Italicized numbers represent flux values that
were taken from literature since they were unidentifiable for our particular experiment.
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Figure 2.
Simulated confidence intervals for selected fluxes when using specific isotopic tracers.
Horizontal dashed lines indicate actual fluxes. Upper and lower bounds of the 95%
confidence interval are illustrated for each simulated tracer. The standard error of both upper
and lower bounds is represented by the boxes at the top and bottom of each interval. (A)
Glucose-6-phosphate isomerase and (B) triose-phosphate isomerase fluxes demonstrate the
effectiveness of glucose tracers in estimated glycolytic fluxes. (C) Pyruvate dehydrogenase
flux is most precisely estimated by most glutamine tracers and some glucose tracers. (D–F)
Net and exchange fluxes within the pentose phosphate pathway are best determined with
glucose tracers labeled at the 1st, 2nd, or 3rd carbon, with [1,2]glucose performing best.
(G,H) Net fluxes and (I–L) exchange fluxes in the TCA cycle are characterized well using
[U]Gluc, [1,2]Gln, [3,4]Gln, or [U]Gln.
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Figure 3.
Atom transition networks and positional fractional labeling for selected glucose and
glutamine tracers. Fractional labeling is indicated by a colormap, where dark red indicates
all atoms at that position are 13C and dark blue that all atoms are 12C. No natural labeling
was assumed in the creation of these maps. Atom transitions are indicated for all positions
where fractional 13C labeling exceeds 10%. (A) [2]Gluc effectively characterizes glycolytic
and PPP fluxes because DHAP (and by extension GLP) is labeled in multiple positions by
different combinations of fluxes, leading to greater measurement sensitivity. (B) [4]Gluc
poorly identifies fluxes in glycolysis and the PPP because its sole labeled carbon is caught in
a cycle and can only reach the 1st carbon of DHAP. (C and D) [3,4]Gln and [4]Gln are both

Metallo et al. Page 14

J Biotechnol. Author manuscript; available in PMC 2011 January 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



able to label a majority of the carbon atoms in the TCA cycle; however, the two labeled
atoms in the former lead to larger, clearer measurements and therefore more precises fluxes.
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Figure 4.
Results obtained from precision scoring algorithm identify the optimal tracer for analysis of
subnetworks and central carbon metabolism. The precision scores resulting from simulated
experiments involving only natural labeling have been subtracted from each displayed tracer
score to aid in visual differentiation and comparison. (A) Glycolysis and (B) pentose
phosphate subnetworks are best described by [1,2]Gluc, [2]Gluc, and [3]Gluc. (C) TCA
cycle scores were highest for [U]glucose and several glutamine tracers labeled at two or
more carbons. (D) The most precise tracer for analysis of the entire network was [1,2]Gluc.
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Table 1

Glucose and glutamine tracers

Tracer Abbreviation

[1-13C]glucose [1]Gluc

[1,2-13C2]glucose [1,2]Gluc

[1,6-13C2]glucose [1,6]Gluc

[2-13C]glucose [2]Gluc

[3-13C]glucose [3]Gluc

[3,4-13C2]glucose [3,4]Gluc

[4-13C]glucose [4]Gluc

[4,5-13C2]glucose [4,5]Gluc

[5-13C]glucose [5]Gluc

[6-13C]glucose [6]Gluc

[U-13C6]glucose [U]Gluc

[1-13C]glutamine [1]Gln

[1,2-13C2]glutamine [1,2]Gln

[3-13C]glutamine [3]Gln

[3,4-13C2]glutamine [3,4]Gln

[4-13C]glutamine [4]Gln

[5-13C]glutamine [5]Gln

[U-13C6]glutamine [U]Gln
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Table 2

Experimentally determined net (→) and exchange (↔) fluxes and 95% flux confidence intervals for the A549
carcinoma cell

Glycolysis

Reaction Flux Interval

Glucext → G6P 38.6 [34.7, 43.2]

G6P → F6P 32.4 [29.7, 35.1]

G6P ↔ F6P 0.0 [0.0, Inf]

F6P → DHAP + GAP 36.5 [32.6, 40.7]

DHAP → GAP 35.5 [31.6, 39.7]

DHAP ↔ GAP 0.0 [0.0, 258.7]

GAP → 3PG 74.0 [65.7, 82.8]

GAP ↔ 3PG 0.0 [0.0, Inf]

3PG → Pyr 73.1 [64.8, 81.9]

Pyr → Lac 73.6 [65.8, 83.3]

Pyr ↔ Lac 13420 [0.0, Inf]

Lac → Lac.x 73.6 [65.8, 83.3]

Pentose Phosphate Pathway

Reaction Flux Interval

G6P → 6PG 6.2 [5.4, 7.4]

6PG → P5P + CO2 6.2 [5.4, 7.4]

2 P5P → S7P + GAP 2.0 [1.8, 2.4]

2 P5P ↔ S7P + GAP 19290 [0.0, Inf]

S7P + GAP → F6P + E4P 2.0 [1.8, 2.4]

S7P + GAP ↔ F6P + E4P 0.0 [0.0, 0.4]

P5P + E4P → F6P + GAP 2.0 [1.8, 2.4]

P5P + E4P ↔ F6P + GAP 0.0 [0.0, 0.6]

TCA Cycle/Anaplerosis

Reaction Flux Interval

Pyr + CO2 → OAA 0.0 [0.0, 1.7]

Mal → Pyr + CO2 9.6 [8.5, 10.7]

Mal ↔ Pyr + CO2 1.3 [0.9, 1.6]

Pyr → AcCoAmit + CO2 8.6 [5.5, 11.0]

AcCoAmit + OAA → Cit 8.6 [5.5, 11.0]

AKG + CO2 → Cit 2.0 [0.2,3.6]

AKG + CO2 ↔ Cit 5.7 [4.6, 7.1]

AKG → Suc + CO2 8.2 [6.6, 10.7]

Suc → Fum 8.2 [6.6, 10.7]
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TCA Cycle/Anaplerosis

Reaction Flux Interval

Suc ↔ Fum 0.2 [0.0, Inf]

Fum → Mal 8.2 [6.6, 10.7]

Fum ↔ Mal 23.8 [5.2, Inf]

OAA → Mal 1.4 [0.8, 2.9]

OAA ↔ Mal 106200 [35.9, Inf]

Amino Acid Metabolism

Reaction Flux Interval

Glnext → Gln 11.5 [10.4, 12.6]

Gln → Glu 11.0 [9.9, 12.1]

Glu → AKG 8.2 [7.0, 9.3]

Glu ↔ AKG 81.3 [35.9, 480.3]

Pyr + Glu → Ala + AKG 0.5 [0.4, 0.6]

OAA + Glu → Asp + AKG 0.6 [0.5, 0.7]

3PG + Glu → Ser + AKG 0.9 [0.8, 1.1]

Ser → Gly + MEETHF 0.4 [0.3, 0.4]

Biomass Formation

Reaction Flux Interval

P5P → NTP 0.1 [0.1, 0.1]

DHAP → GLP 1.0 [0.8, 1.2]

Cit → AcCoAcyt + OAA 10.7 [5.3, 14.5]

AcCoAcyt → FA 10.7 [5.3, 14.5]

Amino acids → Biomass 3.3 [2.7, 4.0]
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Table 3

Optimal tracers for net (→) and exchange (↔) fluxes for the A549 carcinoma cell

Glycolysis

Reaction Best Tracer(s)

Glucext → G6P [1,2] & [2]Gluc

G6P → F6P [1,2]Gluc

G6P ↔ F6P [3] & [3,4]Gluc

F6P → DHAP + GAP [1,2] & [2]Gluc

DHAP → GAP [1,2]Gluc

DHAP ↔ GAP [1,2]Gluc

GAP → 3PG [1,2] & [2]Gluc

GAP ↔ 3PG none

3PG → Pyr [1,2]Gluc

Pyr → Lac [1,2] & [2]Gluc

Pyr ↔ Lac none

Lac → Lac.x [1,2] & [2]Gluc

Pentose Phosphate Pathway

Reaction Best Tracer(s)

G6P → 6PG [1,2]Gluc

6PG → P5P + CO2 [1,2]Gluc

2 P5P → S7P + GAP [1,2] & [3]Gluc

2 P5P ↔ S7P + GAP [1,2]Gluc

S7P + GAP → F6P + E4P [1,2]& [3]Gluc

S7P + GAP ↔ F6P + E4P [1,2]Gluc

P5P + E4P → F6P + GAP [1,2] & [3]Gluc

P5P + E4P ↔ F6P + GAP [1,2] & [3]Gluc

TCA Cycle/Anaplerosis

Reaction Best Tracer(s)

Pyr + CO2 → OAA [U]Gln

Mal → Pyr + CO2 [U] & [3,4]Gln

Mal ↔ Pyr + CO2 [U]Gln

Pyr → AcCoAmit + CO2 [U]Gln

AcCoAmit + OAA → Cit [U]Gln

AKG + CO2 → Cit [U], [1,2] & [3,4]Gln

AKG + CO2 ↔ Cit [U]Gln

AKG → Suc + CO2 [U] & [3,4]Gln

Suc → Fum [U] & [3,4]Gln

Suc ↔ Fum [U] & [1,2]Gln
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TCA Cycle/Anaplerosis

Reaction Best Tracer(s)

Fum → Mal [U] & [3,4]Gln

Fum ↔ Mal [U]Gln

OAA → Mal [U]Gln

OAA ↔ Mal [U]Gln

Amino Acid Metabolism

Reaction Best Tracer(s)

Glnext → Gln [3], [U] & [3,4]Gln

Gln → Glu [3], [U] & [3,4]Gln

Glu → AKG [3], [U] & [3,4]Gln

Glu ↔ AKG [U]Gln
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