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Abstract

Type 2 diabetes mellitus (T2DM) results from insulin resistance and b-cell dysfunction, in the setting of hyperglucagonemia.
Glucagon is a 29 amino acid peptide hormone, which is secreted from pancreatic a cells: excessively high circulating levels
of glucagon lead to excessive hepatic glucose output. We investigated if a-cell numbers increase in T2DM and what factor
(s) regulate a-cell turnover. Leprdb/Leprdb (db/db) mice were used as a T2DM model and aTC1 cells were used to study
potential a-cell trophic factors. Here, we demonstrate that in db/db mice a-cell number and plasma glucagon levels
increased as diabetes progressed. Insulin treatment (EC50 = 2 nM) of a cells significantly increased a-cell proliferation in a
concentration-dependent manner compared to non-insulin-treated a cells. Insulin up-regulated a-cell proliferation through
the IR/IRS2/AKT/mTOR signaling pathway, and increased insulin-mediated proliferation was prevented by pretreatment with
rapamycin, a specific mTOR inhibitor. GcgR antagonism resulted in reduced rates of cell proliferation in aTC1 cells. In
addition, blockade of GcgRs in db/db mice improved glucose homeostasis, lessened a-cell proliferation, and increased intra-
islet insulin content in b cells in db/db mice. These studies illustrate that pancreatic a-cell proliferation increases as diabetes
develops, resulting in elevated plasma glucagon levels, and both insulin and glucagon are trophic factors to a-cells. Our
current findings suggest that new therapeutic strategies for the treatment of T2DM may include targeting a cells and
glucagon.
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Introduction

Type 2 diabetes mellitus (T2DM) is considered to be a direct

consequence of insulin resistance and b-cell dysfunction. Pancreatic

a cells and their secretary product, glucagon, are often overlooked

even though a ‘‘bihormonal abnormality’’ theory of T2DM

pathology was proposed as long ago as 35 years [1]. Clinical studies

show that increased fasting glucagon levels and lack of suppression

of postprandial glucagon secretion are responsible for the increased

glucose levels observed in T2DM [1–6]. Long-term hypergluca-

gonemia, as seen with glucagonomas, also causes a T2DM

phenotype, and glucagonomas in mice cause a metabolic phenotype

characteristic of T2DM [7]. It is poorly understood why plasma

glucagon levels are elevated in T2DM patients. The major targets of

glucagon are hepatocytes on which glucagon receptors (GcgRs) are

prevalent, but GcgRs are also expressed on b cells [8] and GcgR

null mice are resistant to b-cell loss and hyperglycemia [9]. There is

also some evidence that glucagon directly regulates a-cell activity.

GcgRs are expressed on a cells and glucagon was shown to

stimulate exocytosis from mouse and rat a cells [10]. Additionally,

glutamate co-secreted from a-cell secretory granules with glucagon

directly causes additional a-cell exocytosis through glutamate

receptor activation [11].

To date, the dysfunction of glucagon secretion in diabetes is

vaguely considered to result from defective glucose sensing and

insulin resistance in liver and muscle [12]. Recently, several papers

have focused on the signaling pathways in a cells that regulate

glucagon secretion under physiological conditions [10,11,13,14].

Regulation of a-cell function and turnover in the diabetic state

deserves more investigation so as to better design therapeutic

strategies and while much work has been done on understanding

how pancreatic b-cell function and proliferation are regulated,

factors that regulate a-cell proliferation are largely ignored. We

hypothesize that not only increased glucagon secretion but also

increased a-cell proliferation is responsible for the elevated

glucagon levels that occur in T2DM. There are data pointing to

increased a-cell numbers in T2DM [15] and therefore we sought

to determine if, in fact, a-cell numbers increase during the

development of T2DM, and what factors, especially if any intra-

islet factors, control pancreatic a-cell proliferation. There are

several candidate islet factors that may be involved in a-cell

proliferation: (1) glucagon itself, because it regulates its own

secretion, (2) insulin, because it directly regulates glucagon

secretion through insulin receptors (IR) on a cells [13], it regulates

b-cell proliferation [16–18], and therefore may also regulate a-cell

proliferation.

In recent years, it has been reported that blocking glucagon

receptors improves glucose homeostasis [19–21]. Yet, targeting

glucagon as a therapy for T2DM is not well developed, at least

compared with the overwhelming information and attempts at
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modulating insulin receptor function. In this study, we used cell

lines and animal models of diabetes. We found that a-cell numbers

increased as blood glucose levels increase, insulin regulates a-cell

proliferation by signaling through mTOR and glucagon receptor

antagonism is beneficial to both a and b cells.

Materials and Methods

Animal study
Leprdb/Leprdb (db/db) and Leprdb/+ (non-diabetic) mice (male)

were from Jackson laboratories and were housed in the NIH/NIA

mouse barrier facility with access to standard chow and water ad

libitum. Over time, db/db mice displayed typical phenotypes of

obesity, polyuria and hyperglycemia. Streptozotoxin (50 mg/kg)

was administrated by daily intraperitoneal (i.p.) injection into 3-

month-old CD1 mice for 5 days (n = 5). One month later, one

mouse having died, their pancreata were collected for morpho-

logical analyses. Some db/db and control mice were given 20 ml

(50 mM) of GcgR antagonist II (Calbiochem) (control n = 4,

treated n = 5) orally once daily for 17 days. All animal testing

procedures were approved by the Animal Care and Use

Committee of the National Institute on Aging. The ID number

of the animal study is 156 JME.

Cell culture and reagents
The glucagon-producing aTC1 and insulin-producing mouse

cell lines were grown in DMEM medium (Invitrogen) containing

4.5 g/L D-glucose, supplemented with fetal bovine serum (10%

for aTC1 and 15% for MIN6), 1% L-Glutamine, 1% streptomy-

cin/penicillin. CHO cells were grown in F-12 medium (Invitrogen)

containing L-glutamine, supplemented with 10% fetal bovine

serum and 1% streptomycin/penicillin.

Transwell cell co-culture and cell proliferation
aTC1 cells were co-cultured with MIN6, aTC1, CHO cells

or medium for 7 days using HTS Transwell-96 Tissue Culture

Systems (Corning). Cells were also stimulated as follows for

72 hours: 14 mM GcgR Antagonist II, 20 ng/ml rapamycin (a

kind gift from Dr. Paritosh Ghosh), recombinant insulin

(Upstate Biotechnology), concentration and time points are

indicated in figures or legends. The cells were grown from 3–5

days before treatment. Cell proliferation was assayed using The

CellTiter 96 AQueous One Solution Cell Proliferation Assay

(Promega). This assay is a colorimetric method for determining

the number of viable cells in proliferation [22]. After 1 hour at

37uC in a humidified, 5% CO2 atmosphere, the absorbance at

490 nm was recorded using an ELISA plate reader (Molecular

Devices).

Propidium iodide staining for DNA cell cycle analysis
aTC1 cells were serum starved for 5 h, followed by treatment

with insulin (2 nM) in the absence or presence of rapamycin

(20 ng/ml) for 24 h. The medium was collected and transferred

into a 15 ml conical tube on ice. Cells were washed with PBS,

trypsinized, and collected into conical tubes containing medium.

After centrifugation, the cell pellets were gently resuspended in

300 ml of PBS to break up clumps and, while vortexing, 10 ml of

ice cold 70% ethanol was added before storage at 220uC
overnight. The following day, cells were centrifuged, washed with

PBS, and 1 ml of 50 mg/ml propidium iodide solution (Calbio-

chem) containing 1 mg/ml RNAse (Ambion) was added. The cells

were placed in the dark for 1 h prior to analysis using a BD FACS

Calibur flow cytometer.

Plasma glucose and hormone assay
We quantified plasma glucose levels using a glucose analyzer

(Beckman Instruments). We measured plasma glucagon by RIA

(Linco Research) and insulin by ELISA (Alpco Diagnostics).

Immunofluorescence
Cell lines were cultured on glass slides for 48 hours before

staining. Mouse pancreata were fixed in 4% paraformaldehyde

for 2 hours, followed by immersion in 20% sucrose overnight at

4uC and then frozen. Sections (7 mm) were cut on a cryostat.

Sections of human pancreas tissue were acquired from

Histological Control Systems Inc (catalog # cs039-SAMPLE).

Antigen retrieval (Citra solution, Biogenes) was performed on

tissue sections before staining. Thereafter, sections were

incubated overnight with the following primary antibodies:

mouse anti-insulin (1:200; Sigma), guinea pig anti-glucagon

(1:2000; Sigma) and rabbit anti-p-insulin Rb (1:100; Santa

Cruz). Cell nuclei were stained with topro-3 (1:2000; Invitrogen).

The antigens were visualized using appropriate secondary

antibody conjugated with Fluorescein FITC and cyanine Cy5

(1:1000; Jackson ImmunoResearch Laboratories). All images

were digitally acquired and were not further processed. Sections

were viewed at 406and 636magnification. Digital images were

compiled using Zeiss LSM image browser. Only brightness and

contrast were adjusted.

Immunoblot analyses
For western blot analyses, 20 mg of protein was separated by 4–

12% Tris-Glycine gels (Invitrogen) electrophoresis and electro-

blotted onto PVDF filters (Invitrogen).

For protein detection, the following primary antibodies were

used: mouse anti-IRb (1:1000, Santa Cruz), rabbit anti-IGF-1R

(1:1000, Cell Signaling), rabbit anti-p-insulin Rb (1:1000; Santa

Cruz), rabbit anti-p-IRS1/2(Tyr612) (1:1000, Santa Cruz), rabbit

anti-p-PDK1 (Ser241) (1:2000, Cell Signaling), rabbit anti-p-AKT

(Ser473) (1:1000, Cell Signaling), rabbit anti-AKT (1:1000, Cell

Signaling), rabbit anti-p-FOXO1 (Ser256) (1:2000, Abcam),

mouse p27 (1:2500, BD), rabbit anti-p-mTOR (Ser2448)

(1:1000, Cell Signaling), rabbit anti-mTOR (1:1000, Cell Signal-

ing), b-Actin (1:2000, Cell signaling) and GAPDH (1:2000,

Abcam) were used as internal control. HRP-linked (Abcam)

secondary antibodies were visualized using ECL (GE Healthcare).

For immunoprecipitation assays, aTC1 cells were lysed with ice-

cold RIPA buffer. Cell lysate was then subjected to immunopre-

cipitation with anti-IRS1 (1:1000, Santa Cruz) or anti-IRS2

(1:1000, Santa Cruz) and immunoblotted with anti-p-IRS1/2

(Tyr612) (1:1000, Santa Cruz).

DAB staining and pancreatic a cell number counting
Mice pancreas frozen sections was stained with guinea pig anti-

glucagon (1:1000; Sigma). DAB (3,3-diaminobenzidine) staining

was performed using ultravision mouse tissue detection system kit

(labvision) following IHC slide staining DAB LABVISION

PROTOCOL.

Quantification of DAB stained pancreatic images were

performed in Matlab (Mathworks) (http://www.mathworks.com),

a computer program used for technical computing, using novel

software in conjunction with the image processing toolbox.

Statistical analysis
Data are expressed as means 6 SEM, and statistical significance

was tested by Student’s t test. Asterisks indicate statistical

significance as follows: *, P,0.05; **; P,0.005, ***; P,0.0005.

Regulation of a-Cell Proliferation
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Results

1. Elevated plasma glucose levels in diabetic mice is
accompanied by increased pancreatic a-cell number

We evaluated the islets of db/db mice, a well-characterized

mouse model of T2DM, and non-diabetic heterozygous Leprdb/+

mice, as blood glucose homeostasis worsens over time in the

animals. Using immunohistochemical techniques, it can be seen

the number of a cells obviously increased while insulin staining

decreased over time (Figure 1A) as blood glucose rose (from

normal at 4 weeks to .400 mg/dl at 7 weeks) in db/db mice. In

conjunction, db/db mice had an increased a-cell area compared

with non-diabetic mice and a-cell area increased over time

(Figure 1B). Consistently, plasma glucagon levels were higher in

db/db mice compared with non-diabetic mice (Figure 1C). The

decreased insulin staining did not result in decreased plasma

insulin levels when compared to non-diabetic animals, and must

be at least in part due to degranulation of b cells because fasting

plasma levels of insulin were extremely elevated, compared to non-

diabetic mice (Figure 1D). In non-diabetic littermates there was no

change in the islet morphology out to 6 months of age (Figure 1A).

To confirm increasing a-cell numbers in another model of

diabetes, we induced diabetes by giving streptozotocin (STZ) daily

for 5 days to CD1 mice. Blood glucose was .500 mg/dl, 4 weeks

after STZ. This particular mouse strain under normal conditions

has few a cells compared to b-cell numbers in islets (96:4 ratio) and

therefore increasing a-cell numbers, a-cell area and dispersal of a
cells thoughout the islets became obvious as a result of the STZ

treatment (Figure 1E). The increased a-cell number is as a result of

increased proliferation because numerous PCNA-positive a cells

are evident in every islet from db/db mice at 7 weeks of age (four

islets from four different mice are shown (Figure 1F), and no

PCNA-positive a-cell could be found in non-diabetic mice. We

had previously observed an increase in a-cell numbers in a

Huntington’s Disease mouse model that also develops diabetes

[23]. We next investigated if a-cell proliferation is regulated by

islet hormones.

2. Up-regulation of pancreatic a cell proliferation
2.1 Co-culture of b cells with a cells increases a-cell

proliferation. In non-diabetic rodents, the a cells are located

on the rim (or mantle) of islets (Figure 1A arrow), while in human

pancreatic islets, a cells are additionally interspersed among b cells

(Figure 1G for examples) [24]. To mimic free association of

endocrine products we used a trans-well co-culture system to

culture pancreatic a cells (lower chamber) with b cells and any

other cells of interest (upper chamber) (Figure 2A). We found that

a-cell proliferation (aTC1) was significantly increased by co-

culture with MIN6 cells (a mouse b-cell line) compared with co-

culture of a cells with a non-b-cell line (CHO-NEO), aTC1 cells

themselves, or medium only (Figure 2A), suggesting that a factor

secreted from b cells caused increased a-cell proliferation. a Cells

as well as b cells continued to secrete their respective hormones,

which accumulated over time in the medium (Figure 2 B,C).

2.2 Insulin increases a-cell proliferation. As insulin is a

known trophic factor, especially to b cells [16–18,25], we next

studied if it influenced a-cell proliferation. After 5 days of insulin

treatment at various concentrations, we found that the a-cell

proliferative rate was increased in a dose-dependent manner

(EC50 = 2 nM) (Figure 2D), and therefore was most likely a factor

in the a-cell proliferation seen when a cells were co-cultured with

b-cell lines.

2.3 Insulin up-regulates a-cell proliferation through

insulin receptor. It’s reported that IRs are expressed on

mouse a cells [13]. We confirmed this by immunofluorescence and

while mouse islets express IRs on both a and b cells (Figure 3A),

IGF-1 receptors (IGF-1Rs) are expressed only on b cells

(Figure 3B). We further studied this using western blotting of

whole cell extracts from cell lines and confirmed that IRs are

expressed in both mouse pancreatic a-cell (aTC1) and b-cell

(bTC6 and Min6) lines, but IGF-1Rs are only expressed on b-cell

lines (Figure 3C). In agreement with the immunofluorescence data

from mouse islets, IGF-1R protein was present in b- but not a-cell

lines (Figure 3C). We used CHO cells as positive controls including

CHO/K1 (non-transfected CHO cells), CHO/IR (cells that over-

express IR) and CHO/IGF-1R (cells that over-express IGF-1R).

Thus eliminating IGF-1R on a cells as a candidate insulin

receptor. Therefore, we conclude that the effect of insulin on a-cell

proliferation is through IRs, not IGF-1Rs.

To prove that the IRs on a cells are functional, we treated

aTC1 cells with insulin and observed phosphorylation of IR by

immunofluoresence imaging as early as 10 min after insulin

treatment, reaching maximum phosphorylation by 30 minutes

(Figure 3D).

3. Insulin signaling pathway in pancreatic a cells
3.1 Insulin signaling through IR/IRS2/AKT (PKB).

Since the proliferative effect of insulin on b cells is regulated

through the IR/IRS2/PDK1/AKT/FOXO1 signaling pathway

[26], we examined this pathway in a cells. We treated aTC1 cells

with increasing concentrations of insulin for 10 minutes and whole

cell lysate was then used for immunoprecipitation and western

blotting. We found that insulin treatment resulted in phosphorylation

of IR at Tyr1162/1163, and IRS1/2 at Tyr612 in a concentration

dependent manner (Figure 4A). To determine the functional isoforms

of IRS in a cells, IRS1 and IRS2 were immunoprecipitated,

separated by SDS-PAGE, and immunoblotted with antibodies that

specifically recognize phosphorylated IRS1 and 2 (Tyr612). The

immunoprecipitation (IP) of IRS1 showed no obvious

phosphorylated band (Figure 4B upper panel), but the IP of IRS2

showed an insulin-mediated, dose-dependent increase in IRS2

phosphorylation (Figure 4B, lower panel). Western blotting of

whole cell lysates revealed similar amounts of IRS1 in a cells

(aTC1) and b cells (MIN6) (Figure 4B, upper panel, black arrows).

However, IRS2 protein levels in a cells were four-fold higher than in

b cells (Figure 4B, lower panel, and red arrows). Therefore, we

conclude that the major insulin receptor signaling molecule in a cells

is IRS2.

Multiple growth factor signaling pathways converge at the level

of AKT(PKB) activation and further regulate p27, which controls

the cell cycle [27]. Similar to b cells [26] we also observed

phosphorylation of AKT(S473) and decreasing amounts of p27

(Figure 4A) in response to increasing concentrations of insulin.

However, unlike b cells, we found that there was no obvious

change in the phosphorylated states of PDK1 or FOXO1 in a cells

in response to insulin (Figure 4A). We conclude that a cells have

the ability to signal through IR and IRS2, with AKT acting as a

key factor in a-cell turnover as well as in b cells, but the down-

stream AKT signaling molecules involved in proliferation are not

the same as in b cells.

3.2 mTOR signaling in insulin pathway. mTOR, an

evolutionarily conserved serine-threonine kinase, interacts with

AKT and promotes protein translation and cell growth in response

to growth factors [28,29]. aTC1 cells were treated with insulin for

10 minutes on three separate occasions and lysates were

immunoblotted with phosphorylated and total mTOR

antibodies. We found that insulin clearly led to phosphorylation

of mTOR (Figure 4C).

Regulation of a-Cell Proliferation
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Figure 1. a-cell numbers are increased in db/db and streptozotocin (STZ)-treated mice. (A) Immunofluorescent staining of insulin and
glucagon in mice at ages shown. Glucagon-positive cells are on the rim of islets in non-diabetic mice (arrows). (B) Mean glucagon-positive area in
islets over time, in non-diabetic and db/db mice. (C) Random plasma glucagon levels in non-diabetic and db/db mice. (D) Random plasma insulin
levels, over time, in db/db and non-diabetic mice. (E) Immunofluorescent staining of insulin and glucagon and quantification of glucagon-positive
area in islets of STZ-treated CD1 mice. (F) PCNA-positive nuclei in glucagon-positive cells in islets from four different db/db mice. (G)
Immunofluorescent staining of insulin and glucagon in human pancreatic paraffin sections, demonstrating lack of stereotypy in the distribution of a
and b cells in human islets.
doi:10.1371/journal.pone.0016096.g001
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To further confirm the role of mTOR in insulin-mediated

proliferation, we treated a cells with insulin in conjunction with

rapamycin, a specific mTOR inhibitor [30]. The cell proliferation

was assessed by both ELISA-based relative proliferation assay and

by counting the cells in S phase (Propidium iodide staining for

DNA cell cycle analysis). We observed that insulin-mediated

increases a-cell proliferation was completely abolished in the

presence of rapamycin (Figure 4D). Thus, we concluded that

insulin up-regulates a-cell proliferation through AKT/mTOR

signaling.

4. Glucagon regulates pancreatic a-cell proliferation
4.1 Blocking GcgRs decreases a-cell proliferation in

vitro. In the early stages of T2DM, insulin levels are elevated

due to insulin resistance, so it is possible that on-going, sustained

elevated intra-islet insulin levels are conducive to a-cell

proliferation, especially if a-cell proliferative brakes are

dysfunctional, and it is also possible that as glucagon secretion

begins to rise that it serves to stimulate a-cell proliferation.

Blocking GcgRs has been reported to improve glucose homeostasis

[19–21], glucagon stimulates its own release and GcgRs are

Figure 2. Culturing a cells with MIN6 b cells or insulin increases a-cell proliferation. (A) aTC1 cells were co-cultured with MIN6 b cells
(n = 16), aTC1 (n = 16), CHO-NEO (n = 12) and medium (n = 12) in transwell plates, as shown. Results show relative proliferation rates of a-TC1 cells. (B)
and (C), glucagon and insulin levels in medium from aTC1 and MIN6 cells, assayed at the times shown. (D) aTC1 cells were treated with insulin for 5
days at the concentration shown. EC50 = 2 nM, n = 6 separate experiments. All data are expressed as means6 SEM; ***p,0.0005.
doi:10.1371/journal.pone.0016096.g002

Regulation of a-Cell Proliferation
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Figure 3. Insulin functions through insulin receptors (IR), not IGF-1 receptors (IGF-1R), in a cells. (A) Immunofluorescent staining of IRb in
a pancreatic islet of a mouse. Merge of IRb and glucagon is yellow, demonstrating co-localization in a cells (arrow). (B) Immunofluorescent staining of
IGF-1R in a pancreatic islet of a non-diabetic mouse. There is no merge of IGF-1R and glucagon (no yellow), demonstrating lack of co-localization
(arrow). IGF-1Rs are present on b cells. (C) Western Blot analysis of insulin receptors (IRb) and IGF-1R in CHO cells, and a-and b-cell lines. IRb is present
in all cell types while IGF-1R is not expressed in a cells (CHO- IRb are transfected with IR, CHO-IGF-1R are transfected with IGF-1R, CHO-K1 are non-
transfected). (D) Immunofluorescence staining of phosphorylated insulin receptors (p-IRb) in aTC1 cells in response to insulin at the times shown.
doi:10.1371/journal.pone.0016096.g003

Regulation of a-Cell Proliferation
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Figure 4. IRs signal through IRS2 and AKT and activate mTOR, resulting in a-cell proliferation. (A) Western blot analysis of insulin receptor
signaling molecules in a cells. aTC1 cells were treated with increasing concentration of insulin for 10 minutes and whole cell lysate was used for western
blotting. (B) Immunoprecipitation of IRS1 and IRS2 in pancreatic cells. aTC1 cells were treated with increasing concentration of insulin for 10 minutes and
whole cell lysates was collected. IRS1 and IRS2 proteins were immunoprecipitated, and immunoblotted with an antibody that recognizes
phosphorylated IRS1/2 (Tyr612). Protein levels of IRS1 (black arrows) and IRS2 (red arrows) in aTC1 and MIN6 cells. The densitometry represents relative
expression of IRS2 protein levels. (C) aTC1 cells were treated with increasing concentration of insulin for 10 minutes and whole cell lysate was blotted for
phosphorylated and total mTOR. (D) a-TC1 cells were treated for 72 hours (left panel) or 24 hours (right panel) with insulin (2 nM) +/2 rapamycin
(20 mg/ml). The cell proliferation was assessed by both ELISA-based relative proliferation assay (left panel: data are expressed as means 6SEM [n = 6];
** p,0.005, *** p,0.0005) and by counting the cells in S phase (propidium iodide staining for DNA cell cycle analysis) (right panel).
doi:10.1371/journal.pone.0016096.g004
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reported to be present on a cells [10]. Immunofluorescent staining

confirmed the presence of GcgR on aTC1 cells (Figure 5A) and

after 72 hours of treatment with GcgR antagonist (14 mM) so as to

block the effects of the endogenously secreted glucagon, we

observed a 44% decrease in aTC1 cell proliferation compared

with the untreated group (Figure 5B left panel). We further

confirmed this by counting the cells in S phase, and found that

2 nM of insulin still increased aTC1 cell proliferation even in the

presence of GcgR antagonist (Figure 5B right panel).

4.2 Blocking GcgRs decreases a-cell number and

improves glucose homeostasis in diabetic mice. We next

treated db/db mice (2 months old, male, N = 4 mice per group)

with a GcgR antagonist or vehicle delivered by gavage daily, for

17 days. Compared to day 0, we observed a 50% decrease of

plasma glucose levels while in vehicle-treated animals blood

glucose levels continued to increase (Figure 5C). Compared with

the vehicle-treated group, we observed a 39% decrease of insulin

(Figure 5D) and a 56% decrease of glucagon plasma levels

(Figure 5E) and a 50% decrease in a-cell number (Figure 5F).

Immunofluorescent staining also showed increased intra-islet

insulin in the antagonist-treated mice (most likely due to less

degranulation of b cells) and smaller a cells (Figure 5G).

Discussion

Our results firmly establish that elevated levels of glucagon and

increased pancreatic a-cell number are two principle factors in the

progression of diabetes and, in fact, compounding the problem, a-

cell numbers continue to increase with worsening diabetes in db/

db mice. As the leptin receptor is inactivated in db/db mice leptin

cannot be directly impacting a-cell number, though it is indirectly

influencing a-cell number by causing diabetes. There is human

data that concur with our findings of increased a-cell numbers and

increased a- to b-cell ratios in T2DM [15]. Therefore, we

conclude that increased plasma glucagon levels in T2DM are

accompanied by increased a-cell numbers.

The molecular mechanisms underlying a-cell proliferation in

diabetes have not been studied. Insulin signaling in a cells is

involved in suppression of glucagon secretion and it was very

recently reported in mice that knockout of IRs in a cells (aIRKO

mice) leads to a decrease in a-cell mass, which becomes more

evident with age [13]. Our results support the notion that insulin

could potentially influence not only a-cell function but also

turnover. There is precedent for this notion in islets because

insulin regulates pancreatic b-cell proliferation through IR/IRS2/

PDK1/AKT/FOXO1 pathway and its knockout in mice leads to

reduced b-cell mass [26]. Our results indicate that AKT might be

a key molecule involved in insulin modulation of a-cell

proliferation, but neither PDK1 nor FOXO1 are involved. It

has been reported that mTOR is required for AKT-dependent cell

growth in human retinal cells [31] and our data show that insulin

activates mTOR in a cells. Furthermore, in the presence of

rapamycin, an mTOR inhibitor, the effect of insulin on a-cell

proliferation and mTOR phosphorylation is completely abolished.

In insulin resistant states, b cells attempt to compensate for the

resistance by secreting more insulin. In pancreatic islets, this results

in higher intra-islet insulin concentration than normal, resulting, in

turn, in increased IR signaling. This initially would be predicted to

cause a decrease in glucagon secretion but eventually, insulin

resistance must occur to the suppressant effect on secretion, and

ultimately dysregulation of glucagon secretion. We hypothesize

that, in the early stages of insulin resistance, there are counter-

regulatory systems to the trophic effects of insulin on a-cell

proliferation. But as insulin resistance increases, the counter-

regulatory measures within islets may become dysfunctional or

overridden by high insulin levels, leading to increased a-cell

turnover and ultimately more glucagon released into the

circulation. This will worsen insulin resistance in the liver, leading

to increased, non-suppressible gluconeogenesis and increased

fasting blood glucose. Moreover, glucagon, through its G

protein-coupled receptor on b cells, enhances insulin secretion

and b-cell mass (8), an effect that is likely to be of particular

importance in human islets because of the unique b-/a-cell

proximity: so increasing glucagon secretion could be another

compensatory attempt by the body to increase insulin secretion in

insulin resistant states.

It is probable that in T2DM a cells become resistant only to the

inhibitory effects of insulin on glucagon secretion and not to the

trophic effects. There is precedent for selective insulin resistance.

In the liver, the FOXO1 pathway becomes insulin resistant in

obese and diabetic states and this results in decreased glucose

uptake and continuing gluconeogenesis; and yet, despite this,

insulin sensitivity is maintained in the SREBP-1c pathway, which

leads to increased fatty acid synthesis and excess triglyceride

secretion from hepatocytes that further ultimately worsen insulin

resistance in muscle [32,33]. The inhibitory effects of insulin on

glucagon secretion are FOXO1-dependent because knockdown of

the IRs in a cells by siRNA led to markedly reduced pFOXO1

and increased glucagon secretion [13] and FOXO1 silencing

abolished the acute regulation by insulin of glucagon secretion

[34]. Analogous to the situation in hepatocytes, the a-cell FOXO1

pathway is probably insulin-resistant in T2DM. And as we found

that the trophic effects of insulin in a cells are not mediated by

FOXO1, it is reasonable to conclude that the effects of insulin on

a-cell proliferation are favored by the high intra-islet insulin levels,

while the suppressant effects on glucagon secretion are obviously

abrogated as plasma glucose rises in T2DM. It would be expected

that there may be increased amounts of other products of the

proglucagon molecule, GLP-1 for example, circulating in diabetic

conditions. However, GLP-1 levels are not elevated in type 2

diabetic conditions [35] and GLP-1 receptor seems to be exclusive

in islets to b cells [35,36]. Therefore, we do not think a

proglucagon product is the primary proliferative factor to a cells.

Our results show that blocking the glucagon receptor decreased

blood glucose, as expected, but it also decreased a-cell prolifer-

ation in both mice and aTC1 cells, leading us to conclude that

glucagon itself has a direct trophic effects on a cells, just as it does

in b cells. Furthermore, when pancreatic a-cell number was

decreased in half in db/db mice by a glucagon receptor

antagonist, plasma glucagon levels were significantly decreased,

again drawing a firm connection between increased a-cell number

and secretion. Interestingly, plasma levels of insulin dropped and

b-cell degranulation was lessened, most likely reflecting decreased

insulin secretion and decreased intra-islet insulin, which would also

lessen the trophic effects of insulin on a cells.

It should be borne in mind that the effects of a glucagon

antagonist would have different effects in non-diabetic compared

to diabetic mice. In non-diabetic mice, an antagonist causes low

blood glucose levels, which lead to a sympathetic nervous system

response and a-cell proliferation as the animals attempt to

compensate for neuroglucopenia [19]. In diabetic mice, no such

adrenergic response would be expected if blood glucose is not

lowered below normal.

Lowering plasma glucagon represents an attractive therapeutic

approach for T2DM, and recent success in this field has generated

considerable enthusiasm [19]. Blocking of glucagon receptors in

diabetic mice led to significantly improved blood glucose control

and decreased plasma insulin levels. This likely resulted from
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Figure 5. Glucagon receptor (GcgR) antagonism decrease a-cell proliferation. (A) Immunofluorescent staining of GcgR on aTC1 cells. (B)
Proliferative response of a cells after 72 hours (left panel) or 24 hours (right panel) of GcgR antagonist II (14 mM) +/2 insulin (2 nM) treatment. The
cell proliferation was assessed by both ELISA-based relative proliferation assay (left panel) and by counting the cells in S phase (propidium iodide
staining for DNA cell cycle analysis) (right panel). (C) db/db mice were treated with GcgR antagonist II for up to 17 days. Blood glucose measurements
in non-treated db/db (n = 4, open diamond) and treated db/db (n = 5, closed diamond) mice. (D) Fasting plasma insulin levels of db/db mice

Regulation of a-Cell Proliferation

PLoS ONE | www.plosone.org 9 January 2011 | Volume 6 | Issue 1 | e16096



alleviation of the insulin resistance and a decrease in the stimulus

to insulin secretion by glucagon. Thus, the burden on b cells is

reduced, which results in, as showed in our data, less degranu-

lation of b cells.

In summary, we provide evidence that blocking mTOR

prevents a-cell proliferation. The mTOR pathway plays a crucial

role in tumorigenesis [37,38] and rapamycin and the other

inhibitors of mTOR have been investigated as anti-cancer

medications in recent years [39–42]. Very interestingly, rapamycin

just recently was shown to increase life-span in mice even when

given late in life [43] and mTOR inhibitors (or rapalogs that do

not have the immunosuppressant effects of rapamycin), are now

being explored by companies to extend human life [44]. Based on

our data, such analogs might be worth exploring in treating

T2DM. We also provide evidence that blocking glucagon

receptors in T2DM may not only lessen glucagon-mediated

gluconeogenesis, but may be beneficial to b cells.
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