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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia worldwide. AD is a member of
a broad range of neurodegenerative diseases characterized pathologically by the conformational
change of a normal protein into a pathological conformer with a high -sheet content that renders
it neurotoxic. In the case of AD the normal soluble amyloid B (SAB) peptide is converted into
oligomeric/fibrillar AB. The oligomeric forms of AB have been hypothesized to be the most toxic,
while fibrillar A becomes deposited as amyloid plaques and congophilic angiopathy, which both
serve as neuropathological markers of the disease. In addition the accumulation of abnormally
phosphorylated tau as soluble toxic oligomers and as neurofibrillary tangles is a critical part of the
pathology. Numerous therapeutic interventions are under investigation to prevent and treat AD.
Among the most exciting and advanced of these approaches is vaccination. Immunomodulation is
being tried for a range of neurodegenerative disorders with great success being reported in most
model animal trials; however, the much more limited human data has shown a more modest
clinical success so far, with encephalitis occurring in a minority of patients treated with active
immunization. The immunomodulatory approaches for neurodegenerative diseases are targeting a
self-protein, albeit in an abnormal conformation; hence, effective enhanced clearance of the
disease associated conformer has to be balanced with the potential risk to stimulate excessive toxic
inflammation within the CNS. The design of future immunomodulatory approaches that are more
focused is dependent on addressing a number of questions such as: When is the best time to start
immunization? What are the most appropriate targets for vaccination? Is amyloid central to the
pathogenesis of AD or is it critical to target tau related pathology also? In this review we discuss
the past experience of vaccination for AD and the development of possible future directions that
target both amyloid  and tau related pathologies.
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Alzheimer’s disease is the most common cause of dementia worldwide, affecting
approximately 37 million people currently. In the USA, AD is the 6th leading cause of
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death, with an estimated 5.3 million Americans having AD. By 2050, according to some
estimates, 1:85 persons worldwide will be affected by AD (1). Currently available
treatments for AD provide largely symptomatic relief with only minor effects on the course
of the disease. There is an urgent need for better therapeutic interventions. Besides
immunomodulation, numerous other approaches are being studied, which include anti-Ap
aggregation agents, secretase inhibitors/modulators blocking Ap production, tau aggregation
blockers, agents targeting mitochondria, stem cell therapies and various neuroprotective
strategies (2). Perhaps the greatest hope for an intervention that shall significantly impact
disease progression in the near future comes from the vaccination approaches (3,4).
Certainly in AD Tg mouse models AP directed immunization has been spectacularly
successful using a wide variety of methods. However significant unanswered questions
remain for the current and future human trials as to what is the best design of a vaccine,
what is the best target and when should therapy start? A key issue which needs to be
addressed is the targeting of both amyloid p (AB) and tau related pathology.

PATHOGENESIS OF FAMILIAL AND SPORADIC ALZHEIMER'’S DISEASE

The pathological hallmarks of AD are the accumulation of Ap as neuritic plaques and
congophilic angiopathy, as well as accumulation of abnormally phosphorylated tau in the
form of neurofibrillary tangles (NFTs). Missense mutations in APP or in the presenilin
genes PRES 1 and 2 can cause early onset, familial forms of AD (FAD) affecting <4% of
AD patients. The most common form of AD is sporadic and late-onset. The dominant theory
for the causation of AD has been the amyloid cascade hypothesis (5,6). This theory currently
suggests that accumulation of AB peptides particularly in a highly toxic oligomeric form is
the primary pathogenic driver, that downstream leads to tau hyperphosphorylation, NFT
formation and ultimately to synaptic and neuronal loss. Extensive evidence supports this
hypothesis in FAD patients and in models of FAD: 1) Inherited forms of AD linked with
mutations in the APP gene or in the PRES1 or 2 genes are associated with changes in APP
processing that favor over production of SAB or production of more aggregation prone forms
of sAp such as AB1-42 (7). 2) Down’s syndrome, where there is an extra copy of the APP
gene due to trisomy 21, is associated with AD related pathology at a very early age (8). 3) In
transgenic and other models of co-expressed amyloid  and tau, amyloid  oligomer
formation precedes and accentuates tau related pathology, consistent with the hypothesis
that NFT formation is downstream from A aggregation (9-11). 4) In transgenic mouse
models of mutant APP over-expression (where there is no tau pathology) therapeutic
prevention and/or removal of A is associated with cognitive benefits in experimental mice
(12-15). Importantly, in transgenic mouse models of both mutant APP and tau over-
expression (with both amyloid and tau related pathology) prevention of AB pathology leads
to both amelioration of cognitive deficits and tau related pathology (16-18). However,
evidence proving that Ap is central in the common late-onset sporadic form of AD is more
limited: 1) A correlation has been shown between biochemically extracted AB peptides
species from sporadic AD brains with cognitive decline (19). 2) Isolated AB peptide dimers/
oligomers from sporadic AD brains have been documented to impair synaptic structure and
function (20). 3) AP extracted from sporadic AD patients has been shown to induce amyloid
deposits when injected into transgenic mice (21). A significant problem for the amyloid
cascade hypothesis comes from the autopsy data from the initial human active vaccination
trial, which is further discussed below. Post-mortem analysis was available from nine
subjects in the active immunization arm (22). All these individuals showed some degree of
plague removal and reduced Af load compared to comparable non-immunized controls.
Despite this, there were no differences between placebo and active immunization groups in
terms of long-term survival outcome, time to severe dementia and in outcome measures such
as ADAS-Cog, MMSE or DAD. This may be related to immunization having begun too late
in the disease process; alternatively, one can use this data to suggest that the amyloid
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cascade hypothesis is an oversimplification. A number of investigators have suggested
alternative theories, whereby accumulation of AB and tau hyperphosphorylation are dual
pathways both downstream from a common upstream pathogenic deficit (which remains to
be identified) (23-25). In such a scenario it is essential for immunotherapy to address both of
these pathologies to be highly effective.

Hence in this review we will summarize the preclinical and clinical data for both Ap and
phosphorylated tau reduction immunotherapeutic approaches.

PAST ACTIVE IMMUNIZATION HUMAN EXPERIENCE TARGETING AB

Initial data supporting immunotherapy for AD showed that anti-Ap antibodies could inhibit
AP peptide fibrillization/oligomerizaton and prevent cell culture based neurotoxicity (26,27).
This lead to vaccination of AD Tg mice with Ap1-42 or Ap homologous peptides co-
injected with Freund’s adjuvant which demonstrated striking reductions in A deposition
and as a consequence elimination of behavioral impairments (12-15,28,29). Similar effects
on AP load and behavior have been demonstrated in AD Tg mice by peripheral injections of
anti-Ap monoclonal antibodies indicating that the therapeutic effect of the vaccine is based
primarily on eliciting a humoral response (30,31). In the initial preclinical studies no toxicity
was evident in the treated mice; however, some investigators suggested that use of non-
fibrillogenic, non-toxic Ap homologous peptides along with approaches that stimulate
primarily humoral, Th-2 immunity, in contrast to a primary Th-1 cell mediated response
might reduce potential toxicity (32-34). The dramatic biological effect of vaccination in
preclinical testing encouraged Elan/Wyeth in April 2000 to launch a randomized, multiple-
dose, dose-escalation, double-blind Phase I clinical trial with a vaccine designated as
AN1792, which contained pre-aggregated Ap1-42 and QS21 as an adjuvant. This type of
vaccine design was aimed to induce a strong cell mediated immune response, since QS21 is
known to be a strong inducer of Th-1 lymphocytes (35). The initial trial was conducted in
the UK and involved 80 patients with mild to moderate AD (36). This trial was designed to
assess the antigenicity and the toxicity of multiple dose immunization with the full length
APB1-42 peptide with the QS21. 53% of patients developed an anti-Ap humoral response.
During the later stages of the phase 1 trial, the emulsifier polysorbate 80 was added causing a
greater shift from a Th2 biased response to a proinflammatory Th1 response (37). In the
subsequent phase lla trial, begun in October 2001, 372 patients were enrolled with 300
receiving the aggregated ApB1-42 (AN1792) with QS21 in the polysorbate 80 formulation.
This trial was prematurely terminated in January 2002 when 6% of vaccinated patients
manifested symptoms of acute meningoencephalitis (18 out of 298 subjects) (35,38,39).
Autopsies performed on a limited number of trial patients suggested that striking Ap
clearance of parenchymal plaques had occurred, similar to what had been reported in the
animal studies, confirming the validity of this approach for amyloid clearance in
humans(39-44). In these cases extensive areas of cerebral cortex were devoid of plaques,
with residual plaques having a “moth-eaten” appearance or persisting as “naked” dense
cores. This amyloid clearance in most cases was in association with microglia that showed
AP immunoreactivity, suggesting phagocytosis. Additional striking features were the
persistence of amyloid in cerebral vessels, as well as unaltered tau immunoreactive NFTs
and neuropil threads in regions of cerebral cortex where plaque clearing had apparently
occurred, compared to regions without clearing (42-44). Hence, this initial vaccination
approach did not address vascular amyloid or NFT related pathology. Some cases also
showed a deleterious T-cell reaction surrounding some cerebral vessels, suggestive of an
excessive Th-1 immune response. It appeared that the immune reaction triggered by
AN1792 was a double-edge sword, where the benefits of a humoral response against Ap
were overshadowed in some individuals by a detrimental T cell mediated inflammatory
response (39,45). The likely involvement of an excess cell mediated response in mediating

Mt Sinai J Med. Author manuscript; available in PMC 2011 January 25.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Wisniewski and Boutajangout Page 4

toxicity was supported by analysis of peripheral blood mononuclear cells from trial patients,
which were stimulated in vitro with the Ap peptide, followed by quantification of cytokine
secretion by enzyme-linked immunosorbent spot assay (37). The cells of most responder
trial patients mounted IL-2 and IFN-y positive responses indicative of a Class Il (CD4+)
Th-1 type response (37). Not all patients who received AN1792 responded with antibody
production. The majority mounted a humoral response and showed a modest but statistically
significant cognitive benefit demonstrated as an improvement on some cognitive testing
scales comparing to baseline and a slowed rate of disease progression comparing to the
patients who did not form antibodies (36,46). The follow-up data from the Zurich cohort,
who are a subset of the Elan/Wyeth trial (46,47), indicated that the vaccination approach
may be beneficial for human AD patients. In agreement with the findings in the Zurich
cohort, immune responders with high antibody titers in the multi-center cohort scored
significantly better in composite scores of memory functions as compared to low- and non-
responders or to the placebo group of patients (37). However, it is striking that despite the
apparent success in amyloid clearance indicated by the autopsy data, the clinical cognitive
benefits were very modest when the active vaccination group was compared to the placebo
group (48). No difference between the antibody responders and the placebo group was found
on the ADAS-Cog, Disability Assessment for Dementia, Clinical Dementia Rating scale,
MMSE or on the Clinical Global Impression of Change. It was only on a nine-item
composite NTB that antibody responders had a slight benefit compared to the placebo
group. This data can be used to suggest that vaccination in this cohort was started too late;
hence, tau related pathology was unaffected by vaccination and thus the cognitive benefits
were small. Alternatively it can be suggested that the amyloid cascade hypothesis must be an
oversimplification of the pathogenesis of sporadic AD. The latter view is supported by the
follow up study of the 80 patients in the initial phase I AN1782 trial, of whom 8 came to
autopsy (22). This study showed that despite evidence of very significant amyloid plaque
removal in 6 out of the 8 autopsy subjects, which correlated with the anti-Ap titer, in the
overall group there was no evidence of improved survival or an improvement in the time to
severe dementia (22).

PAST PASSIVE IMMUNIZATION EXPERIENCE FOR AD

Passive immunization consists of an injection of pre-prepared antibodies to patients, as
opposed to active immunization where the immune system is stimulated to produce its own
antibodies. Passive transfer of exogenous monoclonal anti-Ap antibodies appears to be the
easiest way to fulfill the goal of providing anti-Ap antibodies without risk of uncontrolled
Th-1 mediated autoimmunity. AD Tg model mice treated this way had a significantly
reduced AP level and demonstrated cognitive benefit (30,31). Potential problems with
passive immunization include the need for repeated injections in a chronic disease, high
cost, proper selection of antigen targets, blood-brain barrier penetration, the risk of
hemorrhages and the development of an immune response to the injected antibodies. Several
passive immunization trials are underway with the most advanced being the Phase 111
Bapineuzumab trial begun in Dec 2007 (4). The Phase Il trial using this anti-Ap monoclonal
antibody was a randomized, double-blind, placebo controlled trial testing 3 doses in 240
participants. In each of the escalating doses of the antibody, approximately 32 subjects
received active agent and 28 placebos. Although the study did not attain statistical
significance on the primary efficacy endpoint in the whole study population, in the sub-
group of non-apoE4 carriers clinically significant benefits were documented using a number
of scales including the Mini Mental State Examination (MMSE) and the Alzheimer’s
Disease Assessment Scale Battery, over the 18 month trial period. In addition among non-
apoE4 carriers, evaluation of the MRI results showed less loss of brain volume in treated
versus control patients. However, it was reported that some patients in the treatment group
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developed vasogenic edema, a significant adverse reaction. The Phase I1I trial is targeting to
recruit 800 patients and run until December 2010.

Using a somewhat similar approach, 1VIg is currently in clinical trial for AD, with the
rationale being that I\VVlg contains some anti-Ap antibodies. In a pilot, open label study in 8
mild AD patients 1\VVIg was infused over 6 months, discontinued and resumed for another 9
months (49). Following each infusion the plasma AP levels increased transiently with CSF
AP being decreased after 6 months. The MMSE increased an average of 2.5 after 6 months
and returned to baseline after washout and remained stable with the subsequent IVIg
infusions. These promising initial findings clearly need to be repeated in a larger cohort. The
attraction of 1VIg use is that there is extensive experience using 1VIg safely for multiple
neurological disorders; however, it is a very expensive treatment and the percentage of anti-
AP antibodies in 1VIg is extremely low so this is not likely to be neither very specific nor
highly effective form of treatment.

A particular concern in association with passive immunization is cerebral microhemorrhage.
The mechanism of this hemorrhage is thought to be related to Ap deposition in the form of
congophilic amyloid angiopathy (CAA) that causes degeneration of smooth muscle cells and
weakening of the blood vessel wall. A number of reports have shown an increase in
microhemorrhages in different AD mouse models following passive intra-peritoneal
immunization with different monoclonal antibodies with high affinity for Ap plaques and
CAA (50-52). Microhemorrhages following active immunization in animal models have also
been reported but only in two studies, hence this appears to be less of a problem with this
approach (53,54). In transgenic mouse models, Ap antibodies can both prevent the
deposition of vascular amyloid, and remove it thus contribute to vascular repair. On the
other hand, the autopsies from the AN1792 trial indicated no clearance of vascular amyloid
and in one of these cases numerous cortical bleeds were found, which are typically rare in
AD patients, (41). This is an important issue as CAA is present in virtually all AD cases,
with approximately 20% of AD patients having “severe” CAA (55). Furthermore CAA is
present in about 33% of cognitively normal elderly, control populations (56). The need for
vascular repair and regeneration during Ap immunotherapy represents another argument for
early treatment as well as an argument favoring subtle clearance over a longer time period.

PHOSPHORYLATED TAU AS AN IMMUNE TARGET

Neurofibrillary tangles (NFTs) are a major pathologic hallmark of AD. NFTs are
intraneuronal inclusion bodies that consist of an accumulation of paired helical filaments
(PHFs), which biochemically are mainly composed of abnormally phosphorylated tau.
Recently there is increasing focus on phosphorylated tau as an immunotherapeutic target
(57-59). In the CNS, human tau is expressed in 6 isoforms arising from alternative mRNA
splicing from a single gene on chromosome 17¢21, containing 16 Exons (see Figure 1)
(60,61). The size range of the six isoforms is between 352 and 441 amino acids, which differ
by the absence or presence of 29 (Exon 2) or 58 (Exon 2 + Exon 3) amino acids inserts in
the amino-terminal. The carboxy-terminal half of tau contain three or four semi-homologous
repeat of 31 or 32 amino acids, encoded by Exon 10. The repeats (3R, 4R) correspond to the
microtubule binding region of protein tau. (see Figurel). Stabilization of microtubules by
tau is essential for the maintenance of neuronal cell morphology and transport of organelles.
In addition, tau has other roles such as interactions with kinesin -1 and the complex
dynactin/dynein (62,63). Tau plays also a crucial role in neuronal cell architecture by
interacting with plasma membrane or cytoskeleton proteins such as actin, spectrin and
neurofilament proteins. Several mutations have been detected in the tau gene in FTDP-17
and other tauopathies, however none have been linked to AD (64). Most of these mutations
affect the binding of tau to microtubules or enhance the aggregation of tau into fibrils. Other
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intronic mutations that affect the splicing of Exon 10 induce an increase of isoforms with 4
repeats. In AD, tau is hyperphosphorylated at all phosphorylated sites with 9 phosphates per
molecule in comparison to normal brain tau that has 2 to 3 phosphorylated residues (65).
Other studies suggested that changes in tau splice forms are related to neurodegeneration. In
some animal models expressing mutated Tau there is an increase of 4R versus 3R tau (66).
The functional significance of a shift in the 3Rtau/4Rtau ratio remains unclear, but four -
repeat tau binds microtubules with a higher affinity than three- repeat tau (67).

Normal tau and PHF tau differ in molecular weight and banding pattern as seen in Figure 1.
Normal tau has 6 bands between 45 and 68 kDa, while PHF-Tau has 4 bands between 60
and 74 kDa (see Figure 1) (68,69). The diversity of tau isoforms is related to various post-
translational modifications such as phosphorylation, glycosylation, glycation, ubiquitination,
nitration (70). The splicing regulation of the tau gene and the relative expression of isoforms
is not significantly changed in sporadic AD (Figure 2) (71). Tau has multiple
phosphorylation sites that were characterized using phospho-tau dependant antibodies (see
Figure 3). 71 out of the 85 potential phosphorylated sites have been shown to be
phosphorylated in physiological or pathological conditions (72,73). More than 20 protein
kinases have been implicated in the phosphorylation of tau proteins, with glycogen synthase
kinase-3p (GSK-3pB) and cyclin-independent kinase (cdk5) thought to play the most
important role in phosphorylation under pathological condition (72-75).

Several transgenic mice models that express human tau with FTDP-17 mutation have been
produced (see Table 1). Some of these mice display neurofibrillary tangles, neuronal death
and behavioral deficits (76-85) except a Tg mice model that expresses a mutated (N279K)
tau that shows behavioral deficits without formation of NFTs or neuronal loss (86). In these
models there is disruption of axon transport due to the tau expression that induces synaptic
and neuronal loss. Another Tg tau mice model was developed expressing the mutated P301S
tau which shows synaptic loss that precedes tangles formation (84). The distribution of
neurofibrillary tangles in most of these tauopathies models are in contrast to Alzheimer’s
disease, since NFT is localized in different brain regions such as the brain stem, spinal cord
or in fronto-temporal cortex instead of the entorhinal region, hippocampus and neocortex as
observed in AD (87). In order to generate a more ideal model for AD, other researchers have
used a single wild-type human tau to generate a transgenic model; however, most of these
models did not develop NFT, with the except of two models: One expressing ON3R wild-
type tau with few NFTs in aged animals (80) and another with abundant NFT that expresses
all 6 human tau isoforms on a knockout background for murine tau (88,89). The absence of
tangles in mice that expressed a single wild-type human tau is likely due to the endogenous
tau inhibiting the formation of NFT-like pathology.

Recently, it has been shown that active immunization of Tg mice P301L with a phospho-tau
peptide (containing the phosphorylated PHF-1 epitopes Ser 396, Ser 404) for 2 to 5 months
could prevent tau related pathology (90,91).

These particular phosphorylation epitopes were chosen since these sites have been shown to
increase the fibrillogenic nature of tau and contribute into paired helical filaments formation
(92,93). Histological and biochemical analyses showed a reduction of aggregated tau in the

brain and improve performance on motor tasks(90). This study clearly documented that it is
possible to reduce tau related pathology with active immunization.

At first examination it is difficult to understand how an antibody response to a protein which
is accumulating intra-cellularly can have beneficial effects. However, such an outcome is
supported by a study of immunization in a Parkinson’s disease transgenic mouse model with
a-synuclein showing a reduction of intracellular a-synuclein aggregates (94). An additional
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study has shown that antibodies against Af can be internalized in AD neuronal culture
models of Ap accumulation and clear intra-neuronal Ap aggregates via the endosomal—
lysosomal pathway (95). Furthermore recent evidence has shown that extracellular tau
aggregates can be internalized and promote the fibrillization of intracellular full length tau in
a tissue culture model (96) and that injection of fibrillar tau brain extract into the brains of
transgenic wild-type expressing mice can induce the formation of human tau into filaments,
as well as the spread of pathology from the site of injection into neighboring brain regions
(97). This type of “infectivity” of abnormal protein conformation from outside the cell has
also been demonstrated for polyglutamine aggregates (98) and is well characterized in prion
disease (99,100). Hence if the spread of PHF pathology in AD occurs via a prion like
mechanism, anti-phosphorylated tau antibodies would not need to enter cells in order to be
effective.

QUESTIONS TO ADDRESS FOR A NEW GENERATION OF AD VACCINES

An initial question which needs to be addressed is when to begin a vaccination protocol.
Extensive neuropathological data has established that by the time the earliest clinical signs
of AD emerge, AP deposition may be close to reaching its peak and that NFT formation and
neuronal loss are substantial but have not yet reached peak levels (101,102). This would
suggest that amyloid directed therapy would need to begin very early, perhaps even before
the mild cognitive impairment stage, in order to have a maximal effect.

This is consistent with the albeit limited autopsy data from the initial AN1792 study that
showed that despite evidence of very significant amyloid plague removal in 6 out of the 8
autopsy subjects, which correlated with the anti-Ap titer, in the overall group there was no
evidence of improved survival or an improvement in the time to severe dementia (22).
Hence there is a need for identification of markers predicting the conversion from normal
aging to very mild dementia/mild cognitive impairment. These include CSF biomarkers such
as increased p-tau/AB42 ratios in cognitively normal individuals which enhance the
probability of conversion to MCI (103). Early FDG-PET changes in hippocampal glucose
metabolism can predict the conversion of normal cognition to pathologically verified AD
(104). Studies in AD Tg models suggest that paramagnetic amyloid binding ligands utilizing
magnetic resonance imaging have potential for early amyloid detection and following
treatment effects (105,106). However currently, direct imaging of amyloid depositions with
agents such as PIB, using PET imaging, is the most promising method for identification of
early amyloid deposits and identifying patients who will likely convert to MCI from normal
aging and MCI to early AD (107,108). An alternative approach is to immunize targeting
both AP deposition and tau related pathology.

Such an approach has a higher probability of having a more clear effect on the clinical
course, even if started when clinical symptoms are evident. Furthermore if, as discussed
above, tau pathology is not downstream from amyloid deposit but represents a parallel
pathology related to a common upstream cause, it will be essential to target tau related
pathology regardless of how early vaccination treatment is initiated.

Another significant issue which needs to be addressed in future studies is the development
of better models for pre-clinical testing of vaccination approaches. There are many
shortcomings to current Tg models of AD pathology. These include the fact that Tg amyloid
deposits typically lack the extensive post-translational modifications of AD amyloid and
thus are much more soluble, presumably allowing them to be cleared more easily (109). The
rodent immune system is quite different from the human immune system, leading to
significant differences in the toxic responses to amyloid deposition (110). Most current tau
Tg models reflect FTDP related pathology in contrast to AD tau pathology, as discussed
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above (87). Relatively few of the vaccination approaches being developed have been tested
in non-human primates or other non-transgenic models of AD which may provide more
accurate models of the type of immune response that might be elicited in aged humans as
well as better reflecting the combination of true human A and tau related
pathology(111-113). These models include the rhesus monkey, the vervet monkey, mouse
lemurs and aged beagles (113-118). It is striking that in a recent 22 month active
immunization trial in aged beagles, despite an ~80% reduction in cortical Ap
immunoreactivity, little cognitive improvement on multiple measures of learning and
memory could be detected (119). However, improvements in some executive functions were
found, mirroring the modest improvements seen only in the z-score of the Neurological Test
Battery among patients in the AN1782 trial. These results reinforce the need to begin
immunomodulation very early in the disease progression focusing on preventing Af
deposition rather than clearance of preexisting lesions, as well as the likely need to target tau
related pathology concurrently.

Active vaccination approaches under development are aiming to avoid the excessive Thl
stimulation that resulted in encephalitis in a proportion of the AN1792 patients.
Concurrently the formulation of any active vaccine also has to overcome the problem of
immunosenescence in the target patient population. One promising approach taken by
several investigators is to alter the sequence of the AB peptide immunogen in order to
remove or alter the major Th1 stimulator sites in the carboxyl terminus and the middle
portion of AB, while focusing on the major Th2 stimulator site in the amino terminus
(28,33,120-122). These AP homologous peptide immunogens can be combined with various
co-stimulator epitopes. An example of this approach is a combination with a synthetic, non-
natural Pan HLA DR-binding epitope PADRE (122) or linkage to viral-like particles (VLP)
(123-125) to induce a primarily humoral immune response. These can be further combined
with other immunostimulator carriers. For example the Ap Th2 amino terminal epitope can
be combined with PADRE and macrophage derived chemokine (MDC) in a DNA epitope
vaccine to drive robust Th2 responses (126). The choice of adjuvant is also an important
consideration. The use of polysorbate 80, a strong Th1 stimulate adjuvant, in the AN1792
trial is one likely contributing factor to the encephalitis in a minority of patients. Use of
adjuvants such as alum which drive primarily a Th2 response is preferable (29,119). The
route of immunization also plays an important role. Stimulating mucosal immunity by
vaccinating nasally, via the gut or transcutaneously has been shown to drive strong Th2
responses (127-129). An alternative, non-mutually exclusive approach to enhance vaccine
design is to stimulate innate immunity and enable microglia/macrophages to phagocytose
amyloid deposits. Over 20 yrs ago, H.Wisniewski noted that while brain-resident
macrophages were unable to phagocytose amyloid, brain-infilrating macrophages are plaque
competent (130). A number of recent studies suggest that only a small percentage of plaques
are associated with peripheral origin macrophages and that these are required for plaque
clearance (131-133). Vaccination approaches based on this knowledge are now being
developed. Stimulation of peripheral macrophages to enter the CNS and phagocytose
amyloid has been achieved by stimulation of the Toll-like receptor 9 using CpG (134,135),
via blockade of the CD40/CDA40L interaction (136) and by blockade of TGFB-Smad2/3
innate signaling pathway (137). These innate immunity stimulatory approaches can be used
alone or in combination with adaptive immunity stimulation. Stimulating the innate immune
system has the added potential advantage that it could be effective against both AB and tau
related pathologies.

Another important issue for future vaccination approaches is what is the best target for either
active or passive immunization? Abundant evidence both in vivo and in vitro suggests that
the most toxic species of AR are oligomers or AB derived diffusible ligands (ADDLS)
(138,139) with a similar line of evidence suggesting that tau oligomers are the most toxic
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form of phosphorylated tau (59,84). Active vaccination or use of monoclonal antibodies that
specifically target Ap oligomers, tau oligomers or preferably both would be an ideal way to
block AD related toxicity.

A small number of pre-clinical studies targeting AB oligomers suggest that this methodology
is potentially powerful and in the need of further development (140-144). An additional
important factor to consider is that emerging evidence suggests that monomeric Ap peptides
have normal physiological functions in the brain such as neuroprotection and modulating
LTP (145,146), with phosphorylated tau also having a normal role (58). Targeting only
oligomeric Ap or tau would avoid the potential of interfering with these physiological
functions. A novel immunotherapeutic approach is to target the shared abnormal -sheet
conformation of amyloid proteins using conformationally specific antibodies or active
immunization that favors such a conformational response (140,141,147). Such an approach
has the advantage that both AP and tau related pathologies would be addressed concurrently.

CONCLUSION

Numerous therapeutic approaches are under development for AD; however, harnessing the
immune system to clear both AP and tau related pathology is perhaps the most promising
and advanced approach. Abnormal protein conformation is thought to be not only the
underlying pathogenesis of AD but also of a long list of neurodegenerative conditions, such
as prion disease, Parkinson’s disease and Huntington’s chorea, with immunomodulation
having the potential to be a disease altering therapeutic approach for all these disorders. For
example it has been shown that prion directed mucosal vaccination can prevent infection
from an exogenous source (148,149). Ultimately, directing the immune system to clear the
highly toxic abnormal oligomeric conformers that characterize multiple neurodegenerative
diseases has the potential to dramatically alter the course of a wide spectrum of age
associated diseases.
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Figure 1.

Shows a schematic representation of the human tau gene which is located on chromosome
17921, and spans more than 130 kb. This gene is composed of 16 Exons. (A). Exons 1 and
14 are transcribed but not translated (turquoise color). The Exons 4A, 6 and 8 are not
transcribed in human (light blue/charcoal color) (B). In the human brain, 6 tau isoforms
ranging from 352 to 441 amino acids are generated by alternative splicing of Exons 2, 3, and
10 (shown in brown/red, pink and red respectively) from a single gene. Exons 1, 4, 5, 7, 9,
11, 12 and 13 (blue color) are included in all isoforms. Exon 3 is always included with Exon
2. The microtubule binding domains are indicated by R1, R2, R3 and R4, which correspond
respectively to Exon 9, 10, 11 and 12, respectively. (C). Extraction of tau proteins and PHF-
Tau from normal and Alzheimer brain respectively, shows by immunoblotting six bands
between 45-68 kDa which correspond to different tau isoform in normal brain, while in
PHF-tau 4 bands are detected between 60-74 KDa which corresponds to the aggregation of 6
hyperphosphorylated tau isoforms in the AD brain.
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Figure 2.

Shows the electrophoresis of RT-PCR amplification products of the 5” domain of tau
MRNAs (A), of the 3’ domain of tau mMRNAs (B). Extraction of RNA was performed in
from the cerebellar cortex of a sporadic Alzheimer’s disease patient. The expression of
MRNA by RT-PCR shows different isoforms of human tau detected in the N-terminal (ON,
1N, 2N) and in the C-terminal (3R, 4R). Symbol (+) indicates with exon, while (-) indicates
without exon.
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Figure 3.

In the human Alzheimer brain, more than 40 phosphorylation sites on tau have been
identified and localized in the proline-rich domain and in the C-terminal region.
Phosphorylated sites are identified with 8 phospho-tau specific antibodies as indicated in
figure.1C, with a red color. It has been suggested that the phosphorylation at Ser 262/356 is
responsible for the detachment of tau from microtubules.
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