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Summary
Assessment of circulating CD4 count change over time in HIV-infected subjects on antiretroviral
therapy (ART) is a central component of disease monitoring. The increasing number of HIV-
infected subjects starting therapy and the limited capacity to support CD4 count testing within
resource-limited settings have fueled interest in identifying correlates of CD4 count change such
as total lymphocyte count, among others. The application of modeling techniques will be essential
to this endeavor due to the typically non-linear CD4 trajectory over time and the multiple input
variables necessary for capturing CD4 variability. We propose a prediction based classification
approach that involves first stage modeling and subsequent classification based on clinically
meaningful thresholds. This approach draws on existing analytical methods described in the
receiver operating characteristic curve literature while presenting an extension for handling a
continuous outcome. Application of this method to an independent test sample results in greater
than 98% positive predictive value for CD4 count change. The prediction algorithm is derived
based on a cohort of n = 270 HIV-1 infected individuals from the Royal Free Hospital, London
who were followed for up to three years from initiation of ART. A test sample comprised of n =
72 individuals from Philadelphia and followed for a similar length of time is used for validation.
Results suggest that this approach may be a useful tool for prioritizing limited laboratory resources
for CD4 testing after subjects start antiretroviral therapy.
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1 Introduction
Chronic HIV infection results in the progressive depletion of CD4+ T lymphocytes from
both lymphoid tissues and peripheral blood. Thus, the monitoring of peripheral blood CD4
count is the standard used in decision-making concerning initiation of antiretroviral therapy
(ART), as well as monitoring response to ART over time. In 2002 and again in 2006, the
World Health Organization (WHO) proposed guidelines for administration of ARTs in an e
ort to provide a clear public health approach to utilization of these limited, yet very powerful
drugs (WHO-Report, 2006). This series of recommendations includes routine collection and
monitoring of CD4 counts to inform decisions regarding both initiation and switching of
drug regimens. However, this report also acknowledges that collection of repeated CD4
counts may not be feasible in resource-limited settings due to the high costs associated with
such monitoring. In these instances, clinicians are advised to initiate therapy in patients with
asymptomatic HIV disease if total lymphocyte count (TLC) falls below 1200cells/mm3.

In this manuscript we consider modeling strategies for using alternative surrogate markers
within an acute window (3 years) post-initiation of therapy. Since publication of the WHO
guidelines, several reports have been published on the clinical utility of alternative surrogate
markers for monitoring post-therapy response and specifically the correlation between these
markers and CD4 count (Badri and Wood, 2003; Bagchi et al., 2007; Bedell et al., 2003;
Bisson et al., 2006; Ferris et al., 2004; Kamya et al., 2004; Kumarasamy et al., 2002;
Mahajan et al., 2004; Spacek et al., 2003). These investigations involve both cross-sectional
and longitudinal data and implement a variety of straightforward analytical methods.
Typically, cross-sectional comparisons between CD4 count and TLC as well as longitudinal
comparisons between the change in each of these variables over a specified time period are
performed using correlation analysis (Badri and Wood, 2003; Kamya et al., 2004;
Kumarasamy et al., 2002; Spacek et al., 2003). A summary of analytic strategies described
for these settings, and their potential limitations, is given in the discussion; notably, the
scientific findings of these reports are variable.

In this manuscript, we describe a prediction based classification (PBC) framework for
predicting biomarker trajectories based on a binary decision rule. PBC was originally
described in the setting of classifying HIV genetic variants that capture variability in a cross-
sectional response to ART (Foulkes and DeGruttola, 2002, 2003). Within this framework,
we present two estimation procedures that both involve first stage modeling using a
generalized linear mixed effect model (GLMM). In the first case, we dichotomize the
biomarker a prior and use a logit link function. In this case, our approach reduces simply to
fitting a logistic model coupled with a receiver operator characteristic (ROC) curve analysis,
which is commonly applied in practice though it has not been described for this setting. The
second estimation approach we present is based on fitting a linear mixed effects model to the
observed CD4 count, as measured on a continuous scale. This later approach may offer
improved predictive performance since it incorporates the full range of the continuous scale
data. We describe both approaches further in Section 2. Section 3 then illustrates the method
through application to two cohorts of HIV-1 infected individuals followed for three years
after initiation of ART. Some simple extensions are described in Section 4 and finally we
offer a discussion of how the approaches complement existing methods in Section 5.
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2 Methods
Monitoring patient level CD4 counts over time may involve consideration of the observed
counts at a given time point, the percent change in counts across a given period of time or
some other function of patient level data. In general, interest lies in determining whether this
function of the data is above or below a threshold value. For example, in monitoring
absolute CD4 counts, thresholds of 200 and 350 are considered within well-established
treatment administration guidelines. A threshold of 20%, on the other hand, is common for
monitoring the percent change in CD4 between visits over time. We begin in this section by
describing a general modeling framework. We then present an approach for predicting
whether absolute CD4 is above a clinically meaningful threshold, at each of multiple
discrete time points. In Section 4, we consider extensions of this framework that allow us to
consider functions of the biomarker on study, such as percentage change over a given time
period.

2.1 Generalized linear mixed effects model
Consider the generalized linear mixed effects model (GLMM) given by

(2.1)

where Yi = (Yi1, … , Yini)
T is a vector of the ni responses for individual i, g() is a link

function, Xi is the ni × M corresponding design matrix across M covariates, β is the fixed-
effects parameter vector and . Here Zi is the design matrix for the random
effects and will typically include both an intercept and time component. One choice of Xi
and Zi is offered in the example of Section 3 and includes time varying values of white
blood cell count and lymphocyte percentage. This model is a natural choice for this setting
since repeated measures are taken over time on the same individual and the time points are
unevenly spaced across individuals (Fitzmaurice et al., 2004).

In this manuscript, we consider two approaches to fitting the model of Equation 2.1. Since
ultimately we are interested in predicting whether CD4 count is above (or below) a given
threshold, we begin by modeling a dichotomized version of the observed CD4 data. We use

the notation  to indicate this binary representation of the observed data. That is, we define

the dependent variable , where CD4ij is the CD4 count at the jth time point
for individual i and K is set equal to a clinically meaningful threshold. In this case, the
canonical logit link is used to model the resulting binary outcome. Formally, if we let

, then Equation 2.1 reduces in this setting to

(2.2)

where xij and zij are the rows of Xi and Zi respectively, corresponding to the jth
measurement for individual i.

Secondly, we explore the utility of using the full range of the CD4 count data by modeling
CD4 as a continuous variable. That is, we let Yij = CD4ij and g() be the identity function, so
that the model of Equation 2.1 reduces to the linear mixed effects model (LMM), given by
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(2.3)

where ∊ij ~ N (0, σ2) and bi ⊥ ∊ij. Since we ultimately aim to predict whether CD4 is above
a given threshold, we then derive a prediction rule based on the estimated mean and variance
components from this model.

2.2 Prediction-based classification
In fitting the mixed effects model of Equation 2.1, we use the complete vector of observed
data, given by yi = (yi0, … , yini), for all individuals in our learning sample. In general, we
want to make predictions for new individuals under the assumption that only baseline values
of yi, given by yi0, are observed. In the usual model fitting context, the predicted y is
generated using the empirical Bayes estimates of bi, given by . Notably, this
conditions on this complete data vector and thus is not applicable to our setting, in which
only the yi0 are available. Thus, we need to arrive at an alternative estimate of the random
effects that conditions only on the observed data for new individuals. We consider two
approaches in the context of the linear mixed model. In the first case, we replace yi with 
in the formula for . This is our primary approach, described in Section 2.2.2 and applied in
the example of Section 3. The second alternative we consider is to replace yi with the
baseline measure yi0, which is presented as an extension in Section 4.

2.2.1 Binary outcome—After fitting the model of Equation 2.1, mean and variance
parameter estimates can be used to arrive at a predicted mean response for individual i at the
jth time point. Consider first the case in which we dichotomize CD4 count and fit the
GLMM with a logit link, as described by Equation 2.2. In this case, we have the predicted
probability of CD4 count being above the threshold K at the jth time point for individual i
given by

(2.4)

where  is a maximum likelihood estimate of β and  is the conditional mean of
the random effects for individual i, given the observed data . Numerical integration
techniques, such as Gaussian quadrature, are required for model fitting in this setting since
no simple, closed-form solutions to maximum likelihood estimation are available.

A simple approach to prediction in this case is to let the predicted outcome, given by ,

equal 1 if  0.50 and 0 otherwise, where  is defined by Equation 2.4.
Alternatively, we may want to choose a prediction rule that controls a clinically meaningful
attribute. For example, in the CD4 prediction setting, we may want to control the false
positive rate, defined as the proportion of individuals predicted to be above a safety
threshold, when in fact their CD4 counts are below this safe limit. In this case, we define
multiple rules, termed α–prediction rules, that are given by

(2.5)
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where the unobserved θij is replaced with the estimate . Notably, in making predictions
for new individuals, the complete vector y+ is not available and thus  in
Equation 2.4 can not be calculated. In the example provided below, we let  for
all i in our test sample. An alternative approach for the linear model setting is described in
Section 4.

Based on a given α–prediction rule, we can generate the contingency table given in Table 1.
Here the nkl’s are the corresponding cell counts for k, l = 1, 2. For example, n11 is the

number of observations that are observed to be above the threshold ( ) and predicted to

be above the threshold ( ). The sensitivity of this rule is defined as the probability of
correctly predicting an observation as being above the threshold among those responses that

are in fact above the threshold and is given algebraically as . The

corresponding specificity is given by  and the false positive rate is
FPα = 1 – specificity = n12/n.2. Positive predictive value (PPV) and negative predictive value
(NPV) are given by (n11/n1) and (n22/n2), respectively. By varying the value of α in
Equation 2.5 we generate multiple prediction rules and can construct a corresponding
receiver operator characteristic (ROC) curve, which offers a visual representation of the
trade-off between sensitivity and specificity. Specifically, an ROC curve is defined as a plot
of the false positive rate (x-axis) and corresponding sensitivity (y-axis) for each of multiple
classifiers, in our case prediction rules. In our setting, each α-rule contributes one point to
the ROC curve. We define the optimal rule as the one that controls the FP rate at a specified
level, though alternative criterion are equally applicable.

Since the prediction rule given by Equation 2.5 depends on an estimate of θij that is derived
based on the data, a cross-validation approach is necessary to obtain accurate estimates of
predictive performance, including sensitivity and false positive rate. The motivation for this
stems from the need to characterize the ability to make predictions on observations that did
not contribute to the model fitting procedure. In this manuscript, we use an independent test
sample to evaluate model performance. The approach proceeds as follows: First, model
parameters are estimated using data arising from what we refer to as the learning sample.
Second, the best α-rule is identified based on the trade-off between sensitivity and
specificity, again using the learning sample data. The estimates of predictive performance
(e.g. false positive rate) based on the learning sample are referred to as resubsitution
estimates as the data used for estimating error rates are the same as those used for deriving
the prediction rule. Finally, measures of predictive performance for the chosen α-rule are
reported based on applying the rule to an independent data set, which we refer to as the test
sample data. These test sample estimates are considered unbiased reflections of predictive
performance, as independent data sets are used to generate the rule and describe its
performance.

2.2.2 Continuous outcome—The prediction approach just described for a binary
outcome involves simply fitting a logistic regression model and then generating an ROC
curve based on several probability cutoffs. While, to our knowledge, this has not been
applied to the setting of modeling biomarker trajectories over time and specifically to CD4
monitoring, similar approaches are used in practice in other settings (Tosteson et al., 1994;
Tosteson and Begg, 1988). One reason that this approach may not be optimal for the present
setting is that CD4 count is measured on a continuous scale. We thus consider a simple
extension of this approach that takes into consideration the full range of the observed CD4
count data. We begin by modeling Yij = CD4ij as a quantitative biomarker, using the linear
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mixed effects model of Equation 2.3 and then derive a prediction approach similar to the one
described by Equation 2.5.

The model derived predicted value of Yij is given by . Here xij and zij are again
respectively the rows of Xi and Zi corresponding to the jth measurement for individual i

 is the least squares estimate of β,

 is the best linear unbiased predictor (BLUP) of the random

effects for individual i, , and  and  are the restricted maximum
likelihood estimates of D and σ2, respectively. Rather than estimate θij = Pr(CD4ij > K) of
Equation 2.5, we describe a one-side prediction interval approach to identify a rule that is
similar to the one described by this equation.

First note that the lower bound of the one-sided (1 − α) prediction interval for Yij is given by

(2.6)

where zα is the quantile of a standard normal corresponding to a 1 − α probability and

 is referred to as the prediction variance. In this manuscript, we treat this
interval is an approximate credible interval, so that we are (1 − α)% certain that the random
variable Yij will be greater than this realization of the lower bound. In other words, Pr (Yij >
lij,α) = (1 − α)%. Thus, if lij,α > K we are at least (1 − α)% certain that Yij > K. In other
words, lij,α > K is equivalent to θ ≥ (1 − α). As a result, the rule given by:

(2.7)

is equivalent to the one given by Equation 2.5. As described in McClean et al. (1991) and
McCulloch and Searle (2001), the prediction variance is given by

 where

,  and

. In our setting, we are interested in the prediction

variance for a new observed value and thus have an additional σ2 term. That is, 

of Equation 2.6 is equal to . The appropriateness of treating the
above prediction interval as a credible interval depends on prior assumptions about the
parameters of our model. Since we are using this as a means of generating a prediction rule,
and not as a tool for inference, this approximation seems reasonable. It also performs well in
the example provided in Section 3. A study of the relative advantages of applying a fully
Bayesian approach to approximating the posterior predictive distribution for this data setting
is ongoing research.

Again a test sample is used to characterize model performance. In the linear mixed modeling

setting, we note that ,  and  are estimated based on the model fitting procedure that

uses the learning sample data. The remaining variance terms,  and 
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as well as the design elements xij and zij used in the calculation of li,j,α of Equation 2.6 are
based on the test sample data. Notably, in both modeling frameworks, the BLUPs of the
random effects can not be calculated for a new individual for whom the response yi is not
observed. One approach to handling this unobserved data is to replace yi in the formula for

 with  so that . This results in reducing  to  and is
consistent with assigning each individual the estimated population average. In the example
below, we use the prediction variance from the usual regression setting of

. This prediction variance is less than the one described
above; however, as we are varying zα of Equation 2.6 to generate a series of classification
rules, the magnitude of the interval is less relevant. An alternative approach for handling the
random effects in the linear mixed modeling framework is described in Section 4.

3 Example
The approach described in Section 2 is applied to a cohort of N = 270 individuals from the
Royal Free Hospital, London who were followed for up to three years after initiation of
ART. Detailed information on the patient population and laboratory methods can be found
in Smith et al. (2003,2004). The aim of our analysis is to determine the utility of baseline
CD4 count and repeated measures on WBC and lymphocyte percentage for predicting CD4
counts over time. Our approach uses the complete CD4 count data (across all time points)
from a learning sample to generate a model; predictions based on this model are then made,
for the resubstituted data as well as for an independent test sample, assuming that we only
observe the baseline values of CD4. Consideration is given to two clinically meaningful
CD4 count thresholds: K = 200 and K = 350 cells/mm3. All analyses are performed using R
Version 2.7.1. The median length of follow-up is 25 months and the interquartile range
(IQR) for length of follow-up is (14, 32) months. The median number of follow-up time
points is 9 with a full range of 2 to 24. In total, there are 2635 records including baseline
measurements. The median baseline CD4 count for this cohort is 219.5 with an IQR equal to
(114, 333).

Linear and generalized linear mixed effects model are fitted in R using the lme() and lmer()
functions of the nlme and lme4 packages, respectively. We assume a piecewise linear mixed
effects model for modeling CD4 count after initiation of ART (Fitzmaurice et al., 2004).
This model is appropriate since CD4 count tends to rise rapidly for approximately one
month and then proceeds to increase more gradually. Fixed effects for baseline CD4 count
(on a log base 10 scale), baseline and time varying values of WBC and lymphocyte
percentage and time before and after one month of follow-up are included in the model as
predictors. In addition, interactions between each time component and baseline values of
WBC and lymphocyte percent are included.

The design matrix Xi for the fixed effects of Equation 2.1 is thus given by

(3.1)
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where wi0 and li0 are respectively baseline WBC and baseline lymphocyte percent, tij is time
in months since initiation of ART, (tij − 1)+ is follow-up time after the first 1 month on ART
for tij > 1 and 0 otherwise, and wij and lij are respectively WBC and lymphocyte percent at
time tij. We define yi0 in Xi1 as log(CD4) for both the linear and generalized linear model
although the response variable, given by Yi = (Yi1, … , Yini), is dichotomized for the
generalized linear model setting. Notably, this model allows for two linear time trends,
before and after 1 month of follow-up on ART. Random person specific intercepts and
slopes before the knot are also assumed so that the design matrix Zi for the random effects
of Equation 2.1 is given by

(3.2)

The random effects vector in Equation 2.1 is given by  representing the
intercept and slope before the change point for individual i.

We begin by fitting the generalized linear model, as described in Equation 2.2. In this case,
post-baseline CD4 counts are dichotomized and used as the outcome in the model fitting
procedure. Predicted probabilities of being above the CD4 threshold are estimated for each
post-baseline time point for each individual. The results of applying a probability cutoff 0.50
are given in Table 2(a). We call this the “naive” approach since the cutoff does not
incorporate information about the resulting prediction rule. While the sensitivities of these
predictions rules (0.98 and 0.90) are high for both thresholds, the corresponding false
positive rates are also high (0.54 and 0.28). This approach thus may not be appropriate for
CD4 testing since it yields a high probability of falsely predicting that an individual’s CD4
count is within a safe limit.

Next several α cutoffs are considered to generate multiple prediction rules and an ROC
curve is generated, as illustrated in Figure 1(a). This is again based on the GLMM approach
to model fitting. Data corresponding to rules with resubstitution FP rates of approximately
(but not greater than) 5% and 10% and CD4 threshold cutoffs of K = 200 and 350 are
provided in Tables 2(b) and (c). Resubstitution-based summary measures are given in Table
3(a). Based on a CD4 threshold of K = 200 a FP rate of 0.09 corresponds to a sensitivity of
0.61, a positive predictive value of 0.97 and a negative predictive value of 0.32. For the
same CD4 threshold, a FP of 0.05 corresponds to a sensitivity of 0.42, a positive predictive
value of 0.98 and a negative predictive value of 0.25.

Next we fitted the linear mixed effects model, as described by Equation 2.3, to the observed
CD4 count data. The resulting ROC curve illustrating the sensitivity and corresponding false
positive rates in this cohort (resubstitution estimates) is given in Figure 1(b). Count data
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corresponding to rules for which thresholds are K = 200 and 350 and the resubstitution FP
rates are approximately (but not greater than) 5% and 10% are given in Table 2(b).
Corresponding summaries, as well as 95% bootstrap confidence intervals (CIs), are reported
in Table 3(b). To arrive at CIs, we repeatedly sample individuals with replacement and in
each case, fit a linear mixed effects model. The prediction rule corresponding to FP rates of
approximately (but not greater than) 5% and 10% are selected and corresponding
resubstitution estimates of sensitivity, PPV and NPV are recorded. A total of 100 bootstraps
are performed for each threshold and the fifth and ninety-fifth percentiles reported.

Based on a CD4 cuto of 200, a FP rate of 0.10 corresponds to a sensitivity of 0.79 [95% CI
(0.74, 0.83)]. In this case, the PPV is 0.98 (0.97, 0.98) and the NPV is 0.47 (0.37, 0.54). This
corresponds to the rule in which α = 0.035. That is, an individual’s CD4 count is predicted to
be above 200 if the probability that this measurement is greater than 200 is at least 1 − 0.035
= 96.5%. For the same CD4 threshold, a FP rate of 0.05 corresponds to a sensitivity of 0.66
(0.60, 0.75), PPV of 0.99 (0.98, 0.99) and NPV of 0.36 (0.31, 0.46).

In order to further evaluate model performance, we apply our prediction rule to 399
observations across n = 72 individuals from an independent cohort in Philadelphia. We use
only baseline CD4 counts to make predictions, assuming that this is all that is available. The
median baseline CD4 in this cohort is 260.5 cells/mm3 and the IQR is (159.0, 354.2). Test
sample estimates for sensitivity, false positive rate, PPV and NPV are provided in Tables
3(a) and (b) for each of the prediction rules. A tabular summary of counts for one rule based
on the LMM approach is given in Table 4. The total count is n = 327 since there are 399 −
72 = 327 post-baseline measurements for this cohort. In this case, n = 240 measurements are
predicted to be above the threshold while 87 are predicted below. Since this is intended as a
prioritization tool, this rule would suggest performing a true CD4 test on the 87 observations
that are predicted below the threshold to confirm the true value. A “savings” associated with
this rule is 240/327 = 73% since a CD4 test would not be required for this percentage of the
observations. The “cost” is the associated false positive rate of 2/45 = 4.4%. Interestingly,
the test sample estimates based on the LMM approach (Table 3(b)) appear slightly better
than the resubstitution estimates. In fact, in some cases, these test sample estimates are
greater than the 95% bootstrap confidence limits derived based on the learning sample. This
result may be a consequence of the overall slightly higher baseline CD4 count in the
Philadelphia (test sample) cohort. A discussion of the potential utility of stratified analysis
(e.g. according to baseline CD4 counts) is provided in Section 5.

4 Extensions
In this section we briefly describe two extensions of the method outlined in Section 2 to
illustrate its flexibility and directions for further development. First, we consider one
approach to incorporating information about the individual level random effects into our
prediction algorithm for the linear mixed effects setting. This approach is relevant as it
provides a potential framework for incorporating observed, post-baseline CD4 counts into
the model. Additionally, it illustrates the tradeo between using baseline data within the fixed
effects design matrix, and using these data to inform prediction of the random effects.
Second, we detail how this method can be applied to making predictions about changes in
CD4 count over time. Extensions for modeling alternative outcomes are relevant, as clinical
decision making generally takes into account both absolute and relative CD4 count changes.

4.1 Using observed response data to inform BLUPs of random effects
While leading to a prediction rule with good predictive performance, the approach described
in Section 2 does not take into account the latent effects that result in some individuals
having higher or lower responses, information that is typically captured in random effects.

Foulkes et al. Page 9

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Several alternatives exist. For example, the prediction variance used in the example above is

based on the usual regression setting, . Alternatively, we

could use . That is,
while we let , we still include the true bi in the prediction variance formula. Based on
the London data, this results in slight, yet unremarkable improvements in sensitivity (results
not shown).

We can also estimate the random effects for new individuals based on baseline data. In the
example provided, we assume only baseline CD4 counts are available, and these are used in
the fixed effects design matrix rather than informing the random effects. To begin, we
propose fitting the model of Equation 2.3 with the slight modification that the observed
baseline CD4 count, given by yi0, is now included in the response vector Yi and removed
from the design matrix Xi. In order to estimate the random effects for a new individual
(whose complete response vector yi is unobserved), we calculate the conditional expectation
of the random effects, given the baseline (observed) response yi0. That is, we replace

 with  where  is the (1, 1) element
of  corresponding to the estimated variance the intercept random effect,  is the column
vector bcorresponding to the first column of ,  is the first element of  corresponding to
the intercept fixed effect and xi0 is the first row of Xi. This equation is derived simply by
replacing the matrix Zi with its first row and replacing the vectors yi and  with their first

elements in the formula .

Notably, this is not the same prediction of bi that would have been arrived at if the complete
data vector yi were observed and so the alternative notation  is used. Through use of the
first column of the  matrix, we draw on the estimated covariance between the random
effects to fill in values for both the intercept and slope random effects for each individual,
while only relying on baseline values of the response. Finally, we additionally replace

 and  with  and , respectively in the

formula for . Application of this approach to the London data (results not
shown) are similar to those reported, suggesting that in this data example, using the
modified BLUPs in place of treating baseline as CD4 as a predictor variable, does not
improve our prediction algorithm. Observed post-baseline measures of CD4 that occur prior
to the time of prediction could be incorporated similarly into the predicted random effects.

4.2 Making predictions about the percentage change in CD4 count over time
In Sections 2 and 3 we focus on the setting in which interests lies in predicting the response
at a single time point. More generally, we may want to make a prediction about a function of
the CD4 counts for individual i across a combination of time points j. For example, we may
be interested in the percentage change in CD4 count over a specified period of time, given
by the function ft(Yij) = (Yij − Yij’)/Yij where (j − j’) = t. We can again begin by fitting the
linear model of Equation 2.3 to the repeated CD4 count measures and arriving at predictions
for new observations based on this model. The predicted percentage change for a single

individual i is then given by . In order to determine the prediction

variance of , we use the multivariate delta method. Based on a first order Taylor series

expansion, we have  where
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 is the score vector and V is the variance-covariance matrix of

. The matrix V is calculated using the same formula as for  above, where
the vectors xij and zij are replaced by matrices with rows corresponding to the timepoints j
and j’. Further exploration of the utility of fitting a LMM and identifying an associated
prediction rule for the percentage change in CD4 count, or a rule that evaluates
simultaneously the absolute level and the percentage change within the PBC framework, is
on-going research.

5 Discussion
This manuscript presents an analytic approach, which we term PBC, for predicting a
quantitative biomarker trajectory over time that combines the generalized linear mixed
effects model with an ROC curve type approach. Two approaches to approximating the
prediction rule of Equation 2.5 are considered. In the first case, we dichotomize the data a
priori and model the resulting binary outcomes over time; a generalized linear mixed effects
modeling approach is applied for direct estimation of θij. Since we ultimately aim to arrive
at a binary prediction rule, this approach is intuitively appealing and consistent with
applications of the logistic model for prediction. In the second case, we model the data using
a linear mixed effects model, a standard approach to the analysis of unevenly spaced,
repeated measures data with a continuous response and multiple predictor variables. The
results of this model fitting procedure are used in turn to inform predictions, in this case
using a rule that involves the lower bound of the corresponding prediction interval. This
second approach also offers intuitive appeal since it allows for use of all of the observed
data to inform the model fit. A similar approach as the one described herein can be applied
for modeling pathogenesis, though the additional population level variability in CD4 counts
in the absence of therapy may lead to lower predictive performance.

PBC differs in two regards from methods currently employed in this setting. First, we apply
first-stage modeling that can incorporate the full range of multiple continuous and
categorical predictors, as well as quantitative data on our outcome (CD4 count) to inform
our analysis. Estimated mean and variance components from this model fitting procedure are
subsequently used to define a rule for predicting whether a function of the observed CD4
count (within and across time points) is above or below a clinically meaningful threshold.
Multiple patient level characteristics can be incorporated, including observed baseline CD4
count and time-varying values of the potentially predictive markers as described in Section
3. The proposed approach is different from previously described approaches for this setting
since modeling is performed using all of the available data and a prediction rule is associated
with the resulting model. One potential advantage is that we are able to draw on the full
range of both the predictor and outcome data to inform our investigation while still
providing a binary decision rule for clinical decision making based on resulting probability
estimates.

A second difference is that PBC provides a framework for modeling CD4 count trajectories
over time that is not limited to characterizing changes between two time points. Specifically,
we consider models with a single knot at one month after initiation of ART to account for
the rapid increase in CD4 count that is typically observed and the subsequently slower rise
over time (Laird and Ware, 1982; Fitzmaurice et al., 2004). The GLMM is applied with
individual level random intercept and slope terms in order to account for the within person
correlation inherent in repeated measures data. The use of a mixed effects model for
longitudinal CD4 data has been described for monitoring response to therapy (Mahajan et
al., 2004); however, the aim of that investigation differed in that the investigators applied
the mixed model to uncover the within and between person variability in TLC for fixed
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changes in CD4 count. In our setting, the mixed model is used as a tool within a predictive
algorithm that allows for prediction across a temporal trajectory.

Several manuscripts also report receiver operating characteristic (ROC) curve analyses using
information on TLC as well as other markers, such as hemoglobin to predict CD4 count. To
our knowledge, all such investigations involve a first-stage dichotomization of the proposed
markers as well as the outcome CD4 count. For example, Spacek et al. describe an approach
involving cuto points for TLC (< 1200 cells/mm3 and > 2000 cells/mm3) and/or hemoglobin
(> 12 g/dl) (Spacek et al., 2003) while others propose dichotomizing TLC based on whether
the change over a specified time period is greater than 0 (Badri and Wood, 2003; Mahajan et
al., 2004). CD4 count is also dichotomized (< 200 cells/mm2) for each observation based on
the absolute value at a given time point or the change over a specified period. These
investigations generally include reporting of sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV) where sensitivity and specificity are defined in
the usual manner as the proportions respectively of those predicted positive among those
truly positive and those predicted negative among those truly negative. Through
consideration of multiple cut-off points for both predictor and outcomes, ROC curves are
generated that illustrate the trade-off between sensitivity and specificity.

Logistic regression models have also been described as a useful tool in this setting (Bagchi
et al., 2007; Spacek et al., 2003). These methods draw strength on the continuous nature of
the potentially predictive markers, such as TLC, while using a dichotomized version of CD4
count. Logistic models have the advantage of offering a framework for incorporating
multiple continuous or categorical predictor variables and accounting for the confounding
and/or effect modifying role of patient specific demographic and clinical factors. Adjusted
odds ratios are reported from these model fits. While this approach uses more information
on the available data, it involves first dichotomizing CD4 counts and does not include
reporting of sensitivity and specificity, two clinically appealing and relevant concepts.

An extensive literature also exists on methodologies for ROC curves as summarized in Zhou
et al. (2002) and Pepe (2000b). Within this body of research, methods for incorporating
ordinal and continuous predictors have been described (Pepe, 1998, 2005; Tosteson and
Begg, 1988) as well as approaches to handling repeated marker data (Emir et al., 1998). To
our knowledge, however, these methods are developed primarily for a dichotomous outcome
such as ‘diseased’ or ‘not diseased’. In our setting, both the predictor variables and outcome
of interest are continuous biomarkers, which serves as a primary motivation for the linear
mixed effects modeling approach we describe. Specifically, we aim to incorporate and draw
strength from the complete observed response data (rather than a dichotomized version) to
arrive at a prediction rule.

Similar to our approach, methods for time-dependent ROC curves, as described in Heagerty
et al. (2000), aim to characterize a time-varying clinical measure of disease progression
within a prediction framework. Heagerty et al. (2000) provide an eloquent approach for the
setting of a survival outcome, in which the binary indicator for disease status is potentially
censored and can vary over time, and which involves direct modeling of the sensitivity and
specificity. In our setting, the outcome of interest is a continuous biomarker and thus direct
modeling of the sensitivity and specificity in this fashion is not tenable. Instead, we consider
two approaches, one that involves direct modeling of the probability that the outcome is
above a threshold and the second that approximates the prediction rule through use of a
corresponding prediction interval. Further extensions involving modeling of time to CD4
count below a meaningful threshold would be interesting.
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Methods involving generalized linear models and mixed effects models have been described
for estimating ROC curves (Albert, 2007; Gatsonis, 1995; Pepe, 2000a). As noted by Dodd
and Pepe (2003), PBC in its original formulation is an approach to estimation of the area
under the ROC curve given by the probability that the response in group is greater than the
response is another group. The setting described herein differs, however, since here
estimation is described for the probability that an observation is greater than a given
threshold and not for the comparison of two groups. An ROC curve is then generated based
on a prediction rule that incorporates this estimated probability. Finally, we note that our
algorithm involves generating a single ROC curve based on a set of predictors determined in
a model fitting framework. This distinguishes our strategy from approaches that aim to
identify the most predictive set of markers by evaluating the areas under the curve across
several sets of predictors, such as Bisson et al. (2008).

PBC may be a clinically useful tool for predicting whether an individual’s CD4 count will
be greater than a given threshold based on less-expensive laboratory measures, including
WBC and lymphocyte percent. For the data example presented, using the continuous range
of the CD4 data and application of the linear mixed effects model, appears to offer better
predictive performance than a first stage dichotomization and application of the generalized
linear mixed model. This is evidenced in both the resubstitution and test sample estimates of
predictive performance. For example, for a CD4 threshold of 350 and a test sample FP rate
of 4%, the GLMM approach results in test sample Sensitivity= 0.50, PPV= 0.78 and NPV=
0.88. The LMM approach, on the other hand, yields test sample Sensitivity= 0.64, PPV=
0.82 and NPV= 0.91 for the same cut-off and test sample FP rate. While we have not
demonstrated a statistically significant difference between the two approach, a clear trend is
observed across all rules for both the test and learning sample data.

The primary advantages of this strategy over the tools described in Section 1 for this data
setting are: (1) it allows us to draw strength from the full range of continuous outcome data
(through linear modeling) while providing us with clinically relevant measures, such as
positive predictive value (through subsequent classification based on probability thresholds)
and (2) it allows for simultaneous consideration of unevenly spaced biomarker
measurements over time. In the example described for predicting absolute CD4 count based
on a 200-level threshold, a positive predictive value of 0.98 is observed with a false positive
rate of 0.05, suggesting this approach may be useful in developing alternative clinical
management strategies. The relatively low NPV of 0.36 suggests that the approach described
herein may serve best as a prioritization tool that allows for the reduction in higher-end
capacity testing, while not replacing the use of these tests.

The clinical utility of this tool, however, will require further consideration of additional
clinical and environmental factors as well as an in-depth analysis of a diverse array of
cohorts. For example, the application presented in Section 3 is based on data from the
London cohort in which a median baseline CD4 count of 219.5 is observed. Baseline CD4
counts at initiation of therapy tend to be lower in resource poor settings since treatment
guidelines in these settings impose a lower threshold for starting ARTs. The implication of
differing patient level characteristics such as baseline CD4 count on the appropriateness of
this approach as a diagnostic tool still requires thorough assessment. Stratified analyses may
also be informative in identifying subgroups for which the tool is best suited. For example,
characterizing the relative performance among viremic and non-viremic patients, or during
earlier and later exposure to ARTs will provide additional insight into the large-scale
relevance of this approach. In addition, the example presents a prediction for each
observation within an individual. Characterizing this approach for predicting that any of an
array of observations for an individual will be above the threshold, would provide further
insight into its utility. Finally, it may be useful to additionally incorporate the acquired CD4
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counts of those individuals who are tested because they are predicted to be below the
threshold. We are currently investigating these alternative questions and settings.

The PBC approach we describe relies heavily on observing baseline CD4 counts. We are
currently exploring application of this approach to data arising from the Women’s
Interagency HIV Study (WIHS) and Multicenter AIDS Cohort study (MACS) cohorts in
which dates of initiation of therapy are observed only within a six month window. This
presents an additional challenge since our model includes a rapid rise in CD4 counts over
the first one month of therapy followed by a slower sustained increase. Thus in its current
formulation, the precise time of ART initiation is crucial. Further extensions may provide
tools necessary for these alternative settings; however, collection of baseline CD4 count data
at initiation of therapy for HIV is routine in most settings and thus this does not diminish the
potential relevance of PBC for this application.

We also note that the proposed PBC framework is not limited to the choice of design
matrices given in Section 3. Incorporation of additional potentially clinically relevant
variables such as sex and weight in the model fitting stage is straightforward. As the model
fit improves and the prediction variance decreases, the value of α in Equation 2.5
corresponding to the best prediction rule, will likely change. In the extreme case that the
prediction variance tends to 0, we have that lij,α of Equation 2.7 approaches  regardless of
α. In this case, since the observed and predicted values would be very close, all prediction
rules would perform equally well with sensitivity and specificity close to unity. In addition,
alternative more sophisticated models may offer improved accuracy. For example, Chu et al.
(2005) describe a Bayesian random change point model for predicting CD4 trajectories that
includes both population and individual level change points. Incorporating this modeling
approach into the PBC framework introduces the additional analytic challenge of predicting
individual-level change points for new patients and is a direction of potential future
development.

In summary, through combining modeling and an ROC curve approach, PBC provides a
flexible statistical framework for appropriately modeling continuous biomarker data using
all available data on the biomarker as well as additional, potentially relevant continuous or
categorical predictors. At the same time, it offers interpretable measures of diagnostic
accuracy based on clinically determined thresholds. Notably, improved prediction of CD4
count based on less-expensive and more widely available laboratory measures, such as
lymphocyte percentage and white blood cell count, may have broad public health
implications. A sound diagnostic tool could provide for more targeted CD4 testing
strategies, offering a much needed instrument in resource limited setting where HIV/AIDS
presents the greatest burden.
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Figure 1.
ROC curves based on resubstitution estimates
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Table 1

Contingency table notation for a given α–prediction rule

Y ij
+

Total1 0

Y ij
+ 1 n 11 n 12 n 1.

0 n 21 n 22 n 2.

Total n .1 n .2 n ..

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Foulkes et al. Page 19

Ta
bl

e 
2

O
bs

er
ve

d 
an

d 
pr

ed
ic

te
d 

co
un

ts
 (b

as
ed

 o
n 

le
ar

ni
ng

 sa
m

pl
e 

da
ta

)

O
bs

er
ve

d

T
ot

al
> 

20
0

< 
20

0

Pr
ed

ic
te

d
> 

20
0

19
32

21
5

21
47

< 
20

0
34

18
4

21
8

To
ta

l
19

66
39

9
23

65

O
bs

er
ve

d

T
ot

al
> 

35
0

< 
35

0

Pr
ed

ic
te

d
> 

35
0

11
94

28
9

14
83

< 
35

0
13

7
74

5
88

2

To
ta

l
13

31
10

34
23

65

(a
) G

LM
M

 a
pp

ro
ac

h 
w

ith
 a

 “
na

iv
e”

 0
.5

0 
pr

ob
ab

ili
ty

 c
ut

of
f

O
bs

er
ve

d

T
ot

al

O
bs

er
ve

d

T
ot

al
> 

20
0

< 
20

0
> 

20
0

< 
20

0

Pr
ed

ic
te

d*
> 

20
0

82
6

18
84

4
12

06
37

12
43

< 
20

0
11

40
38

1
15

21
76

0
36

2
11

22

To
ta

l
19

66
39

9
23

65
19

66
39

9
23

65

O
bs

er
ve

d

T
ot

al

O
bs

er
ve

d

T
ot

al
> 

35
0

< 
35

0
> 

35
0

< 
35

0

Pr
ed

ic
te

d*
> 

35
0

66
9

50
71

9
88

0
10

3
98

3

< 
35

0 
To

ta
l

66
2 

13
31

98
4 

10
34

16
46

 2
36

5
45

1 
13

31
93

1 
10

34
13

82
 2

36
5

(b
) G

LM
M

 a
pp

ro
ac

h

O
bs

er
ve

d

T
ot

al

O
bs

er
ve

d

T
ot

al
> 

20
0

< 
20

0
> 

20
0

< 
20

0

Pr
ed

ic
te

d*
> 

20
0

12
91

19
13

19
15

58
38

15
96

< 
20

0
67

5
38

0
10

55
40

8
36

1
76

9

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Foulkes et al. Page 20
O

bs
er

ve
d

T
ot

al

O
bs

er
ve

d

T
ot

al
> 

20
0

< 
20

0
> 

20
0

< 
20

0

To
ta

l
19

66
39

9
23

65
19

66
39

9
23

65

O
bs

er
ve

d

T
ot

al

O
bs

er
ve

d

T
ot

al
> 

35
0

< 
35

0
> 

35
0

< 
35

0

Pr
ed

ic
te

d*
> 

35
0

76
0

51
81

1
94

0
10

3
10

43

< 
35

0
57

1
98

3
15

54
39

1
93

1
13

22

To
ta

l
13

31
10

34
23

65
13

31
10

34
23

65

(c
) L

M
M

 a
pp

ro
ac

h

* Pr
ed

ic
te

d 
co

un
ts

 a
re

 b
as

ed
 o

n 
ru

le
s w

ith
 re

su
bs

tit
ut

io
n 

FP
 ra

te
 e

st
im

at
es

 o
f a

pp
ro

xi
m

at
el

y 
(b

ut
 n

ot
 g

re
at

er
 th

an
) 5

%
 (l

ef
t p

an
el

s)
 a

nd
 1

0%
 (r

ig
ht

 p
an

el
s)

.

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Foulkes et al. Page 21

Ta
bl

e 
3

Es
tim

at
es

 o
f p

re
di

ct
iv

e 
pe

rf
or

m
an

ce

G
L

M
M

 (L
S)

G
L

M
M

 (T
S)

Se
ns

Sp
ec

PP
V

N
PV

Se
ns

Sp
ec

PP
V

N
PV

K
=2

00
:

LS
 F

P<
 0

.0
5

0.
42

0.
95

0.
98

0.
25

0.
66

0.
96

0.
99

0.
31

LS
 F

P<
 0

.1
0

0.
61

0.
91

0.
97

0.
32

0.
77

0.
96

0.
99

0.
39

K
=3

50
:

LS
 F

P<
 0

.0
5

0.
50

0.
95

0.
93

0.
60

0.
61

0.
95

0.
95

0.
59

LS
 F

P<
 0

.1
0

0.
66

0.
90

0.
90

0.
67

0.
79

0.
90

0.
93

0.
71

(a
) G

LM
M

 a
pp

ro
ac

h

L
M

M
 (L

S)
L

M
M

 (T
S)

Se
ns

Sp
ec

PP
V

N
PV

Se
ns

Sp
ec

PP
V

N
PV

K
=2

00
:

LS
 F

P<
 0

.0
5

0.
66

 (0
.6

0,
 0

.7
5)

0.
95

0.
99

 (0
.9

8,
 0

.9
9)

0.
36

 (0
.3

1,
 0

.4
6)

0.
77

0.
96

0.
99

0.
39

LS
 F

P<
 0

.1
0

0.
79

 (0
.7

4,
 0

.8
3)

0.
90

0.
98

 (0
.9

7,
 0

.9
8)

0.
47

 (0
.3

7,
 0

.5
4)

0.
84

0.
96

0.
99

0.
49

K
=3

50
:

LS
 F

P<
 0

.0
5

0.
57

 (0
.4

4,
 0

.6
7)

0.
95

0.
94

 (0
.9

2,
 0

.9
5)

0.
63

 (0
.5

6,
 0

.7
0)

0.
73

0.
93

0.
95

0.
67

LS
 F

P<
 0

.1
0

0.
71

 (0
.6

5,
 0

.7
9)

0.
90

0.
90

 (0
.8

8,
 0

.9
2)

0.
70

 (0
.6

6,
 0

.7
8)

0.
84

0.
90

0.
94

0.
77

(b
) L

M
M

 a
pp

ro
ac

h

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Foulkes et al. Page 22

Table 4

Observed and predicted counts (based on test sample data)

observed

Total> 200 < 200

Predicted
> 200 238 2 240

< 200 44 43 87

Total 282 45 327

Ann Appl Stat. Author manuscript; available in PMC 2011 January 25.


