Skip to main content
. Author manuscript; available in PMC: 2011 Jan 25.
Published in final edited form as: Ann Appl Stat. 2010 Sep;4(3):1476–1497. doi: 10.1214/10-AOAS326

Table 3.

Estimates of predictive performance

GLMM (LS) GLMM (TS)
Sens Spec PPV NPV Sens Spec PPV NPV
K=200:
LS FP< 0.05 0.42 0.95 0.98 0.25 0.66 0.96 0.99 0.31
LS FP< 0.10 0.61 0.91 0.97 0.32 0.77 0.96 0.99 0.39
K=350:
LS FP< 0.05 0.50 0.95 0.93 0.60 0.61 0.95 0.95 0.59
LS FP< 0.10 0.66 0.90 0.90 0.67 0.79 0.90 0.93 0.71
(a) GLMM approach
LMM (LS) LMM (TS)
Sens Spec PPV NPV Sens Spec PPV NPV
K=200:
LS FP< 0.05 0.66 (0.60, 0.75) 0.95 0.99 (0.98, 0.99) 0.36 (0.31, 0.46) 0.77 0.96 0.99 0.39
LS FP< 0.10 0.79 (0.74, 0.83) 0.90 0.98 (0.97, 0.98) 0.47 (0.37, 0.54) 0.84 0.96 0.99 0.49
K=350:
LS FP< 0.05 0.57 (0.44, 0.67) 0.95 0.94 (0.92, 0.95) 0.63 (0.56, 0.70) 0.73 0.93 0.95 0.67
LS FP< 0.10 0.71 (0.65, 0.79) 0.90 0.90 (0.88, 0.92) 0.70 (0.66, 0.78) 0.84 0.90 0.94 0.77
(b) LMM approach