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In Swingle et al.1 we demonstrate that 
it is possible to use recombineering to 

direct a variety of changes in wild-type 
bacterial cells without the addition of 
phage-encoded proteins. This discovery 
is potentially applicable to biological 
engineering in a wide variety of bacterial 
species. Here we describe key features 
of oligo recombination as it is currently 
understood, and propose strategies for 
expanding the utility of oligo recombi-
nation for bioengineering.

The ability to change bacterial genomic 
sequences is one of the pillars supporting 
molecular genetics. The modifications 
employed depend on the intended outcome, 
but uniting all is a series of labor-intensive 
steps that in many cases involve compro-
mises that result in approximations of our 
true goals. Additionally, the compromises 
often introduce uncertainties that must be 
dealt with by additional experiments to 
adequately address the question. The most 
common method for modifying genomic 
sequences, allelic exchange,2 requires clon-
ing steps to generate a mutant allele in a 
plasmid prior to integration at the cognate 
site in the genome, followed by resolution 
to remove extraneous plasmid sequences 
(requiring additional selection and screen-
ing). Because of the difficulty of modify-
ing bacterial genomic sequences there has 
been an incentive to make this process 
more efficient and precise.

The range of tools that have been 
developed to support molecular genetic 
investigation of bacteria is impressive,3 
yet genomic modification in bacteria has 
lagged behind the highly efficient strategies 
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assisted by homologous recombination 
using linear DNA in yeast.4-6 The devel-
opment of similar strategies to enable bac-
terial genetic manipulation has generally 
been considered impossible because of the 
presence of potent nucleases that degrade 
linear DNA substrates before recombina-
tion can take place. These suppositions are 
supported by studies of mutant strains of 
Escherichia coli, lacking combinations of 
nucleases, that are capable of elevated lev-
els of recombination with linear DNA.7,8 
These studies are informative and useful 
in some cases, but not universally applica-
ble because of the requirement that experi-
ments be performed in mutant strains.

The scope of what is possible was broad-
ened considerably in 1989 with the publi-
cation of two papers describing the use of 
the lambda Red and recET genes (some-
times referred to as Red/ET) to facili-
tate genetic engineering.9,10 The Red/ET 
genes are derived from bacteriophage and 
encode recombinases that induce a tem-
porary hyper-recombinogenic state that 
makes cells capable of homologous recom-
bination with linear DNA substrates. This 
discovery enabled the very practical tech-
nology known as recombineering (genetic 
engineering by recombination), the prin-
ciple of which is that the substrate DNA 
can contain changes that direct alteration 
of genome sequences.11,12 The substrate 
DNA can be a double stranded13 (such as 
a PCR product or restriction fragment) or 
single stranded (such as an oligo) synthetic 
sequence.12 There is no question that the 
Red/ET systems represent a revolution 
on the genetic engineering front because 
these systems are capable of facilitating 
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We found that there is a length threshold 
close to 20 nt that, when exceeded, facili-
tates maximal levels of recombination. 
Increasing the length beyond this point 
up to 120 nt does not further increase lev-
els of recombination. The recombination 
frequency dropped dramatically for oligos 
shorter than 20 nt and was undetectable 
below 12 nt. Additional experiments sug-
gest that the recombination frequency is 
primarily governed by DNA annealing 
thermodynamics, and that oligos need to 
anneal with sufficient stability for recom-
bination to be efficient. It is therefore 
necessary to consider this when designing 
oligos so that they exceed the minimum 
length to facilitate robust annealing. This 
result is also interesting from a theoreti-
cal perspective because it establishes an 
experimental system in which to study 
DNA annealing characteristics in vivo, 
including identifying genes whose prod-
ucts affect the process.

Additional questions regarding the 
mechanism of oligo recombination remain 
to be addressed. For example it will be 
informative to determine whether any 
part of the process (from transformation 
to recombination) is in itself mutagenic. 
To begin to test this, cells were trans-
formed with oligos that were identical to 
the wild-type sequence except for a silent 
marker change in a codon’s wobble posi-
tion. The oligos used here were designed 
to match the rpsL gene, and the rate of 
streptomycin resistance was monitored 
(Fig. 1). Streptomycin resistant cells arose 
more frequently (albeit at a low level) 
when oligos were added compared to con-
trol reactions where oligos were absent. 
The strand bias that we report in Swingle 
et al.1 for oligo recombination (the ten-
dency for the oligo matching the lagging 
strand to recombine more efficiently than 
its complement) is also apparent in this 
experiment consistent with the idea that 
the streptomycin resistance cells were the 
product of recombination. Sequencing of 
the rpsL gene of 40 streptomycin resistant 
isolates arising in reactions with the lag-
ging strand oligo revealed that the major-
ity (32/40) contained the silent marker 
mutation, indicating that these cells most 
likely arose due to recombination with the 
transformed oligos. Our current model is 
that these streptomycin resistant isolates 

we did observe a low level of recombina-
tion in control transformations with cells 
that did not contain any of the Red genes. 
This was subsequently tested in other 
Gram-negative enteric bacteria, including 
E. coli, Salmonella and Shigella, and in all 
cases evidence for Red-independent oligo 
recombination was apparent.

There are a variety of factors that 
influence these recombination reactions. 
Chief among them is the concentration 
of the oligo supplied in the electropora-
tion mixture. We found that the amount 
of oligo used has a profound effect on the 
frequency of recombination and that this 
is likely due to the ability of the DNA to 
overwhelm the capacity of endogenous 
nucleases present in the cells that degrade 
and therefore prevent the transformed 
oligos from being able to participate in 
recombination. Given this result, it is 
likely that oligos containing 5' phospho-
thioate linkages would make recombina-
tion less dependent on oligo concentration 
based on the idea that these moieties 
impede nuclease degradation.19

We also examined the effect of oligo 
length on recombination frequency. This 
experiment revealed interesting dynam-
ics that have both theoretical and practi-
cal ramifications for oligo recombination. 

any change that can be incorporated into 
a linear segment of DNA and tolerated by 
the recipient genome. However, the dis-
tinct limitation of this and similar systems 
is that they function reliably in a limited 
range of hosts, preventing their wide-
spread applicability.14 To circumvent this 
limitation, phage recombinases are now 
being identified that function in other 
model bacteria.15-18

In Swingle et al.1 we demonstrate that it 
is possible to introduce a variety of changes 
in wild-type bacteria cells without the 
addition of phage-encoded proteins simply 
by introducing ssDNA oligos. The discov-
ery occurred while attempting to estab-
lish lambda Red assisted recombineering 
in P. syringae. Recombinase independent 
oligo recombination was identified using a 
straightforward assay to detect evidence of 
recombination, in which, cells were trans-
formed with oligos that are homologous 
to a specific genomic locus and contain 
nucleotide changes that confer a selectable 
phenotype. A recombination frequency 
can be determined as the portion of resis-
tance cells relative to 108 viable cells, the 
approximate number of viable cells in 
a standard electroporation. Using this 
assay, we did not detect any evidence that 
lambda Red functioned in P. syringae, but 

Figure 1. Frequency of streptomycin resistance in P. syringae cells. Cells were electroporated with 
5 µg of a 74 nt oligo matching the lagging or leading strand of the rpsL gene or no oligo control 
(H2O). Then the frequency of streptomycin resistance was determined. Results are the average of 
three experiments, error bars show standard deviation.
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selectable phenotype. As our understand-
ing of oligo recombination grows and 
methods are improved, we may find strat-
egies that permit integration of mutations 
without selection. For the time being, we 
can still take advantage of oligo recombi-
nation. One potentially powerful strategy 
is to use this system to eliminate a counter 
selectable marker (e.g., rpsL-streptomycin, 
sacB-sucrose, tetR-fusaric acid) in the 
genome. The counter selectable marker 
could be integrated into the genome by 
the traditional allelic exchange approach 
and then excised using oligo recombina-
tion, simultaneously introducing muta-
tions encoded by the oligo (i.e., point 
mutants, deletion derivatives, or epitope/
affinity tags).

Finally, even though genetic transfor-
mation is a prerequisite for oligo recom-
bination we recognize that this system 
could be used to develop a transformation 
protocol without the need for validated 
replicons. This solves the chicken-or-egg 
problem that may be faced when study-
ing a new microbe, namely that in order 
to observe transformation a plasmid must 
stably replicate. In lieu of a plasmid, tran-
formants can be observed by selecting 
recombinant genomic alleles. After a trans-
formation protocol is established, then the 
search for useful replicons can begin.
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