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Abstract
Retrieval is often subdivided into recollection and familiarity. Memory-strength and reaction time
(RT) differ for each, complicating fMRI studies of these processes. Recollection leads to greater
activity in the hippocampus and default network (DN). Increased DN activity with recollection is
thought to reflect self-referential processes, but prior studies have not accounted for varying RT,
which modulates DN activity and is consistently faster for recollection than familiarity. This study
examined the influence of RT and memory-strength on recollection and familiarity activity. The
results show the hippocampus functionally dissociated from DN during retrieval. DN was
generally influenced by RT and signal was suppressed when subjects were task-engaged in
recollection or familiarity; suppression was greater for slower trials of either type. The
hippocampus showed a positive deflection of fMRI activity only for recollection trials; activation
was greater for slower recollection trials, but RT did not influence hippocampal activity during
familiarity trials.
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Introduction
In memory studies, retrieved episodic memories are often classified as ‘remembered’ or
‘known’ (Mandler, 1980; Rajaram, 1996). ‘Remember’ is a judgment of recollection,
defined as not only recalling an event, but also recalling specific details about the encoding
event. ‘Know’ is a judgment that an item is familiar, but without the retrieval of specific
details about the encoding event. Many studies of recollection and familiarity have focused
on the medial temporal lobe (MTL), specifically the hippocampus, since its involvement in
memory encoding, consolidation, and retrieval is well known (Bayley & Squire, 2005;
Cohen & Squire, 1980; Scoville & Milner, 1957).
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In functional brain imaging studies of memory, hippocampal activity has been associated
with memory encoding, consolidation, and retrieval, but during rest, activity in the
hippocampus is generally correlated with a set of regions commonly identified as the default
network (DN). The DN is a set of brain regions less active during task performance than
during rest or fixation (Raichle, et al., 2001). It includes a distributed network of midline and
lateral brain regions (for review see Buckner, Andrews-Hanna, & Schacter, 2008). Elevated
DN activity during fixation suggests that, in the presence of a task, DN would show a
negative deflection from baseline with greater deflection for longer time spent ‘on-task.’
Indeed, prior studies have shown an association between reaction time (RT) and DN
suppression (McKiernan, Kaufman, Kucera-Thompson, & Binder, 2003; Park, Polk, 2010,
Hebrank, & Jenkins; Weissman, Roberts, Visscher, & Woldorff, 2006).

Brain regions with greater activity during confident memory retrieval have been termed the
‘retrieval-network.’ In a meta-analysis of memory tasks and the parietal lobe, Wagner,
Shannon, Kahn, & Buckner (2005) report greater blood oxygen level dependent (BOLD)
signal in parietal-lobe subregions across multiple memory experiments with comparisons of
recollection/familiarity, correct rejections, false alarms, and misses (Dobbins, Rice, Wagner,
& Schacter, 2003; Eldridge, Knowlton, Furmanski, Bookheimer, & Engel, 2000; Henson,
Rugg, Shallice, Josephs, & Dolan, 1999; Wheeler & Buckner, 2004). Whether the
comparison is old versus new judgments, hits versus correct rejections, hits versus misses,
source hits versus source misses, or any other “stronger” vs. “weaker” memory comparison,
a relative “positive activation” is seen in precuneus, lateral parietal cortex, posterior
cingulate, retrosplenial cortex, and intraparietal sulcus. These regions, most active for
stronger memories, overlap with the posterior portion of the DN (Cavanna, 2007). While not
all retrieval-network regions are part of the DN, a subset appears to be modulated by the
simple performance of any of a wide variety of tasks.

Since the retrieval-network shows increased activity during confident memory retrieval, it is
likely that some activity attributed to retrieval might, in fact, represent a broader modulation
of DN activity; hippocampal activity, consistent with findings from hippocampal lesion
literature, might be more specific to memory tasks. Imaging studies show increased
hippocampal activity during episodic recollection (Henson, 2005; Schacter, Alpert, Savage,
Rauch, & Albert, 1996) and for recollection relative to familiarity (Cabeza, Rao, Wagner,
Mayer, & Schacter, 2001; Cansino, Maquet, Dolan, & Rugg, 2002; Eldridge, et al., 2000;
Schacter, et al., 1996). Recollection and familiarity differentially modulate both the
hippocampus and posterior DN (Rugg & Henson, 2002), but only recently has evidence
existed for task-based dissociations amongst cortical DN subcomponents (Kim, 2010) or for
general dissociations between cortical DN subcomponents and the hippocampus (Israel,
Seibert, Black, & Brewer, 2010). A similar dissociation between DN and hippocampus for
recollection and familiarity judgments might be expected, given RT differences (modulating
DN activity) and memory differences (modulating hippocampal activity) for these
judgments.

Many studies have noted that confident memory retrieval is performed faster than judgments
of familiarity or retrieval with lower confidence (Dewhurst, Holmes, Brandt, & Dean, 2006;
Rotello & Zeng, 2008; Wixted, 2009; Wixted & Stretch, 2004). Increased RT for familiarity
relative to recollection could be due to amount of search needed to bring up a memory, post-
retrieval processing required for memory judgment, or other components of retrieval. RT is
a confounding component uncontrolled in most studies that use the ‘remember/know’
paradigm. In fact, it is plausible that increased activity commonly observed in the retrieval-
network could simply reflect decreased suppression of DN for tasks performed more quickly
and easily. Thus, an analysis of ‘remember/know’ judgments constrained by RT may help
disentangle DN from retrieval-related activation.
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This study examined how RT influences BOLD activity in the hippocampus and DN during
correct ‘remember/know’ responses. Since the hippocampus is functionally connected with
other DN regions at rest, the goals of this study were to determine if hippocampus modulates
with DN during tasks of memory retrieval and if RT may account for the common DN and
hippocampal activations identified in memory studies that use the ‘remember/know’
paradigm. We expect that if DN and hippocampus are part of the same network during
memory retrieval, RT should similarly influence their activity. Conversely, if DN and
hippocampus comprise separate networks in the brain that are dissociable during memory
retrieval, slower RT would yield differential and possibly divergent hippocampal activity
from DN activity during recollection, and possibly familiarity.

Method
Twelve healthy right-handed subjects were recruited from the University of California, San
Diego (UCSD) community and surrounding area (mean age = 23 ± 3 years, 2 male).
Subjects received $40 for their participation and gave informed consent approved by the
Institutional Review Board of UCSD. Stimuli were 384 color images of common, namable
objects (Bakker, Kirwan, Miller, & Stark, 2008), separated into 256 shown in a pre-scan test
and an additional 128 novel images used during the scan.

Prior to scanning, subjects visually studied 256 nameable objects, each for 3 seconds, and
made a living/non-living judgment. During scanning, subjects saw all 256 studied objects
and 128 novel objects and were asked to judge each with ‘remember,’ ‘know,’ or ‘novel.’
Subjects were instructed to respond “remember” if they saw the image during the study task
and could recall specific details about its presentation, “know” if the image was familiar but
they did not recall specific details about seeing it before, or “new” if the image was not
presented during the study session (Yonelinas, 2001). Subjects responded by pressing one of
three buttons on a button box held in their right hand. Each image was presented for 3
seconds. Trials were jittered with 0, 1.5, 3, or 4.5 seconds of fixation-cross baseline to
optimize the study design (Dale, 1999). Each subject underwent a single session of four 530-
second runs. Only correctly identified ‘remember’ and ‘know’ trials (hits) were used in
further analysis. ‘Novel’ and ‘miss’ trials were analyzed, but not further explored with
attention to reaction time.

Imaging was done in a 3T GE scanner at the Keck Center for Functional MRI at the
University of California, San Diego. Functional images were acquired using a gradient echo
echo-planar, T2*-weighted pulse sequence (repetition time = 1.5 s, one shot per repetition,
echo time = 30, flip angle = 90°, bandwidth = 31.25 MHz). Twenty-two slices covering the
brain were acquired perpendicular to the long axis of the hippocampus with 3.4 × 3.4 × 7
mm voxels, allowing greater summation of activity along the hippocampal axial plane
(Brewer & Moghekar, 2002). A T1-weighted high resolution (1 × 1 × 1 mm), three-
dimensional fast spoiled gradient-recalled anatomical dataset was collected.

Data from each run were field-map corrected to account for inhomogeneities in the magnetic
field. Using AFNI (Cox, 1996), slices were reconstructed to a 3-dimensional volume,
temporally aligned, co-registered, and motion corrected. A general linear model (GLM) was
constructed using multiple regression analysis and included six motion regressors and
regressors for ‘remember’ and ‘know,’ hit and miss responses and ‘novel’ correct rejections
and false alarms. A second GLM was constructed to examine ‘remember’ and ‘know’ hit
trials longer and shorter than 1500 msec. A third GLM was constructed with one column for
all task types to examine task versus no task activity (used to mask the ‘remember minus
know’ activation map in Figure 2). Areas with negative deflection during task engagement,
as revealed by the task versus no task GLM, were defined functionally as the default
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network (Raichle, et al., 2001). Standard landmarks were defined manually, and the
anatomical and functional scans were transformed into Talairach space (Talairach &
Tournoux, 1998). For each condition, a hemodynamic-response function was estimated for
15 seconds following the onset of the stimulus using signal deconvolution. Amplitude-
modulated regression (http://afni.nimh.nih.gov/pub/dist/doc/misc/Decon/AMregression.pdf)
was used to identify active voxels whose activation level also depended on RT for the
‘remember’ and ‘know’ hits. Two regressors were constructed to find the mean BOLD
response and areas where BOLD response correlated with RT. Again, a hemodynamic-
response function was estimated for 15 seconds following the onset of the stimulus using
signal deconvolution. Cluster maps were displayed using SUMA (Saad, Reynolds, Argall,
Japee, & Cox, 2004) on the pial surface of the Talairach and Tournoux N27 average brain
from Freesurfer (http://surfer.nmr.mgh.harvard.edu). In order to improve alignment of MTL
structures, the region of interest large deformation diffeomorphic metric mapping alignment
technique (Miller, Beg, Ceritoglu, & Stark, 2005) was used.

After individual deconvolution analysis, single-subject parameter estimates were entered
into group level analyses. Voxel-wise t-tests (two-tailed) were performed to compare
average area under the curve between conditions and between the presence and absence of a
task. Clusters were defined with a connectivity of 4mm between voxel-centers and included
at least 5 voxels for a whole brain significance of p<.05 and a voxel-wise significance of p<.
001 when corrected for multiple comparisons (using alpha probability simulations calculated
with the AFNI plugin, AlphaSim). Clusters were extracted at p<.01 (two-tailed, corrected
for multiple comparisons) and were displayed as a statistical map overlaid onto an average
structural image. The hemodynamic response function, estimated in the signal
deconvolution analysis, was extracted for each subject in each cluster of interest and then
averaged. Reaction time histograms were constructed using the sum of all hit/correct trials
for all subjects in each 250 msec bin for remember, know, and novel responses.

Results
In this study of memory retrieval, more BOLD activation was observed in DN and
hippocampus during ‘remember’ hits than during ‘know’ hits. However, activity in these
regions was dissociated; hippocampus showed a response-curve with a positive deflection
from baseline for ‘remember,’ while DN showed negatively-deflecting response-curves that
dipped more negatively for ‘know’ than for ‘remember.’

Regions more active for ‘Remember’ than ‘Know’
Old items were judged as ‘remember’ 60.1 ± 6.2% of the time and as ‘know’ 17.8 ± 3.2% of
the time. Novel items were judged as ‘new’ (correct rejection) 84.2 ± 2.4% of the time.
Brain regions showing greater BOLD activity during ‘remember’ trials than during ‘know’
trials (p<0.01, corrected for multiple comparisons) are identified in Figure 1 (Figure 1 about
here). There were no voxels showing the opposite relationship. Active voxels in this contrast
include typical DN regions (bilateral postcentral gyrus, medial parietal lobe, precuneus,
insula, and hippocampus). In order to more closely examine the BOLD dynamics in DN and
hippocampus separately, all regions of differential activity in the ‘remember minus know’
contrast were masked by the anatomically defined hippocampus and functionally defined
DN for use in further analyses. Clusters of activation in hippocampus extended beyond the
anatomical boundaries of the structure, so an anatomical mask of hippocampus was used to
constrain the voxels included in the analysis. Activity that was modulated by the remember-
know contrast and that fell within the DN (Figure 2, green) or hippocampus (Figure 2, blue)
was explored for differences between ‘remember’ and ‘know’ hits and for relationships with
RT.
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Inspection of impulse-response functions for hits in DN and hippocampus confirm greater
activity during ‘remember’ than during ‘know’ trials (Figure 2); however, the impulse-
responses in these regions were in opposite directions and were differentially influenced by
‘remember’ and ‘know’ judgments. The DN showed a negative deflection of activity that
was of greater amplitude during ‘know’ trials than during ‘remember’ trials (Figure 2, top
left). Impulse-response curves for ‘remember’ (purple), ‘know’ (orange), ‘misses’ (green),
and ‘correct rejection’ (light blue) responses were all decreased from baseline (Remember:
t(11)=−2.869, p<.05; Know: t(10)=−3.676, p<.01; Misses: t(11)=−4.358, p<.01; Correct
Rejection: t(11)=−3.215, p<.05). Hippocampus showed a positive deflection of activity
during ‘remember’ hits and ‘novel’ correct rejections (Remember: t(11)=2.996, p<.05;
Correct Rejection: t(11)=2.429, p<.05), no change in activity during ‘misses’ (t(11)=−1.161,
p=.275), and a decrease in activity during ‘know’ hits (t(10)=−2.547, p<.05), (Figure 2, top
right), all compared to a fixation-cross baseline. (Figure 2 about here)

RT Differences Across Trial Types
‘Remember’ and ‘know’ hits and ‘novel’ correct rejections had significantly different RTs
[F(2,33) = 23.762, p<.001; R-K: t(11)= −4.981, p<.001; R-N: t(11)= −2.220, p<.05; K-N:
t(11)=6.199, p<.001]. ‘Remember’ hits responses were fastest (1199±57 msec), followed by
‘novel’ correct rejections (1365±41 msec), then ‘know’ hits (1676±50 msec) (distributions
displayed in Figures 3A-C). Examining these reaction time distributions together with the
impulse-response curves in Figure 2, it is noted that average activity decreased with longer
RT in the hippocampus and DN, suggesting a potential association between neural activity
and RT in these regions. (Figure 3 about here)

DN and Hippocampal Activity
Amplitude regression analysis identified brain regions whose activity correlated with RT for
‘remember’ and ‘know’ hits (Figure 4). There were inverse correlations of both ‘remember’
and ‘know’ trials with RT in DN (p<.01, Figure 4A,B). Hippocampus, however, showed a
positive correlation for ‘remember’ (p<.01, Figure 4C) and no correlation for ‘know’ (p>.01,
Figure 4D). (Figure 4 about here)

To examine the effects of RT and memory-strength, ‘remember’ and ‘know’ hits were split
into those with RT slower and faster than 1500 msec. Fast ‘know’ trials were compared with
slow ‘remember’ trials, allowing a near-optimal balance in trial number for the two
conditions while equating memory-strength and reversing the confounding directionality of
RT present in unconstrained analyses. Typically, RT and false-alarm rates are higher for
‘know’ than for ‘remember.’ In this analysis, RT was longer for slow ‘remember’ hits
(trials: 259, Average RT: 1852 msec, FA rate: 1%) than for long ‘know’ hits (trials: 233,
Average RT: 1224 msec, FA rate: 0%) and false-alarm rates were equated; this provides a
test of whether hippocampal and DN activity remains higher for ‘remember’ than for ‘know’
despite equal memory-strength and slower RT. Despite this, activity was still greater in DN
(Figure 5A) and hippocampus (Figure 5B) for slow ‘remember’ trials than fast ‘know’ trials,
and hippocampus still showed a significant increase during ‘remember’ trials compared with
baseline (Slow remember: t(11)=2.387, p<.05; Fast know: t(10)=−.043, p=1) while DN
showed a decrease for both ‘remember’ and ‘know’ trials (Slow remember: t(11)=−2.718,
p<.05; Fast know: t(10)=−5.772, p<.001). (Figure 5 about here)

General Discussion
During episodic retrieval, more activity was elicited for ‘remember’ than for ‘know’ hits in
areas commonly identified as the DN. In a meta-analysis of DN activity by Buckner et al.
(2008), activation from the ‘remember-know’ contrast and hippocampal-correlated DN
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activation overlapped in the hippocampus and posterior DN regions (Cavanna, 2007;
Vincent, et al., 2006; Wagner, et al., 2005). By examining the timecourse of this activity, the
present study demonstrates that the hippocampus dissociates from DN during ‘remember’
and ‘know’ judgments and also demonstrates why these regions are co-identified using
subtraction analyses. The hippocampus responds to ‘remember’ trials with a positive
deflection from baseline that is of greater amplitude with slower RT, while the DN shows a
negative deflection from baseline that is of greater amplitude with slower RT. The DN
responds to ‘know’ trials with an even deeper negative deflection from baseline that is also
of greater amplitude with slower RT, while the hippocampus shows a negative deflection
from baseline during these trials that is not sensitive to RT. Though the hippocampus is
considered to be part of and is typically functionally correlated with the DN, during episodic
retrieval, hippocampal activity dissociates from DN activity.

The present study demonstrates that even though RT is correlated with hippocampal activity
during recollection, selective hippocampal involvement during ‘remember’ trials remains
even after controlling RT. This activation, unseen during ‘know’ hits, lends support to the
dual process model of memory recall, where hippocampus supports recollection but not
familiarity. Even in ‘remember’ trials with a slower RT and equated confidence, the
hippocampus still showed a positive deflection from baseline only for ‘remember’ and no
deflection for ‘know.’

Prior studies noted increased hippocampal activity for recollection-based but not for
familiarity-based responses (Eldridge, et al., 2000); however, it was unknown whether these
effects were due to the brain bases of the recollection/familiarity dissociation, due to
differences in memory-strength, or primarily driven by differences in DN, since MTL
regions are functionally linked to the DN during rest. If ‘remember’ judgments yield
elevated hippocampal activity even when ‘remember’ and ‘know’ judgments are equated for
memory-strength and RT, it would support selective hippocampal involvement in
recollection. The present study did not additionally obtain subjects’ subjective ratings of
memory-strength, given potential influences of such metamemory judgments, themselves,
on hippocampal and DN activity and a desire to maintain consistency with prior imaging
studies of recollection/familiarity. Nevertheless, such ratings of retrieval confidence might
allow greater flexibility in examining the confound of memory-strength present in prior
studies.

Hippocampal activity diverges from other DN activity during memory-related tasks and is
differentially influenced by RT during recollection- and familiarity-based memory retrieval.
Task-related activity differences in these regions survive correction for differences in RT
and memory-strength. ‘Remember’ and ‘know’ judgments might require different amounts
of search or might rely on different metamemory processes to make the judgments
themselves. Despite the wealth of imaging studies on memory, these additional components
of memory retrieval are poorly understood, calling for further research to determine how
regional brain activity might be affected by the interactive components of memory-strength
and RT.
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Figure 1.
Cluster map of ‘remember minus know’ (p<.01, corrected for multiple comparisons).
Clusters overlaid on an average anatomical brain of the 12 study participants.
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Figure 2.
Default network and hippocampus activity in the ‘remember minus know’ contrast (p<.01).
Cluster map (below) shows regions of overlap between the default network (defined as
regions of deactivation in task minus no task contrast, green) and hippocampus (defined
anatomically, blue) and the ‘remember minus know’ contrast (p<.01). Clusters overlaid on
an average anatomical brain of all 12 study participants. Impulse response curves in the
default network (top left) and hippocampus (top right) for ‘remember’ (purple), ‘know’
(orange), ‘misses’ (green), and ‘correct rejection’ (light blue) judgment trials. Y-axis is
percent signal change; X-axis is time (seconds) after the onset of the stimulus.
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Figure 3.
Reaction time distribution varies for ‘remember,’ ‘novel’ and ‘know’ trials. Reaction time
distribution and mean RT for A) ‘remember,’ B) ‘novel,’ and C) ‘know’ trials. X-axis is
reaction time (msec); Y-axis is number of trials in each bin, summed across all 12 subjects.
Only correct ‘remember,’ ‘novel,’ and ‘know’ responses are included.
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Figure 4.
Regions correlated with reaction time. Map of regions positively and negatively correlated
with reaction time for ‘remember’ trials (A, C) and ‘know’ trials (B, D). Cluster maps for
correct ‘remember’ and ‘know’ trials are presented on the pial surface of the Talaraich and
Tournoux N27 average brain (A, B), and on an average anatomical brain of the 12 study
participants (C, D). (p<.01, warm colors = positive correlation, cool colors = negative
correlation)
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Figure 5.
Reaction time does not account for all task-related differences in ‘remember’ and ‘know’
trial activity in the default-mode network and hippocampus. Impulse response curves for the
A) default-mode network and B) hippocampus for ‘remember’ trials with reaction time
slower than 1500 msec (‘slow remember,’ blue) and ‘know’ trials with reaction time faster
than 1500 msec (‘fast know,’ green). Masks used to extract impulse response curves are the
same as those in Figure 2. Y-axis is percent signal change; X-axis is time (seconds) after the
onset of the stimulus. All impulse response curves are for correct trials only.
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