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Introduction

The nuclear lamina is a fibrillar network that is located between 
the inner nuclear membrane and the peripheral chromatin. It is 
composed of lamins, integral membrane proteins, transcription 
factors and signaling proteins. Most nuclear lamina proteins are 
associated directly or indirectly with lamins, which are nuclear 
intermediate filament proteins.1,2 The nuclear lamina is required 
for most nuclear activities, including chromatin organization, 
cell cycle regulation, nuclear positioning within the cell, DNA 
replication, RNA Pol II transcription, as well as for modulating 
master regulatory genes and signaling pathways.3-5 Mutations in 
human lamin genes, mainly in LMNA, cause over 16 different 
laminopathies affecting multiple cell types and tissues, including 
muscle, adipocytes, peripheral nerves, bone and skin.6

One group of laminopathies is comprised of progeroid syn-
dromes, including Hutchinson-Gilford progeria syndrome 
(HGPS), atypical Werner syndrome and mandibuloacral dys-
plasia. These diseases are caused by mutations either in LMNA 
or ZMPSTE24, which encodes one of the prelamin A process-
ing enzymes.7 Most HGPS patients express the mutant lamin 
A isoform progerin, which is permanently farnesylated.8 With 
increasing passage number, HGPS fibroblasts in culture accumu-
late progerin and changes are seen in their nuclear morphology 
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and chromatin organization.9,10 Blocking lamin farnesylation in 
HGPS fibroblasts by either farnesyl transferase inhibitors (FTIs) 
or by a combination of statins and aminobisphosphonates restores 
nuclear morphology and reverses the changes in chromatin orga-
nization. In addition, blocking farnesylation in mouse models of 
constitutive farnesylation improved their growth, body weight, 
lifespan and bone defects.11-14 These results have led to ongoing 
clinical trials of statins plus aminobisphosphonates with or with-
out FTI in children with HGPS.

Progerin mRNA and protein tend to accumulate in dermal 
fibroblast cultures obtained from old healthy individuals.15,16 
The progerin accumulation is enriched in binucleated cells with 
nuclear defects, similar to those seen in HGPS cells.15 Progerin is 
also found in skin biopsies from healthy individuals and appears 
in higher levels in old people.16 This suggests that progerin plays 
a role in the normal aging process as well as HGPS.

In the nematode Caenorhabditis elegans, somatic cells stop 
dividing in the adult stage, making this animal a good model for 
studying aging in non-proliferating tissues.17 Lamins are essen-
tial for normal longevity in C. elegans, as reduced lamin activity 
at the adult stage shortens lifespan accompanied by acceler-
ated aging phenotypes.19 In most non-neuronal cell types, the 
nuclear envelope (NE) undergoes progressive and stochastic age-
dependent alterations, resembling changes observed in HGPS 
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periphery. The nuclear deterioration can be partially delayed in 
some long-lived strains.18 We had previously shown that feed-
ing C. elegans with the FTI gliotoxin can inhibit the age-related 
deterioration of NE shape: nuclei from gliotoxin-treated worms 
showed fewer lobules and aggregations and retained their circular 
shape.20 We repeated these experiments using a different FTI, 
manumycin, which was previously characterized in C. elegans 
larval development,25 in order to determine the general effects 
of FTIs on NE structure. Transgenic young adult worms were 
treated with 63–500 nM of manumycin and the shape of the 
nuclei was monitored in live animals expressing GFP::lamin or 
GFP::emerin in a wild-type background. Manumycin at concen-
trations of 125 nM and 250 nM reduced the NE lobulation of 
these worms at days 4 (Fig. 1, upper part) and 6 (Fig. 1, lower 
part) of adulthood, supporting the previous conclusion that 
the shape rescue by FTIs is likely to result from inhibition of 
farnesylation. 500 nM manumycin reduced the NE lobulation, 
but was later toxic to the animals and they died before day 6 of 
adulthood. The ability to inhibit nuclear morphology changes 
was more prominent at high manumycin concentrations and to a 
lesser extent than gliotoxin.20

Manumycin can rescue age-related reduction in motility. A 
decline in movement is a hallmark of aging, which is well char-
acterized in C. elegans.26,27 As gliotoxin improves motility in 
aging C. elegans,20 we investigated if this can be also achieved 
with manumycin. Wild-type animals were transferred at day 
1 of adulthood to plates containing 125 or 250 nM manumy-
cin and motility was assayed as the average velocity on agar 
plates after 2, 3, 6 and 8 days of treatment at 20°C (Fig. 2A). 
Until day 8 of adulthood, manumycin at both concentra-
tions significantly improved the average velocity of animals  

fibroblasts, which can be defined as one of three phases.18 At an 
early age, most nuclei appear round or slightly ovule, with lamin 
and the inner nuclear membrane protein emerin evenly distrib-
uted around the periphery (Phase I); as worms age most somatic 
nuclei become convoluted and lobulated, with lamin aggregates 
in foci (Phase II). Over time, there is an increase in nucleoplasmic 
lamin, a decrease in nuclear peripheral lamin and nuclei become 
abnormally shaped with extensive stretching and fragmentation. 
These morphological changes are accompanied by loss of periph-
eral heterochromatin and accumulation of chromatin away from 
the nuclear periphery (Phase III).18

In a previous study, we used the FTI gliotoxin to investigate 
the effects of inhibiting lamin farnesylation on aging in adult 
C. elegans cells.20 This drug caused a marked improvement in 
nuclear shape, amelioration of the age-related motility decline, 
but with no effect on lifespan. However, it was unclear if these 
phenotypes could be attributed to lamin farnesylation or to other 
cytotoxic effects of this drug. Here we investigate an additional 
FTI, manumycin, as well as the global inhibition of farnesylation 
by downregulation of polyprenyl synthetase. We show that while 
restoration of nuclear shape is a result of inhibition of farnesyla-
tion, improved age-dependent motility is probably a side effect 
of FTIs. Furthermore, blocking farnesylation can help maintain 
normal chromatin distribution in nuclei of aging animals, but is 
insufficient to extend lifespan.

Results

Manumycin rescues age-related changes in nuclear morphol-
ogy. As worms age, the NE loses its round shape and becomes 
lobulated and convoluted and Ce-lamin aggregates at the nuclear 

Figure 1. Manumycin alters nuclear morphology. GFP::Ce-lamin in live control and manumycin treated worms at days 4 (upper part) and 6 (lower part) 
of adulthood. C. elegans were treated with 125, 250 and 500 nM of manumycin and grown at 20°C. Nuclei in worms treated with manumycin show 
fewer convolutions compared to nuclei from untreated worms. Bar = 10 microns and applies to all parts.
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(p < 0.01 for manumycin treated animals vs. control). By day 
8 of adulthood there was a significant reduction in motility in 
both wildtype and manumycin-treated animals (p < 0.01), but 
the manumycin-treated animals still had higher average velocity. 
However, by day 11 of adulthood there was no significant differ-
ence in the average velocity between control and treated worms, 
which hardly moved at all tested concentrations (data not shown). 
We concluded that the ability of manumycin to improve the age-
related reduction in motility is temporal and applies mostly to 
early days of adulthood.

Manumycin shortens lifespan in a dose-dependent manner. 
We next examined the effect of manumycin on average lifespan. 
Treating wild-type C. elegans with manumycin at all tested con-
centrations shortened the average lifespan of the worms in a dose-
dependent manner (Fig. 2B), demonstrating a toxic effect of this 
drug and making it impossible to draw conclusions on the effects 
of manumycin on lifespan.

Downregulating polyprenyl synthetase rescues the NE aging 
phenotype. Previous studies have shown that in the absence of 
farnesyl transferase, geranylgeranyl transferase can attach a gera-
nylgeranyl moiety to the cysteine of the C-terminus CAAX motif 
of lamin, thus partially restoring the function of farnesylation 

Figure 2. Manumycin affects motility and is toxic to C. elegans. (A) 
Relative motility of control and manumycin-treated worms. Black bars 
indicate control; dark gray bars 125 nM manumycin and light gray bars 
250 nM of manumycin. Y-axis shows relative average motility to control 
worms at day 1 of adulthood. (B) Survival plot of control and manu-
mycin treated animals. The amount of manumycin is indicated next to 
each graph. The animal lifespan was shortened with increased doses of 
manumycin.

Figure 3. Nuclei retain their round morphology following polyprenyl 
synthetase downregulation by fdps-1(RNAi). (A) Animals were treated 
with either the empty vector L4440 (EV) or with fdps-1(RNAi) starting at 
the young adult stage (day 1). GFP::Ce-lamin was used to view changes 
in nuclear and nuclear envelope shapes. The fdps-1(RNAi)-treated nuclei 
showed some lamin aggregations at the nuclear periphery, but no 
lobulation. Bars = 10 microns.

to titrate lamin A to the NE.14 In order to inhibit both farnesyl-
ation and geranylgeranylation, aminobisphospanates with statins 
were used to block the production of farnesyl-PP needed both 
for prenylation reactions.14 However, Zoledronate together with 
pravastatin at different concentrations failed to affect farnesyl-
ation in C. elegans, as judged by the multivulva assay for Ras 
farnesylation25 (data not shown). To directly inhibit the produc-
tion of farnesyl-PP, we generated a dsRNA construct against 
polyprenyl synthetase (R06C1.2; fdps-1(RNAi)) and used it to 
efficiently downregulate fdps-1 mRNA in adult C. elegans (Sup. 
Fig. 1). Animals grown on bacteria expressing fdps-1(RNAi) 
showed a significant inhibition of the age-dependent changes in 
NE shape: the aging nuclei of the fdps-1(RNAi)-treated animals 
had no lobulation or membrane proliferation (Fig. 3). The fdps-
1(RNAi)-treated nuclei contained many lamin aggregates mostly 
at the nuclear periphery. fdps-1RNAi also partially rescued the 
multivulva phenotype in Ras mutated worms (data not shown). 
We concluded that preventing all prenylation reactions is suffi-
cient to inhibit lobulation and nuclear membrane proliferation 
and to maintain a nuclear shape that is characteristic to young 
animals.

Downregulation of polyprenyl synthetase inhibits periph-
eral chromatin redistribution in aging C. elegans nuclei. In 
C. elegans muscle cells, dense DNA staining by Hoechst 33258, 
which probably represent regions of heterochromatin, is located 
mainly at the nuclear periphery (Fig. 4 and day 6). As the animals 
age, the peripheral staining of DNA is lost (Fig. 4 and day 13, 
L4440). Interestingly, downregulation of polyprenyl synthetase 
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Inhibition of prenylation has no effect on lifespan. We next 
wanted to examine whether the inhibition of nuclear mem-
brane lobulation and invagination correlates with a change in 
the average lifespan. As shown in Figure 5B, downregulation of 
polyprenyl synthetase with fdps-1 dsRNA had no effect on the 
average lifespan of wild-type animals, similar to the treatment 
of C. elegans with gliotoxin.20 We concluded that both drug and 
genetic manipulation of prenylation do not extend lifespan in  
C. elegans.

Discussion

Protein farnesylation causes nuclear lobulation and mem-
brane proliferation. Accumulation of progerin, a permanently 

by fdps-1(RNAi) maintained the DNA staining at the nuclear 
periphery (Fig. 4 and day 13, fdps-1).

Age dependent decline in motility is not affected by prenyl-
ation. The pharmacological inhibitors of farnesylation, gliotoxin 
and manumycin, partially rescued the age-dependent deteriora-
tion in motility. However, it was not clear whether this rescue is 
due to the inhibition of farnesylation itself or to a different (side) 
effect of these drugs. We therefore scored the motility of animals 
as they aged following downregulation of polyprenyl synthetase 
by fdps-1 dsRNA. Interestingly, the motility of the fdps-1(RNAi)-
treated wild-type animals at days 2, 4 and 6 was similar to con-
trol animals treated with an empty RNAi vector (Fig. 5A). We 
concluded that the effect of FTIs on the age-related reduction in 
motility is probably not due to inhibition of farnesylation.

Figure 4. Downregulation of polyprenyl synthetase by fdps-1(RNAi) blocks the redistribution of chromatin in nuclei of aging cells. Animals were 
treated with either L4440 vector (EV) or with fdps-1(RNAi) starting at the young adult stage (day 1). Ce-emerin::GFP and Hoechst DNA staining were 
used to view changes in nuclear envelope shapes and chromatin distribution. fdps-1(RNAi)-treated worms show diminished chromatin mislocalization 
at old age. In the merge parts green = lamin; blue = DNA. Bars = 10 microns.
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proteasome and both manumycin and gliotoxin are antibiotics, 
affecting the bacteria consumed by C. elegans.38 It is therefore not 
clear if the inability to extend lifespan by FTIs resulted from their 
deleterious side effects.

Studies in mouse models for HGPS have shown life extension 
following inhibition of farnesylation.14,39 The lack of life exten-
sion in C. elegans following inhibition of farnesylation by FTI or 
by downregulation of polyprenyl synthetase might be due to the 
fact that C. elegans has no bona fide A-type lamin. Also, FTIs 
were so far tested only on HGPS models, but not on normally 
aging animals. Finally, FTIs and genetic inhibition of farnesyl-
ation could affect proteins that affect lifespan that are not con-
served between C. elegans and human.

Materials and Methods

C. elegans strains. Strain maintenance and manipulations 
were performed under standard conditions as described.17 The 

farnesylated form of lamin A, in nuclei of HGPS patients or 
in nuclei of normally aging cells leads to nuclear deformation, 
change in heterochromatin distribution and aging diseases. 
Mutations in the lamin A processing enzyme ZMPSTE24, 
which also increase the amount of farnesylated prelamin A, also 
cause similar phenotypes.28-30 Inhibition of farnesylation by 
FTIs or by statins plus aminobisphosphonates in HGPS fibro-
blasts, HeLa cells expressing progerin, ZMPSTE24 mutant 
cells expressing prelamin A, mice cells expressing farnesylated 
lamin A or mice cells expressing mutant ZMPSTE24 display 
decreased lobulation, membrane invagination and chromatin 
phenotypes.13,14,31,32 These effects of farnesylation on nuclear 
morphology are probably conserved in evolution, since in C. 
elegans inhibition of farnesylation either by FTIs or by genetic 
downregulation of polyprenyl synthetase inhibited both the 
age-dependent phenotypes of nuclear deformation and the 
redistribution of heterochromatin. The change in nuclear 
shape could be explained at least in part by the role of farne-
sylation of nuclear envelope proteins in inducing membrane 
proliferation, as was shown for overexpression of lamins B1 
and B2 in Xenopus oocytes,33,34 overexpression of farnesylated 
lamins in COS-7 cells or in zebrafish embryos,35 or expression 
of the farnesylated inner nuclear membrane protein kugelk-
ern in Drosophila embryos.36 Taken together, these results 
show that prenylation of lamin probably plays a major role in 
membrane proliferation and invaginations in both HGPS and 
normal aging nuclei.

FTIs can delay the age-dependent motility phenotypes. 
In aging adult C. elegans, body movement slows down and 
ultimately ceases altogether. Treating adult C. elegans with 
gliotoxin20 or manumycin (this study) delayed, but did not 
inhibit, the age-dependent reduction in motility. However, at 
later days of adulthood the motility of the FTIs-treated ani-
mals was similar to that of the control animals. These results 
suggest that the reduction in motility of aging animals has 
probably two phases, one dependent and one independent of 
these drugs. An alternative explanation is that the response of 
muscle cells to FTIs is lost in the aging animals. Interestingly, 
downregulation of polyprenyl synthetase had no effect on the 
age-dependent reduction in motility; at all tested ages the fdps-
1(RNAi) and control adult animals showed similar motility. These 
results demonstrate that the effect of gliotoxin and manumycin on 
the animal motility during earlier days is caused by activity other 
then farnesyl transferase inhibition.

The effect of farnesylation on the average lifespan of C. ele-
gans. Manumycin had toxic effects on C. elegans that led to reduc-
tion of the average lifespan. This result is in contrast to gliotoxin, 
which had no effects on the average lifespan.20 Downregulation 
of polyprenyl synthetase at the adult stages had no effect on the 
average lifespan of the C. elegans, similar to gliotoxin. While glio-
toxin or manumycin could potentially affect the average lifespan 
by slowing the reduction in motility in aging animals,37 this was 
not the case for the fdps-1(RNAi) treatment. Besides inhibiting 
lamin farnesylation, FTIs inhibit farnesylation of many other 
proteins and can have multiple side effects. For example, glio-
toxin is an inhibitor of the chymotrypsin-like activity of the 20S 

Figure 5. Downregulation of polyprenyl synthetase by fdps-1(RNAi) has no 
significant effect on motility and lifespan. (A) Relative motility of control (dark 
gray) and fdps-1(RNAi) (light gray)-treated worms. (B) Survival plot of control- 
and fdps-1(RNAi)-treated animals. The black line indicates control and the 
light gray line fdps-1(RNAi).
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experiment, about 100 adult animals were transferred to 3–5 
NGM plates containing 0.05 mg/ml 5-fluoro 2O-deoxyuridine 
(FUDR), to prevent growth of progeny. The desired amount 
of manumycin (Sigma) was added to plates seeded with OP50. 
Fdps-1(RNAi) or L4440 (empty vector) expressed in bacteria 
were seeded on feeding plates containing 50 μg/ml ampicillin 
and 120 μg/ml IPTG. Animals were considered dead when they 
no longer responded to gentle prodding with a platinum wire. 
Scoring was performed every other day. Animals that exploded 
or crawled out of the plate were censored from the experiments. 
Previous work showed no significant effect of FUDR on lifes-
pan.19 For all lifespan experiments, assays were repeated at least 
twice.
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following strains were used: wild-type (N2); MT2124, a non-
lethal let-60 mutation (n1046) resulting in a multivulva pheno-
type; a transgenic strain expressing GFP::Ce-lamin under the 
promoter of baf-1 (baf-1p-gfp::lmn-1),21 YG301; and a trans-
genic strain expressing Ce-emerin::GFP under the promoter 
of lmn-1 (lmn-1p-emr-1::gfp), YG002. All strains are inte-
grated and were generated by bombardment, followed by three 
out-crosses.22

Fluorescence microscopy. Live fluorescent images were 
acquired with the Lieca SP5 confocal microscope and a 63X/1.4 
oil immersion objective. Worms were paralyzed with 1 mM 
levamisole. For live DNA imaging, YG002 worms were washed 
with 1 mg/ml Hoechst 33258 in M9 for 5 min, followed by a 
brief wash with M9.

Motility assays. Multiple N2 animals were recorded on NGM 
agar plates for 5 min intervals at 10 frames per second. At least 
10 worms were used for every treatment and the experiments 
were repeated at least twice. Motility was analyzed using Worm-
Tracker for image tracking.23 Recording was made using Dino-
Eye (Dino-Lite Microscope, NY) on a Nikon SZM800 binocular 
or on Axiocam CCD camera mounted on an Olympus MVX10 
microscope. p-values were calculated using unpaired equal dis-
tribution t-test.

Lifespan assays. The protocol for measuring lifespan was 
slightly modified from described.24 N2 animals were synchro-
nized by bleach and grown on nematode growth medium 
(NGM) at 20°C until they reached young adult stage. For each 
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